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Abstract: Shale gas has revolutionized the global energy supply, underscoring the importance
of robust production forecasting for the effective management of well operations and gas field
development. Nonetheless, the intricate and nonlinear relationship between gas production dynamics
and physical constraints like shale formation properties and engineering parameters poses significant
challenges. This investigation introduces a hybrid neural network model, GRU-MLP, to proficiently
predict shale gas production. The GRU-MLP architecture can capture sequential dependencies within
production data as well as the intricate nonlinear correlations between production and the governing
constraints. The proposed model was evaluated employing production data extracted from two
adjacent horizontal wells situated within the Marcellus Shale. The comparative analysis highlights
the superior performance of the GRU-MLP model over the LSTM and GRU models in both short-term
and long-term forecasting. Specifically, the GRU model’s mean absolute percentage error of 4.7%
and root mean squared error of 120.03 are notably 66% and 80% larger than the GRU-MLP model’s
performance in short-term forecasting. The accuracy and reliability of the GRU-MLP model make it a
promising tool for shale gas production forecasting. By providing dependable production forecasts,
the GRU-MLP model serves to enhance decision-making and optimize well operations.

Keywords: GRU; hybrid neural network; LSTM; shale gas; well production

1. Introduction

Shale gas has emerged as a promising resource to fulfill global energy demand, primar-
ily attributed to notable discoveries of reserves and the combined application of horizontal
drilling techniques and multi-stage hydraulic fracturing methods [1,2]. According to data
from the U.S. Energy Information Administration (EIA), the United States possesses tech-
nically recoverable shale gas resources amounting to 862 trillion cubic feet [3]. These
resources are distributed across diverse shale formations, including the Marcellus, Utica,
Barnett, and Haynesville.

These shale formations are recognized for their low porosity and ultra-low perme-
ability. Nevertheless, advancements in horizontal drilling and hydraulic fracturing tech-
nologies have rendered the extraction of natural gas from these formations economically
feasible [4,5]. This entails the initial vertical drilling of a well, followed by its subsequent
horizontal orientation within the shale formation. Sequential stimulations of multiple
stages are then implemented along the horizontal wellbore through the injection of high-
pressure fluids, typically comprising water, sand, and additives. This process leads to the
creation of a stimulated reservoir volume, thereby amplifying the contact areas between
the wellbore and the shale formation. Consequently, the horizontal wells with multistage
hydraulic fracturing enhance gas drainage efficiency and augment overall gas produc-
tion. In the year 2022, dry natural gas production from the shale formations in the United
States was estimated at 28.5 trillion cubic feet due to the combination of horizontal drilling
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with multistage hydraulic fracturing, equating to roughly 80% of the total dry natural gas
production [6].

To enhance shale gas recovery from hydraulically fractured reservoirs, the prediction
of production at a specified time is imperative for selecting the optimal completion method
and well operational parameters, as well as for refining gas field development strategies [7–9].
Conventional methods for production forecasting, such as decline curve analysis (DCA) and
numerical reservoir simulation, are extensively employed in the oil and gas sector to foresee
well production performances from hydrocarbon reservoirs.

DCA, a prevalent empirical approach, relies on historical production data to anticipate
future production outcomes [10,11]. This method assumes that the production decline of
a well or a reservoir follows a certain mathematical function. Through fitting the decline
curve to the available production data, essential parameters like the initial production rate,
decline rate, and ultimate recovery can be estimated. DCA offers a straightforward and
expedient estimation of forthcoming production; however, it operates under the assumption
of boundary-dominated flow and may not accurately capture intricate reservoir behavior
or shifts in production mechanisms over time.

Conversely, numerical reservoir simulation considers reservoir heterogeneities, well
configurations, fluid properties, and other factors exerting influence on hydrocarbon pro-
duction [12–14]. This approach permits the integration of intricate reservoir dynamics, en-
compassing fluid flow dynamics, pressure variations, and reservoir geometry. For instance,
the reservoir simulations adeptly incorporate various intricate mechanisms governing
shale gas transport in the production prediction, including Fick diffusion and non-Darcy
flow, alongside the geometry of the simulated reservoir volume [15,16]. Nonetheless, the
reservoir simulations require substantial data input encompassing reservoir properties,
well specifics, and fluid characteristics. The accuracy of production predictions heavily
relies on the quality of the input data and the reliability of the reservoir models. More-
over, the simulations usually demand considerable computational resources and entail
time-intensive model construction and execution processes.

In recent years, there has been an increased focus on incorporating data-driven and
machine learning-based approaches to forecast hydrocarbon production [17,18]. These
approaches view such production prediction as a time-series forecasting problem [19]. By
utilizing time series production as training data, these methods can effectively predict
well production by capturing the trends and characteristics present in the hydrocarbon
production data. Deep neural networks have been extensively studied for the time series
forecasting of hydrocarbon production due to their ability to handle nonlinear data. Pre-
vious studies on hydrocarbon production prediction using deep learning models can be
categorized based on the count of input and forecasted features, as illustrated in Table 1.
These prediction categories are classified into univariate, covariate, and multivariate sce-
narios [19], as visually depicted in Figure 1.

In Figure 1a, the univariate prediction entails the projection of the future values of a
single variable based on its historical data. In certain instances, when predicting the values
of a single variable, it is necessary to consider the relationships among multiple variables
and to model their associations to forecast the forthcoming value of the single variable.
This form of prediction is termed covariate forecasting.

Within the context of covariate forecasting, both one or multiple time series data
and additional physical factors governing production are considered. While the number
of features predicted in the covariate forecasting remains single, akin to the univariate
prediction, it incorporates multiple input features, as depicted in Figure 1b. Beyond the
aforementioned predictive paradigms, there are multivariate predictions that focus on
capturing the associations among multiple variables to forecast the values of the variables.
These prediction scenarios are depicted in Figure 1c.

These investigations have demonstrated the impressive effectiveness and accuracy of
deep neural networks in the prediction of hydrocarbon production, as evidenced by the
results presented in Table 1.
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Table 1. Summary of recent studies using deep neural networks in hydrocarbon production forecasting.

Categories Author (Year) Well Production Neural Network Description

Univariate

Lee et al. (2019) [20] Monthly shale gas
production LSTM LSTM outperforms

DCA methods.

Sagheer et al. (2019) [21] Daily oil production Deep LSTM (DLSTM) DLSTM outperformed
RNN and GRU.

Ning et al. (2022) [22] Oil production rate LSTM
LSTM outperformed
traditional prediction

methods

Yang et al. (2022) [23] Daily shale gas LSTM LSTM outperforms
ARIMA and DCA

Covariate

Le et al. (2021) [24] Oil production rate Physics-guided
model

Physics-guided
model outperforms LSTM

Li et al. (2022) [25] Daily oil rate Bidirectional GRU and
Hybrid network

BiGRU-DHNN
outperforms

RNN, GRU, BiGRU and
LSTM

Multivariate

Zhang et al. (2019) [26]
Water saturation,

formation pressure and
oil production

LSTM, GRU, RNN LSTM is better than
GRU and standard RNN

Kim et al. (2021) [27] Oil and water rates LSTM
RNN-based proxy model

for well-control
optimization

Huang et al. (2022) [28] Daily oil, water, gas
rates gas-oil ratio LSTM

LSTM outperforms
numerical reservoir

simulation

Yang et al. (2022) [29] Gas, water flow
rates

GRU-MLP combined
neural network

GRU-MLP is superior to
RNN, GRU and LSTM

Recent scholarly pursuits have delved into the exploration of the potential of physics-
constrained machine learning (PCML) methodologies for projecting hydrocarbon pro-
duction. These methods excel at capturing the inherent physical dependencies between
variables through the design of neural network architectures. In the realm of PCML, physi-
cal insights are integrated into the neural network framework, wherein designated neurons
or modules are endowed with explicit physical interpretations [25]. Notably, Shi et al. [30]
put forth an integrated neural network comprising LSTM and MLP architectures for the
prediction of geothermal productivity in multilateral wells, incorporating the physical
constraints into the model to enhance its predictive capability. A hybrid network was
devised, wherein the integration of physical constraints and LSTM outputs serves as input
for the MLP. Through this integration, the intricate physical dependencies and geothermal
production were systematically explored.

Similarly, Li et al. [25] introduced a composite neural network encompassing Bidi-
rectional Gated Recurrent Unit (BiGRU) and Deep Hybrid Neural Network (DHNN)
components. This approach leverages the complementary strengths of physics knowledge
and machine learning, effectively capturing the dynamics of time-series production. By
considering the static and dynamic, temporal and spatial aspects of the fractured wells as
the physical constraints shaping long-term production predictions, this PCML technique
facilitated the generation of oil production forecasts that were more precise and dependable.

Motivated by the recent advancements in the application of PCML to the realm of
time-series production forecasting, this study introduces a hybrid neural network named
GRU-MLP, which seamlessly integrates the architectures of GRU and MLP. The GRU-
MLP model is designed to forecast well productivity within shale gas reservoirs while
simultaneously accounting for the physical constraints associated with shale gas production.
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Embedded within the GRU-MLP model, the MLP component is trained to apprehend the
intricate nonlinear correlation existing between the production data and the accompanying
physical constraints, including formation properties and engineering parameters. On the
other hand, the GRU component is harnessed to capture the sequential relationships innate
to the production data.
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Figure 1. Categories of hydrocarbon production forecasting.

This paper offers three key contributions: (i) the creation of a novel hybrid GRU-MLP
architecture designed for well production prediction within shale gas reservoirs; (ii) a compre-
hensive comparative evaluation of the proposed GRU-MLP model with established LSTM
and GRU models, demonstrating its improved predictive performance; and (iii) the inte-
gration of geological attributes, fracture geometry, and fracturing treatment parameters as
inputs, enabling a holistic assessment of intricate interactions impacting production outcomes.
Collectively, these contributions introduce innovative methodologies and pragmatic advance-
ments to the realm of production prediction in shale gas reservoirs. By incorporating the
physical constraints, the model not only enhances the predictive accuracy but also aligns the
prognostications with the physical principles governing shale gas reservoir dynamics.

2. Description of Deep Learning Model
2.1. RNN-Based Models

Recurrent neural networks (RNNs) are a class of artificial neural networks that are
engineered to effectively model sequential and time-evolving data, such as time series
datasets. In contrast to conventional feedforward neural networks, RNNs possess hidden
states that acquire the information from preceding steps and pass it along to the subse-
quent step, which allows the networks to preserve the information and learn long-term
dependencies within the data [31].
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2.1.1. Long Short-Term Memory

The standard RNN model suffers from short-term memory, gradient explosion, and
gradient disappearing problems [32]. LSTM is a variation of the RNN architecture that
addresses the gradient disappearance problem by incorporating a gating mechanism [33].
The LSTM architecture lies in its memory cell, which is responsible for storing and passing
pertinent information across different time steps. The memory cell comprises distinct
components, including an input gate, a forget gate, and an output gate. These gates engage
with the input (xt) at the current time step (t) and the hidden state (ht−1) from the previous
time step (t − 1). Subsequently, by means of a sequence of nonlinear operations performed
by these gates, the pertinent information contained within (xt) and (ht−1) is transferred
to the cell state (ct) and output (ht). A visual representation of a LSTM cell’s structure is
depicted in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 18 
 

states that acquire the information from preceding steps and pass it along to the subse-
quent step, which allows the networks to preserve the information and learn long-term 
dependencies within the data [31]. 

2.1.1. Long Short-Term Memory 
The standard RNN model suffers from short-term memory, gradient explosion, and 

gradient disappearing problems [32]. LSTM is a variation of the RNN architecture that 
addresses the gradient disappearance problem by incorporating a gating mechanism [33]. 
The LSTM architecture lies in its memory cell, which is responsible for storing and passing 
pertinent information across different time steps. The memory cell comprises distinct 
components, including an input gate, a forget gate, and an output gate. These gates en-
gage with the input (xt) at the current time step (t) and the hidden state (ht−1) from the 
previous time step (t − 1). Subsequently, by means of a sequence of nonlinear operations 
performed by these gates, the pertinent information contained within (xt) and (ht−1) is 
transferred to the cell state (ct) and output (ht). A visual representation of a LSTM cell’s 
structure is depicted in Figure 2. 

. 

Figure 2. Structure of a LSTM cell with forget gate (Gf), input gate (Gi), and output gate (Go). 

The forget gate (Gf) controls how much information from the preceding memory cell 
should be retained or discarded. It takes the previous hidden state (ht−1) and the current input 
(xt) and produces an output ranging between 0 and 1. This computation is expressed as: G ൌ σሺW୶x୲  W୦h୲ିଵ  bሻ (1) 

Next, the input gate (Gi) determines how much new information should be stored in 
the memory cell. By considering both the previous hidden state (ht−1) and the current input 
(xt) as inputs, the input gate generates an output confined within the interval of 0 and 1. 
This gate includes two operations. A sigmoid layer first updates the values. Then, a hy-
perbolic tangent (tanh) layer constructs a vector of new candidate values (c୲ᇱ). The formu-
lation of the input gate is articulated as follows: G୧ ൌ σሺW୶୧x୲  W୦୧h୲ିଵ  b୧ሻ (2) c୲ᇱ ൌ τ൫W୶x୲  W୦h୲ିଵ  b൯ (3) 

Subsequently, the cell state (ct−1) needs to be updated to (ct), which takes the previous 
memory cell, the forget gate, and the input gate as inputs and produces the current cell 
state, denoted by ct. 

Figure 2. Structure of a LSTM cell with forget gate (Gf), input gate (Gi), and output gate (Go).

The forget gate (Gf) controls how much information from the preceding memory cell
should be retained or discarded. It takes the previous hidden state (ht−1) and the current
input (xt) and produces an output ranging between 0 and 1. This computation is expressed as:

Gf = σ(Wxfxt + Whfht−1 + bf) (1)

Next, the input gate (Gi) determines how much new information should be stored
in the memory cell. By considering both the previous hidden state (ht−1) and the current
input (xt) as inputs, the input gate generates an output confined within the interval of 0
and 1. This gate includes two operations. A sigmoid layer first updates the values. Then,
a hyperbolic tangent (tanh) layer constructs a vector of new candidate values (c′t). The
formulation of the input gate is articulated as follows:

Gi = σ(Wxixt + Whiht−1 + bi) (2)

c′t = τ
(

Wxgxt + Whght−1 + bg

)
(3)

Subsequently, the cell state (ct−1) needs to be updated to (ct), which takes the previous
memory cell, the forget gate, and the input gate as inputs and produces the current cell
state, denoted by ct.

ct = Gfct−1 + Gic′t (4)

The output gate (Go) determines how much information from the current memory cell
should be outputted as the current hidden state. It takes the previous hidden state and the
current input and produces an output between 0 and 1. It is composed of a sigmoid layer
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and a tanh layer. Finally, based on the inputs (xt) and (ht−1) as well as the cell state (ct), the
output gate decides what information will be output.

Go = σ(Wxoxt + Whoht−1 + bo) (5)

ht = Goτ(ct) (6)

In these equations, W and b represent the weight matrices and bias vectors, respectively.
The sigmoid function is mathematically represented as σ(x), and it transforms an input x
into a value that falls within the range of 0 and 1. On the other hand, the tanh function is
symbolized as τ(x), and it operates by mapping an input x onto a value that lies within the
span of −1 and 1.

The LSTM architecture allows for the learning of long-term dependencies by selectively
retaining or discarding information in the memory cell through the input and forget
gates. This enables the LSTM networks to effectively process and model sequential data
with complex temporal dependencies, making them widely used in tasks such as natural
language processing, speech recognition, and time series prediction.

2.1.2. Gated Recurrent Unit

Though proven effective, the LSTM networks have a high computational cost. As a
simplified version of LSTM, GRU retains cell units analogous to the forget gate mechanism,
albeit omitting the output gate. Consequently, this design choice leads to a reduction in the
overall parameters [34], as visually depicted in Figure 3.
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The GRU network is like the LSTM network but has a simplified structure with two
gates: an update gate and a reset gate. The role of the update gate determines the amount
of historical information to be carried forward to the current time step. The update gate
incorporates the previous hidden state (ht−1) and the current input (xt) as input parameters,
generating an output that lies within the interval of 0 and 1, denoted as Gu.

Gu = σ(Wxuxt + Whuht−1 + bu) (7)

The reset gate controls how much of the historical information should be forgotten.
The reset gate takes the previous hidden state (ht−1) and the current input (xt), generating
an output confined within the range of 0 and 1, symbolized as Gr.

Gr = σ(Wxrxt + Whrht−1 + br) (8)

The candidate activation process calculates a fresh candidate activation value, which
is a fusion of the previous hidden state and the current input. This operation involves
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taking the previous hidden state, the present input, and the reset gate as input parameters,
yielding the candidate activation denoted by h̃t.

h̃t = τ(Wxhxt + Whh(Grht−1 + bh)) (9)

The hidden state combines the previous hidden state and the candidate activation to
produce the current hidden state, denoted by ht.

ht = (1−Gu)ht−1 + Guh̃t (10)

2.2. Hybrid GRU-MLP Model

The prediction of gas production from stimulated shale reservoirs is inherently a
multivariate problem, as it depends not only on historical production data but also on
various physical constraints. These constraints include a wide spectrum of factors, ranging
from geological attributes to engineering parameters such as formation properties, frac-
ture geometries, and fracturing treatment specifics. Consequently, the development of
forecasting models for well gas production requires the incorporation of numerous input
parameters derived from diverse domains.

Given that the selected parameters in this study are static, MLP networks are robust
models for addressing such non-sequential data. The hybrid GRU-MLP network capitalizes
on the advantages of two distinct neural network architectures. The GRU component can
capture long-term dependencies and temporal patterns present in the historical production
data, while the MLP component can handle non-sequential features and learn intricate
nonlinear relationships within the dataset. This hybrid approach allows for a more compre-
hensive representation and understanding of the input data, leading to improved accuracy
in the prediction of well gas production.

Figure 4 illustrates the architectural composition of the hybrid GRU-MLP neural
network [29]. Initially, a multi-layer GRU neural network is employed to capture the
relationship between historical production data (x1, x2,. . ., xt) and projected forthcoming
value (ht). The output of the GRU network is then passed through a linear activation layer
and subsequently combined with the physical constraints (c1, c2,. . ., cn) as inputs to the
MLP component, capturing the non-linear relationship between the production data and
the constraints. Finally, the hybrid neural network generates the production prediction
(xt+1) at the time step (t + 1).
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3. Data Preparation

The data employed in this study were sourced from the Marcellus Shale Energy and
Environment Laboratory (MSEEL) project [35,36], accessible online through the website
http://www.mseel.org (accessed on 12 April 2023). The MSEEL project, sponsored by
the US Department of Energy, was geared towards enhancing the comprehension of shale

http://www.mseel.org
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resources and ensuring the extraction of shale gas that is both efficient and environmentally
responsible. Administered by Northeast Natural Energy, the MSEEL represents one of the
most expansive shale gas research initiatives on a global scale.

The MSEEL field laboratory is comprised of two legacy wells (MIP-4H and MIP-6H)
that were drilled in 2011, in addition to two more recent horizontal wells (MIP-3H and
MIP-5H) that were drilled and completed in 2015 (as depicted in Figure 5). These horizontal
wells span an average lateral length of 6000 feet, with a well spacing of 1700 feet. Natural
gas production from two horizontal wells commenced in December 2015.
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The MIP-3H and MIP-5H fractured horizontal wells, featuring their multi-stage frac-
tures, were both drilled and completed within the Marcellus Shale formation [35]. The
Marcellus Shale, positioned beneath the Appalachian Basin, holds paramount significance
as the largest natural gas-producing formation in the United States. The U.S. EIA has esti-
mated the presence of approximately 11.33 trillion cubic meters of technically recoverable
natural gas reserves within the Marcellus Shale [37].

3.1. Geological and Engineering Factors

The production of shale gas from a fractured horizontal well is closely related to a
combination of factors encompassing geological characteristics, the geometry of induced
fractures, and parameters pertaining to the fracturing treatment. The interplay of these
elements significantly influences shale gas production. Table 2 succinctly presents an
overview of the physical factors, along with their respective correlations with shale gas
production, as examined in the study.

3.2. Historical Production Data

In addition to the aforementioned static constraints, the well production prediction in
the shale gas reservoirs is a time-series forecasting problem when considering the historical
production data. Figure 6 displays the daily shale gas production profiles for the MIP-3H
and MIP-5H wells.
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Table 2. The physical constraints for shale gas production.

Type Control Factors Relevance with Gas Production

Geological
Formation thickness (ft) affects the volume of gas available for production.

True vertical depth (ft) affects the distribution of shale gas reservoir

Fracture
Fracture half-length (ft) A longer and taller fracture allows for a larger

contact area with enhanced gas production.Fracture height (ft)

Fracturing treatment

Lateral length (ft) Longer lateral length increases surface area
available for gas production.

Total fracturing fluid injected (gal)
A larger volume of fluid can create more extensive

and interconnected fractures, resulting in
potentially higher gas production.

Total proppant mass (lbm)
Increasing the amount of proppant used can
enhance fracture conductivity, allowing for

improved gas production.

Injection rate (bbl/min)
Higher injection rates can lead to the creation of

longer and more extensive fractures, increasing the
surface area available for gas flow.
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3.3. Data Preprocessing
3.3.1. Data Smoothing

Given the large oscillations and noise observed in the raw on-site data, it becomes
imperative to undertake a smoothing process to mitigate the extent of fluctuation. This pro-
cess makes the data more stable and conducive to later analysis and modeling. Exponential
smoothing is a widely used method for time-series forecasting that assigns exponentially
decreasing weights to past observations. It assumes that recent observations bear more
relevance in the prediction of future values.



Appl. Sci. 2023, 13, 9827 10 of 17

The exponential smoothing method computes the forecasts by combining a weighted
average derived from previous observations with a smoothing factor. The smoothing factor
determines the weight given to the most recent observation and governs the pace at which
the relevance of preceding observations wanes. This phenomenon is articulated through
the subsequent formula [38]:

yt = αxt + (1− α)yt−1 (11)

where yt is the smoothing value at time (t), xt is the actual value at time t, yt−1 is the
smoothing value at time (t − 1), and α is the smoothing factor ranging from 0 to 1. Figure 7
shows a comparison of the daily gas production of well MIP-3H pre- and post-smoothing.
The smoothed data will be utilized for the subsequent study.
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3.3.2. Data Normalization

Normalization is a widely used data preprocessing technique that aims to standardize
the scale of data within a common range. It helps eliminate differences in features and
bring the data to a unified scale. Several normalization methods are commonly employed,
including Min-Max Scaling, Standardization, and Norm Normalization, among others. In
this study, the data were normalized using Min-Max Scaling. By applying this scaling
technique, the original data is transformed proportionally within the range of [0, 1] to
remove any biases that might arise from the original data scale.

3.4. Prediction Accuracy Evaluation

To assess the performance and accuracy of the forecasting models, it is essential to
select appropriate evaluation metrics, as some are scale-dependent while others are scale-
independent [19]. Scale-dependent evaluation metrics, such as root mean squared error
(RMSE) and mean absolute error (MAE), are commonly used. RMSE quantifies the overall
fit of the model by measuring how the errors are distributed. MAE, on the other hand,
captures the average deviation between the predicted values and the actual values. These
metrics are advantageous as they utilize the same scale as the original data, enabling
straightforward comparisons.

Additionally, representing the error in percentage form provides a clearer understand-
ing of the model’s performance. For this purpose, the mean absolute percentage error
(MAPE) is utilized. MAPE calculates the average of the absolute values of the relative
errors, offering insights into the magnitude of the error relative to the actual values.

RMSE =

√√√√∑N
i=1

(
ypred

i − yact
i

)2

N
(12)

MAE =
∑N

i=1

∣∣∣ypred
i − yact

i

∣∣∣
N

(13)
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MAPE =
1
N

N

∑
i=1


∣∣∣ypred

i − yact
i

∣∣∣
yact

i

× 100 (14)

In the above equations, N is the total number of observations, yact
i is the observed

value at the ith position, and ypred
i is the predicted value at the ith position.

The RMSE, MAE, and MAPE metrics are utilized to measure the accuracy of the
model in forecasting the time-series production of the well. A lower value for these
errors, including RMSE, MAE, and MAPE, indicates better model performance and greater
precision in the prediction of the production data. Conversely, higher values of these errors
suggest a less efficient forecasting model.

4. Results and Discussion

This section focuses on the verification and evaluation results of the LSTM, GRU, and
GRU-MLP models for shale gas production prediction. To demonstrate the performance
of these models, we specifically analyze two wells: MIP-3H and MIP-5H. By examining
the results obtained from these wells, we can assess the accuracy and effectiveness of the
LSTM, GRU, and GRU-MLP models in forecasting shale gas production.

4.1. Hyperparameter Tuning

Optimizing the architecture of neural networks represents a fundamental facet of
deep learning methodologies to enhance model performance. The selection of hyperpa-
rameters within the deep learning model bears a direct influence on both the accuracy
and efficiency of the ultimate model. In this study, a combination of grid search and the
Particle Swarm Optimization (PSO) technique [39] was employed for the hyperparameter
tuning within a 10-fold cross-validation framework. The aim was to balance prediction
accuracy/convergence with potential overfitting.

For the GRU network, varying the number of hidden layers was investigated first.
Increasing the number of layers improved the predictive performance but came at an
additional computational cost. Fewer than three hidden layers yielded unsatisfactory
results, while more than three provided similar performances on the validation datasets.
Consequently, three hidden layers were chosen. The PSO was then used to determine the
number of neurons in each hidden layer, dropout rate, and batch size, with predefined
ranges set at [50, 300], [0.1, 0.5], and [32, 128], respectively. The PSO algorithm converged
to a set of hyperparameters that resulted in the lowest average validation loss. The specific
values of these hyperparameters were then utilized to configure the final neural network
model. Furthermore, a series of experiments were conducted to progressively increase the
number of epochs from 100 to 500 while monitoring the convergence of both training and
validation losses. The most optimal performance emerged at 100 epochs.

In the MLP network, the number of hidden layers was selected through trial and error.
Opting for more than one hidden layer produced subpar results, so a single hidden layer
was chosen. The number of neurons within this layer was tested with 32, 64, and 128, and
32 neurons generated the best performance on the cross-validation. In addition, the choice
of activation function favored ReLU due to its simpler derivative compared to Tanh, which
facilitates the training process.

The fine-tuned hyperparameters for the GRU-MLP model were itemized in Table 3.
In light of the possibility of suboptimal configurations of the model, forthcoming research
will delve into hyperparameter tuning techniques like Bayesian optimization and nondom-
inated sorting genetic algorithms II [40,41]. This systematic exploration aims to achieve a
balance between model convergence and the prevention of overfitting.



Appl. Sci. 2023, 13, 9827 12 of 17

Table 3. Fine-tuned hyperparameters for the GRU-MLP model.

Neural Network Hyperparameter Value

GRU

No. of hidden layers 3
No. of neurons in the hidden layers [251, 192, 102]

Dropout rate 0.1
Batch size 64

Epochs 100
Loss function MSE

Optimizer Adam

MLP
No. of hidden layer 1

No. of neurons in the hidden layer 32
Activation function Relu

4.2. Comparisons of Different Deep Learning Models

A detailed and comprehensive comparison of different methods was conducted using
field shale gas production data. The outcomes indicated similar performances for both
wells, thereby prompting the designation of well MIP-3H (referred to as “well1”) as the
illustrative case for the principal discourse. Well1 serves as an exemplar, demonstrating
the approach’s efficacy. In this context, 10% of the dataset (comprising the final 140 days)
was allocated for testing the short-term production prediction, 20% (encompassing the last
280 days) for the medium-term prediction evaluation, and 30% (covering the last 420 days)
for the long-term prediction assessment. Detailed production particulars for both wells, as
well as the dataset divisions pertaining to the respective testing intervals, are outlined in
Table 4.

Table 4. Production data for two wells and dataset partitioning.

Well Well Name Start Date End Date Production
Time (Days)

Short-Term
Prediction

(Days)

Medium-Term
Prediction

(Days)

Long-Term
Prediction

(Days)

Well1 MIP-3H 12/12/2015 7/8/2021 1931 194 387 580
Well2 MIP-5H 12/11/2015 7/8/2021 1835 184 367 551

The fine-tuned GRU-MLP model was employed to predict daily gas production for
well 1 (MIP-3H), leveraging both the daily gas production data and pertinent geological
and engineering variables delineated in Table 2 for the predictive endeavor. Addition-
ally, two other recurrent neural networks, specifically GRU and LSTM, were selected as
benchmarks for comparison with the hybrid GRU-MLP model. To ensure parity in the
comparison, the hyperparameters of two neural networks were set to align with the GRU
component of the GRU-MLP model.

Table 5, accompanied by Figure 8, presents the mean prediction errors of the three
neural networks with regards to gas production. The observations derived from this
analysis reveal that among the considered networks, the hybrid GRU-MLP network con-
sistently showcases diminished prediction errors in comparison to both the LSTM and
GRU networks. The observations underscore the hybrid GRU-MLP model’s capacity to
merge the inherent strengths of the GRU and MLP models, fostering heightened accuracy
in forecasting daily gas production.

Table 5 in conjunction with Figure 8 highlights the models exhibit better performances,
particularly in the context of short-term predictions. This trend is in line with the com-
mon tendency in deep-learning-based models, where predictive accuracy often hinges on
the volume of input samples. Figures 9–11 juxtapose the daily gas production forecasts
engendered by the GRU and GRU-MLP models for well 1 (MIP-3H).
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Table 5. Assessment metrics for various methods in gas production prediction.

Well Model RMSE MAE MAPE

Well1

LSTM
LSTM-L 181.75 134.33 7.4
LSTM-M 134.40 95.16 5.6
LSTM-S 102.31 85.97 3.8

GRU
GRU-L 165.91 112.83 6.3
GRU-M 133.87 99.30 5.2
GRU-S 120.03 105.30 4.7

GRU-MLP
GRU-MLP-L 151.35 81.93 5.4
GRU-MLP-M 125.12 83.67 4.8
GRU-MLP-S 66.73 33.59 1.6

Well2

LSTM
LSTM-L 182.70 114.54 6.0
LSTM-M 181.46 82.84 5.0
LSTM-S 64.30 58.23 2.7

GRU
GRU-L 204.26 145.77 7.0
GRU-M 178.14 80.88 4.0
GRU-S 61.00 52.97 2.5

GRU-MLP
GRU-MLP-L 175.06 105.15 5.0
GRU-MLP-M 174.73 63.03 3.6
GRU-MLP-S 59.80 50.43 2.0

L—Long-term prediction; M—Medium-term prediction; S—Short-term prediction.
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Upon scrutiny of Figure 9, it becomes palpable that the short-term predicted produc-
tion trajectory derived from the GRU-MLP model aligns better with the factual shale gas
production. Moving further, Figures 10 and 11 spotlight the outcomes for medium-term and
long-term predictions, as rendered by both the GRU and GRU-MLP models. These visual
comparisons underscore the consistency between the model predictions and the in situ
data, which are notably evident in the long-term predictions produced by the GRU-MLP
model. This comprehensive scrutiny substantiates the efficacy of the GRU-MLP model in
both short-term and long-term forecasting endeavors.

4.3. Production Prediction Using Adjacent Well

Given the proximity of well 1 (MIP-3H) and well 2 (MIP-5H), lying a mere 1700 feet
apart, this analysis was undertaken to discern whether the historical production data from
well 2 could effectively forecast well 1’s production over a 150-day interval. The com-
parative assessment between well 1’s actual production data and the projected outcomes
derived from well 2’s historical production data is elucidated in Figure 12.

When comparing the short-term production prediction using well 1’s own historical
production data with the predictions stemming from well 2’s data through the GRU
network, the accuracy of forecasting diminishes when leveraging data from the adjacent
well. The prediction outcomes drawn from well 2 do not mirror the performance achieved
through predictions on well 1’s data.
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This distinction is particularly pronounced when one examines the RMSE, MAE, and
MAPE metrics associated with the GRU-based prediction of the neighboring well’s production.
As outlined in Table 6, the RMSE, MAE, and MAPE values for the adjacent well’s prediction
are 156.97, 99.26, and 0.048, respectively. These values significantly surpass the corresponding
metrics obtained through the utilization of well 1’s own production data.

Table 6. Evaluation metrics using different well production data.

Predicted Well Model Input Variable RMSE MAE MAPE

Well1 GRU
Well1 72.39 38.82 0.019
Well2 156.97 99.26 0.048

5. Conclusions

In this paper, a hybrid GRU-MLP deep learning model was developed to facilitate the
prediction of shale gas production. This model seamlessly integrates both the historical
production data and the inherent physical constraints into its framework. The GRU network
was harnessed to capture the nonstationary patterns of the production data, exploiting its
long-term memory capability. Conversely, the MLP component was enlisted to unveil the
intricate and multifaceted nonlinear relationships existing between the production data
and the prevailing physical constraints.

Through a comprehensive analysis conducted on the field data, the proposed physics-
constrained GRU-MLP model demonstrated its ability to effectively capture the intricate
and dynamic patterns that characterize production sequences. Furthermore, the model
successfully considered the nonlinear dependencies between geological properties, fracture
geometry, fracturing treatment parameters, and production outcomes. In comparison to the
original LSTM and GRU models that did not incorporate such constraints, the GRU-MLP
model showcased better performances in both short-term and long-term forecasting tasks.

Extending the findings of the research to other shale reservoirs holds significant
potential for advancing production forecasting. Despite originating from a specific dataset,
the inherent adaptability and generalizability of the methodology make it suitable for
such expansion. Exploring diverse shale reservoirs in a similar manner aims to enhance
predictive precision and foster a broader comprehension of reservoir dynamics. This
research endeavor aligns with the dedication to provide a versatile and transferable tool to
optimize production across diverse shale reservoirs.
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