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Abstract: Prostate cancer is one of the most common cancers in the world. Due to the ageing of
society and the extended life of the population, early diagnosis is a great challenge for healthcare.
Unfortunately, the currently available diagnostic methods, in which magnetic resonance imaging
(MRI) using the PIRADS protocol plays an increasingly important role, are imperfect, mostly in
the inability to visualise small cancer foci and misinterpretation of the imagery data. Therefore,
there is a great need to improve the methods currently applied and look for even better ones for the
early detection of prostate cancer. In the presented research, anonymised MRI scans of 92 patients
with evaluation in the PIRADS protocol were selected from the data routinely scanned for prostate
cancer. Suspicious tissues were depicted manually under medical supervision. The texture features
in the marked regions were calculated using the qMaZda software. The multiple-instance learning
approach based on the SVM classifier allowed recognising between healthy and ill prostate tissue.
The best F1 score equal to 0.77 with a very high recall equal to 0.70 and precision equal to 0.85 was
recorded for the texture features describing the central zone. The research showed that the use of
texture analysis in prostate MRI may allow for automation of the assessment of PIRADS scores.

Keywords: prostate cancer; MRI; PIRADS; texture analysis; multiple instance learning; support
vector machine

1. Introduction

Prostate cancer (PCa) is the second most commonly diagnosed cancer and the second
leading cause of cancer death among males worldwide [1]. Few well-proven risk factors
for prostate cancer have been found, including age, race, and a positive family history
of prostate cancer [2]. At the age of 30, the incidence of prostate cancer is estimated to
be found in a small percentage of the male population, but it increases significantly for
patients in their 50s [3]. Considering ethnic origin, the highest risk of prostate cancer is
found in the male population in Europe and North America and the lowest in Asia and
Africa [1]. Finally, prostate cancer incidents in close male relatives such as brothers and/or
male predecessors increases the risk of the disease several times when compared to the
general population [4]. Moreover, knowing the family history of the disease allows a faster
determination of the cancer genetic type, which may result in increased morbidity [5]
and, thus, influence the choice of necessary treatment. Although a significant influence
of genetic factors has been demonstrated on the incidence of prostate cancer, there are
still limited data, indicating a worse course of the disease in these familial cases, which
questions the need for aggressive screening in these groups of patients [4,6].
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Attention should be paid to patients from the previously mentioned risk groups. A
proper path of basic diagnostic methods that allows the early determination of prostate can-
cer is crucial. Currently, the level of prostate specific antigen (PSA) in blood is determined
and a digital rectal examination is suggested. However, the diagnostic value of physical
examination alone is low [7]. In addition, due to the imperfection of PSA blood concen-
tration, which results in difficulties in introducing this marker to the general population,
more accurate methods of early diagnosis of prostate cancer are sought.

In analogy to other types of cancer where imaging is used as a screening, there is
room for magnetic resonance imaging (MRI) to be introduced to a larger group of patients.
Perhaps in a simplified form, for example, as noncontrast biparametric MRI (nbMRI),
T2-weighted image (TW2-MRI), and diffusion-weighted imaging (DWI) [8,9]. Performing
MRI as a screening test results in higher detection of clinically significant cancer compared
to PSA testing. Another modality considered may be the ultrasonography. Although the
superiority of ultrasound over PSA has not been proven. Newer protocols, for example,
elastography, require evaluation of effectiveness as a test more accessible than MRI [10].

Taking into account the high degree of genetic transmission, work is underway to bet-
ter understand the molecular origin and search for genes responsible for the development
of various types of prostate cancer [11–13]. Among the thousands of candidate genes, the
development of prostate cancer at an early age and the worse course of the disease have
been shown in the case of breast cancer gene mutations [14,15]. Finding gene mutations in
the group of patients with an aggressive course of prostate cancer allows the screening of
family members, allowing early diagnosis and effective treatment [16].

PIRADS is an acronym for the Prostate Imaging Reporting and Data System. It was
introduced in 2012 in a consensus document summarizing the methods of interpretation of
the sequences used for prostate imaging and the assessment of the probability of tumour
presence [17,18]. After two years of practical experience with this approach, PIRADS 2.0
was introduced and it contained changes that allowed providing a more accurate data
interpretation process [19,20]. However, the observation of interpretational differences
between different teams, and also technical development, led to the introduction of PI-
RADS 2.1 in 2018 [21,22]. This approach uses a five-point assessment scale that indicates
the probability that multi-parameter MRI (mp-MRI) findings correlate with the presence
of clinically significant PCa in a particular anatomic location. The following assessment
categories are defined:

1. Very low (highly unlikely present clinically significant PCa);
2. Low (unlikely clinically significant PCa);
3. Intermediate (equivocal presence of PCa disease);
4. High (likely present clinically significant PCa);
5. Very high (highly likely present clinically significant PCa).

All suspected intraprostatic lesions seen on mp-MRI should be assigned to their zonal
location (e.g., peripheral zone, including the central zone, or transition zone) on the sector
map and assigned a PIRADS general assessment category [22]. Next, selecting a parameter
allows ordering of the images in the following analytic procedure.

Although MR image analysis is performed most frequently using the PIRADS scale,
there are some limitations to the effectiveness of this tool. Among other features, there
is a significant difference in the subjective assessment of images by independent radiolo-
gists [23,24]. Nevertheless, those discrepancies, a targeted biopsy following the PIRADS
diagnosis procedure, showed prostate cancer foci diagnosed significantly more frequently.
Especially for regions with tissue with increased aggressiveness measured on the scale of
International Society of Urological Pathology (ISUP) [25]. This scale introduced the Gleeson
grades that determine the aggressiveness of the cancer tissue. Originally, MRI scanning
was used in the group of patients requiring a second biopsy. But it has also been shown to
be effective in the group of patients who have undergone it for the first time, and MRI is
now recommended as a necessary test before invasive diagnostics [26–28].
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Adding MRI-targeted biopsy to systematic biopsy in biopsy-naïve patients increases
the number of PCa detected. The detection of tissue with Gleeson grade > 2 and grade > 3
increases approximately by 20% and 30%, respectively. In the repeated biopsy setting,
the addition of MRI-targeted biopsy increases PCa detection by approximately 40% (Glee-
son grade > 2) and 50% (grade > 3). Over the years, substantial scientific work has been
performed to reduce interpretation bias. According to different studies, the overall per-
formance of MRI PCa detection is high, with a sensitivity of 0.89 and a specificity of
0.73 [29].

The performance of PIRADS and lesion detection accuracy are negatively influenced
by variations in the technical equipment used, differences in the patient population, or
interpretational local habits [30]. Furthermore, the biological variations of the tumours
make some prostate lesions undetectable and, therefore, missed during radiological evalua-
tion [31,32]. The subjectivity of interpretation, with the presence of local interpretational
habits, limits the correct recognition of tissue types [33,34]. It is a complex process, where
any discrepancies between radiologist at the level of changed tissue signal, or then the
determination of the changed region shape and border, influence the outcome. There-
fore, in the PIRADS-based assessment, inter- and intra-reader variation is reported [35,36].
Multireader efficacy presents moderate to good in the case of clinically insignificant PCa.
Intra-reader reproducibility is not always achieved in the case of malignant prostate lesions
in proven detections [37–40]. Automated segmentation can significantly reduce interpreta-
tional differences, which is especially important in a group of less experienced imaging
professionals or where lesions are less visible due to technical problems (e.g., reduced
image quality). The use of automated systems shows an increase in the level of agreement
between the readers [41].

This study aimed to find a relationship between the prostate gland assessment per-
formed in the PIRADS protocol and the textural analysis of MRI scans. Finding such a
relation would enable the creation of an automated protocol for MRI examinations. It
could improve the detection of PCa foci in the group at risk of this disease and diminish
inter-reader discrepancies.

2. Materials and Methods

For this research, a database containing MRI scans gathered according to the PIRADS
protocol was prepared. Then, the textural features were calculated for each selected region.
We evaluated whether the peripheral and central zones of the PCa region in MRI scans
influence the description capabilities of the chosen methods. We analysed textural features
in pairs applying the multiple-instance learning methodology. Below, we give a detailed
description of each element of the proposed pipeline.

2.1. Prostate MRI Dataset

The MRI scans of 125 patients (24–87 years old) were acquired during standard
diagnostic procedures, which met the PIRADS protocol. However, for this research, only
92 patients (24–85 years old) were chosen free of artefacts. These patients did not have
hip prostheses or artefacts from previous pelvic surgeries and were properly prepared for
the examination (e.g., with excessive bowel content). The mean age of the patients was
60.3 ± 12.29.

For each patient, two data sequences were recorded: TW2-MRI axial sequences with
2 mm slices and a distance factor equal to 0, and DWI with the use of a single shot echo
planar sequencer (EPI) mode with a value b equal to 0–800–1500 and a distance factor of 0.
Additionally, T1-weighted sequences were prepared for post-contrast evaluation. Table 1
summarises the parameters used for the preparation of the TW2-MRI sequence. The 1.5 T
scanner was used.
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Table 1. Values of parameters following the PIRADS guidance to perform MRI scans.

Parameter Value

Time echo 105
Relaxation time 3320

Flip angle 160
Imaging matrix 256 × 320

Voxel 0.6 × 0.6 × 2
Field of view 200

Concentrations 2
Averages 4

Parallel acquisition 2
Distance factor 0

Overall sequence time 300
T2-weighted (axial).

The data were anonymised, and procedures applied during data preparation complied
with the Declaration of Helsinki and the Declaration of Good Clinical Practice [42]. The Lo-
cal Ethics Committee supported written consent to conduct this study (No. 1072.6120.21.22,
23 February 2022). The next step was to involve the 7 radiologists with proven experience
in prostate imaging in the process of PCa evaluation during the standard diagnostic pro-
cess using the PIRADS protocol. The data obtained were collected as a reference for the
proposed PIRADS staging. The distribution of the PIRADS values in the cohort was as
follows: 6% for PIRADS = 1, 30% for PIRADS = 2, 3, 20% for PIRADS = 4, and 15% for
PIRADS = 5.

Images from MRI scans were converted linearly from 12-bit into 8-bit data, where
signals reflected pixel illumination values in the range of 0 to 255. Since each prostate MRI
scan had around 10 projections, the total number of images used in the research consisted
of 751 MR images of prostate gland lesions. Figure 1 presents the variation of the projection
number on an MRI scan. Figure 2 shows a prostate MR image with a manual annotation
depicting the peripheral and central prostate zone.
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2.2. Texture Analysis

Texture analysis aims at determining small set of numerical values which clearly char-
acterise the image content clearly. Those features should return similar values for images
with the same texture statistics and differ significantly when the image content varies.
In this work, we took advantage of the tool qMaZda [43], which allows the calculation
of many textural features that exist in the image understanding domain [44]. It allowed
us to determine almost 7000 features to describe annotated regions, which additionally
considered image normalization and quantization. We examined three options: texture
analysis was applied only to the peripheral prostate zone, only to the central zone, and to
both regions treated as a whole.

The qMaZda software converted the input data into YUV colour space and worked
on the illuminance Y channel only. Then, when necessary, the normalization procedure
was applied. In the presented research, we calculated the final features for images that
were not normalized (D), their grey levels were linearly rescaled to the range of minimal
and maximal values (M), or 1st and 99th percentiles of grey-level histogram (N), or the
grey levels were normalized in range <µ ± 3σ> (S), where µ is the mean illumination
while σ stands for standard deviation. In many cases, before the final texture features were
calculated, some indirect matrix to compactly represent the image content was created.
This matrix resolution is related to the intensity range of pixel values, and the number of
data samples that fill it correspond to the number of pixels in the image. Thus, for small
images and a large range of pixel intensities, there were not enough data to fill the matrix.
It became sparse and the textural features calculated from its content were statistically
not certain. Since we did not know whether such a problem occurred, we calculated the
textural features for data converted from 5 to 8 bits (hence using matrices from 32 × 32 to
256 × 256 resolution for data of the same size).

To numerically describe the image content, we analysed simple statistics of the pixel
illumination values in the image. The first method calculated an image brightness histogram
(Hist) from which a basic set of statistical features was determined and reflected the area,
mean, variance, skewness, kurtosis, and percentile features of the signal. Next, the rapid
changes in illumination were determined in a small neighbourhood. Here, we tried to
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decide image contrast by using various approaches to finding edges, starting by gradient
map features (Grad) [45], which were transformed to a histogram described by mean,
variance, skewness, kurtosis, and non-zero elements. Another approach analyses the
influence of pixels places close to each other. The autoregressive model (Arm) [46] searches
for the optimal solution, and 4 parameters return information about directionality of the
pattern. It can show us in which direction changes are the most popular in the data. The
Gabor (Gab) transform analyses the frequency components in the local neighbourhood. It
is parametrised by the Gaussian envelope and orientation. thus allowing to settle various
frequencies, seen as repetitions of some signal characteristics in one direction. To obtain
more information about the edges, the Haar wavelets [47] were applied and the sub-bands
energies became the features.

As mentioned before, the more complex approaches are characterized by the necessity
of creating indirect matrices. In the case of the grey-level co-occurrence matrix (GLCM) [45],
the matrix cell counts how many times a pair of pixels of similar illumination values,
corresponding to its placement in the matrix, occurs. This approach allowed us to describe
some bigger patterns visible in the image. It was possible to parameterise the direction
(the vertical (V), horizontal (H), and two diagonals (Z,N)) in which a pair of pixels was
considered. Also, this method allowed us to determine whether a similar pair of pixels lay
next to each other, or in a larger distance (we evaluated distance in range from 1 to 5 pixels).
Finally, from the matrix, several parameters were calculated, for example: contrast, entropy,
correlation, etc. It was noticed that textures with rapid changes in illumination levels
differed from those where such changes were rare. This phenomenon was analysed by
grey-level run-length matrix method (GRLM) [48]. In this case, the indirect matrix was
indexed by the pixel illumination value and the number of consecutive pixels of the same
colour in one direction. Having many entries with a large number of consecutive pixels,
it reflected the image with large objects or stripes in an analysed direction. Similarly,
as in the previous case, four directions were considered. From this matrix, at least five
texture features were calculated: area, short-run emphasis, long-run emphasis, grey-level
non-uniformity, run-length non-uniformity.

More sophisticated approaches analyse each pixel in its small neighbourhood before
determining the descriptive features but, in consequence, result in longer feature vectors
(having hundreds or thousands of entries instead up to teen as was in previous methods).
The local binary patterns (LBP) [49] for each pixel defines a code considering a circular
neighbourhood, the size of which is parametrized with radius, while the code resolution
is related to the number of sampled points on the circumferences (usually 8). The codes
are gathered in a form of histogram, which becomes the feature vector. Another pop-
ular method following this way of performance is the histogram of oriented gradients
(HOG) [50]. Here, the image is divided into blocks, where the gradients are calculated,
and their orientations are organized in histograms. Histograms of adjoining blocks are
normalized together in order to remove some illumination changes and then become a
feature vector. In qMaZda, it is possible to choose from 4, 8, 16, and 32 bins. The acronyms
used in this section are later used to name precisely the features used in experiments.

2.3. Multiple Instance Learning by Support Vector Machine

The purpose of this research was to verify whether it is possible to train a model that
distinguishes with a high probability between prostate cancer patients and the healthy ones.
As input, the TW2-MRI scans with annotations were taken. This resulted in several images
describing the same patient that should be analysed together. For the region of interest, a
large number of textural features was calculated. Additionally, the data were supported
with PIRADS information given per patient. The PIRADS protocol took values in the range
of 1 to 5. However, values PIRADS < 4 described the healthy person and, thus, all values
were assigned to one class (label 0), while PIRADS ≥ 4 defined the PCa, and, also, both
those values were classified together (label 1). Therefore, this problem can be treated as a
binary classification. Because the data set was not balanced, there were 62 healthy patients
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and 30 ill ones, the option for automatic balancing (calculating results by weighting) during
training was set on in the classifier.

In the dataset, as mentioned above, each patient was described with several images.
However, in the case of changed tissue, it was not known whether it was visible only in
one image or in more of them. Therefore, we could not train a classifier on a separate image
from the series, because the change was not always visible while the PIRADS value was one
for all images. That would confuse the model. Therefore, we used the multiple-instance
approach to address this problem. In this case, a subject may be described by several images
and it is sufficient that one of them represents the PCa tissue to state that the patient’s
PIRADS should be ≥4. The model was obtained using a support vector machine (SVM) as a
binary classifier. The classification was performed on each image. However, the output was
constructed considering all data describing one patient. This method was implemented
using ‘mil’ Python library.

Since there were 92 samples (patients), a leave-one-out (LOO) methodology was
applied to assure the generality of the results obtained. This method assumes training
the dataset with N-1 samples and testing with the remaining one, and then repeating this
experiment as many times as there are samples, selecting each time a different sample to the
test set. In consequence, we used 91 samples for training and one for testing and repeated
this experiment 92 times.

3. Results

This study addressed the problem of automatic determination of whether a set of MRI
scans resulting from prostate visualization presents a healthy patient or PCa. In order to ver-
ify whether such functionality can be obtained, three experiment scenarios were performed.
All of them took advantage of the texture analysis of the region of interest, but first, the
prostate central zone was analysed, then the peripheral zone was considered and, finally,
those two regions were merged together for textural analysis. For each scan, all textural
features presented in Section 2.2 were calculated applying all considered normalization and
quantization approaches. Large numbers (6678 for the central zone, 4898 for peripheral,
and 6718 for both regions) between feature correlations were determined, and those with
repetitive information were neglected (it was around 60,000/54,000/64,000 features for the
central, peripheral zone, and both regions, respectively). From the remaining features, we
evaluated which pairs allowed for binary classification of the dataset. We applied the LOO
methodology. Moreover, the data were imbalanced; hence, to deal with this problem, the
SVM model was trained with the balanced parameter turned on; moreover, we decided to
use the specificity, sensitivity, and F1-score as a metrics, as they better reflected the classifier
performance in the case of unbalanced data. For SVM, the linear kernel was chosen with
the regularization factor equal to 10.

Tables 2–4 gather the 10 best results recorded in each case. A model performance is
presented in each row with the names of the textural features (columns Feature 1, Feature 2)
used to train this model. From the outcomes, we can notice that, regardless of the considered
region, it was possible to recognize between the healthy and ill prostate tissue with at least
0.70 F1-score. Using the features derived from the central zone, more precise results were
achieved with the best score of F1-score equal to almost 0.77 with very high recall equal
to 0.70 and precision equal to 0.85. The better performance of the texture analysis when
using the central zone may be due to two factors. First, the central zone shape was circular,
which made the feature calculation similar in each direction. Second, this region was larger;
thus, it is easier to find some characteristic features there. The deterioration of results when
both regions were treated as one using features calculated from the region boundary made
the classifier less confident.
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Table 2. The best 10 pair of features when central zone is used to calculate the features.

Accuracy Precision Recall F1-Score Feature 1 Feature 2

0.8152 0.8485 0.7000 0.7671 YN7GlcmZ3DifEntrp YS8ArmTeta2
0.7609 0.9394 0.6078 0.7381 YS7ArmTeta2 YD8GradMean
0.7500 0.9394 0.5962 0.7294 YS8ArmTeta2 YD8GradMean
0.7500 0.9091 0.6000 0.7229 YS6ArmTeta2 YD8HistSkewness
0.7391 0.9394 0.5849 0.7209 YS6ArmTeta2 YD8GradMean
0.7609 0.8485 0.6222 0.7180 YN7GlcmN4DifEntrp YS8ArmTeta2
0.7500 0.8788 0.6042 0.7161 YS7GlcmN4DifEntrp YS8ArmTeta2
0.7500 0.8788 0.6042 0.7161 YS6GlcmN5DifEntrp YS8ArmTeta2
0.7391 0.9091 0.5882 0.7143 YM4GlcmH1SumVarnc YD8Gab12V6Mag
0.7391 0.8788 0.5918 0.7073 YS8GlcmZ3DifEntrp YS8ArmTeta2

Table 3. The best 10 pairs when peripheral zone is used to calculate the features.

Accuracy Precision Recall F1-Score Feature 1 Feature 2

0.7363 0.8750 0.5833 0.7000 YS6GlcmV3SumEntrp YD8HistMean
0.7253 0.9063 0.5686 0.6988 YS6GlcmV3InvDfMom YD8HistMean
0.7363 0.8125 0.5909 0.6842 YN5ArmTeta2 YD8HistMean
0.7253 0.8438 0.5745 0.6835 YN4GlcmN3InvDfMom YD8HistMean
0.7363 0.7813 0.5952 0.6757 YN5GlcmV3DifEntrp YD8HistMean
0.7143 0.8438 0.5625 0.6750 YM4GlcmN3SumOfSqs YS8DwtHaarS1HH
0.7033 0.8750 0.5490 0.6747 YN5GlcmH4Entropy YD8HistKurtosis
0.7033 0.8750 0.5490 0.6747 YN7HogO8b3 YM8HistPerc01
0.7033 0.8438 0.5510 0.6667 YM4GlcmH3DifEntrp YD8HistMean
0.6813 0.9063 0.5273 0.6667 YN6GlcmH2SumEntrp YD8HistMean

Table 4. The best 10 pair of features when both (central and peripheral) regions are used to calculate
features.

Accuracy Precision Recall F1-Score Feature 1 Feature 2

0.7500 0.8788 0.6042 0.7161 YM4GlcmZ3Contrast YD8HistMean
0.7500 0.8485 0.6087 0.7089 YM6GlcmN4SumEntrp YD5ArmTeta4
0.7500 0.8485 0.6087 0.7089 YM5GlcmZ5Entropy YD5ArmTeta4
0.7391 0.8788 0.5918 0.7073 YM6GlcmZ2SumEntrp YD5ArmTeta4
0.7500 0.8182 0.6136 0.7013 YM7GlcmZ4SumVarnc YD5ArmTeta4
0.7500 0.8182 0.6136 0.7013 YM6GlcmZ4SumVarnc YD5ArmTeta4
0.7500 0.8182 0.6136 0.7013 YM5GlcmH4SumEntrp YD5ArmTeta4
0.7500 0.8182 0.6136 0.7013 YM5GlcmZ4SumVarnc YD5ArmTeta4
0.7391 0.8485 0.5957 0.7000 YM6GlcmH2SumEntrp YD5ArmTeta4
0.7283 0.8788 0.5800 0.6988 YM5GlcmN2SumVarnc YD5ArmTeta4

The texture feature name starts with Y, reflecting that the Y channel from the YUV
colour space was used for calculation. The following letter corresponded to the data nor-
malization technique followed by the number of bits used for quantized data representation.
After this prefix, the texture analysis method acronym was used followed by the informa-
tion of direction calculation and the distance feature applied (if used) and terminating with
the feature name.

4. Discussion

An interesting aspect when analysing the results was the features returning the best
characteristics. In all experiments, one feature was derived from the GLCM matrix, while
the other was concentrating on the grey level distribution (like Hist, Arm features) or gradi-
ent orientation (Gab, Haar). It is interesting to note that the GLCM was more descriptive
when the number of bits decreased (in most cases, 4 or 5 bits were used), resulting in less
sparse inner matrices to calculate the features. In the case of grey-level intensity levels and
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gradients, mostly 8-bit data were applied. The exception was only when the whole region
analyses were considered with YD5ArmTeta4 feature. It is difficult to draw any conclusions
regarding the influence of data normalization on the results, as we can see features derived
with all possibilities.

Figure 3 presents compactly 500 best scores achieved in each case. This scatter plots
present nicely that there is a large number of textural feature pairs that allow one to create
models working well. It also shows that, in some weaker cases, several models obtain
comparable outcomes. However, when all those features are used together, the results do
not improve. Finally, from this graphical presentation, we also see clearly that the F1-score
grows proportionally to the accuracy, which was not so clear when analysing smaller sets
of data in the tables. See all results in Supplementary Materials.
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Previous studies indicate that computer assistance results are not worse than the
methods used so far; however, it is too early to assess the full advantage of artificial
intelligence in analysing MR imaging [51]. Computer-assisted prostate interpretation
showed that artificial intelligence (AI) systems are capable of increasing the accuracy of
MRI interpretation [51,52]. The results presented in [53] agree with previous conclusions
showing a precision of 85% for PIRADS = 4. Winkel et al. [53] presented the ability of
the system to increase not only the accuracy of the interpretation but also the speed of
the interpretation. Next, in the systematic review prepared by Sushentsev et al. [54], the
authors present a comparable performance of fully automated and AI-assisted techniques.
However, in the review by Roest et al. [55], the automated system meets the performance
of expert radiologists with lower sensitivity. Implementing AI models markedly increased
the accuracy of prostate image interpretation. There are expectations for the interpretation
of PIRADS = 3 [56]. However, in a study by Liu et al. [57], which conducted an evaluation
method based on textural classification, a sensitivity of 0.85 and a specificity of 0.73 were
found in demanding PIRADS = 3. On the other hand, Arslan et al. [58] reported no clear
benefit from the use of deep learning software in studies carried out at different levels
of experienced radiologists. Compared to similar works undertaken by Gianni [59,60],
obtaining a correct classification F1-score greater than 76% is a good result for texture
features attributed to different lesions assigned to PIRADS. Especially when considering
the much more homogenous group of confirmed tumours in the second work. Finally,
an excellent review of the application of AI techniques in classification of prostate lesions
among different MRI modalities is given in [61]. The authors reported a mean sensitivity
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of 0.80, which is close to our results. That puts our approach in the main stream of results
currently obtained with machine learning approaches.

In this research, we decided to use the approach to prostate MRI analysis as a binary
classification problem, where only healthy (PIRADS < 4) and PCa (PIRADS ≥ 4) were
distinguished. That allowed for task simplification and diminished the influence of class
imbalance in the gathered dataset. Since it was a trial study evaluating whether texture
analysis is applicable, we found this simplification justifiable. However, we are aware that
in further research, all five grades from PIRADS should be addressed.

Our work was conducted using 1.5 T scanner, which might be perceived as a limitation
of the study, where the PIRADS Steering Committee prefers 3 T scanners over 1.5 T.
However, 1.5 T scanners are accepted because the application of new technologies allows
them to provide adequate images and reliable diagnostic results [62]. Moreover, the 1.5 T
scanners number is prevalent in the healthcare market, which naturally forces their use.
Finally, deriving information from 1.5 T scanner data with texture analysis overcomes any
possible data inaccuracy.

This study’s strengths can be concluded as follows: We prepared a dataset of MRI
prostate scans that were supported with PIRADS grading. Next, within this study, it was
presented that using the textural features to describe the MRI scan content, it is possible to
achieve very high correspondence to the results of PIRADS protocol obtained manually.
This allows for the optimistic approach for creation of automated systems to assess the MRI
data in the future. It should also diminish the problems of intra-reader discrepancies and
tiresome procedures.

There are also some weaknesses of the presented work. Firstly, we were limited by
the number of accessible cases. This issue was considered and diminished by the proper
choice of evaluation methods. Yet we hope that, having such promising results, it will be
possible to prepare a much larger set of data. Next, in data acquisition, we concentrated
on gathering a homogeneous study group. However, a comparative evaluation with MRI
scans obtained from different equipment and assessed by other radiologists to prepare
PIRADS scores would be beneficial. Another clear weakness of this study was the lack of
homogeneity of the patients. This was partially caused by the assumption that we should
work with data gathered during a standard diagnostic process. Next, the PIRADS grades
were formed for patients with various ages, BMI, and overall health conditions.

5. Conclusions

In the current study, the feasibility of an automated approach to MR images of
prostate was proposed. The results presented are promising, as the best F1-score of almost
77% was achieved for classification of patients into healthy (PIRADS < 4) and with PCa
(PIRADS ≥ 4). This good result shows that it is possible to represent the prostate glands
with textural features and apply machine learning algorithms to build models that enable
easy recognition of the cases considered.

The results obtained allow the development of an objective prostate gland evaluation
process and can be used in the future to prepare protocols for the automatic analysis
of prostate images. This is especially welcomed by the medical community as prostate
scan in MRI becomes a gold standard in the diagnostic process. However, there are
many uncertainties due to interobserver differences in rating even among experienced
radiologists. Therefore, a response supported by the automated approach may serve as a
second opinion. Additionally, it could be a significant aid for less experienced physicians.
In both cases, it should reduce possible diagnostic errors. There is a high demand for a
unified system for determining the probability of prostate cancer. It can be developed in
the future based on proposed approaches toward objectification of the diagnostic process
with an increase in patient comfort and the legal safety of healthcare providers.
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