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Abstract: Aiming at the problem that the non-probabilistic reliability analysis method of slope
engineering, which is based on an interval model, cannot consider the cross-correlation of geotechnical
parameters, a non-probabilistic reliability analysis method of slopes based on a multidimensional
parallelepiped model is proposed. This method can effectively alleviate the problem of difficult data
survey in the field of geotechnical engineering. Using the limited sample data of soil parameters,
the multidimensional parallelepiped model is constructed. The performance function of the slope is
constructed based on Latin hypercube sampling and the quadratic response surface method. Then,
the limit state equation of the slope can be standardized using the multidimensional parallelepiped
model. The non-probabilistic reliability indexes of the slope are calculated based on the global
optimal solution to judge the stability state of the slope. The example analysis verifies the feasibility
of the proposed method. The results show that the correlation of shear strength parameters of soil
has a great influence on the non-probabilistic reliability indexes of the slope. When the correlation
coefficients of the shear strength parameters are between −1.0 and 0, the smaller the correlation
coefficient is, the greater the non-probabilistic reliability index of the slope is; when the correlation
coefficients of the shear strength parameters are between 0 and 1.0, the non-probabilistic reliability
index of the slope does not change with the correlation coefficient. The non-probabilistic reliability
indexes of the slope obtained using the multidimensional parallelepiped model are between the
results obtained using an ellipsoid model and those obtained using an interval model, which are
validated by Monte Carlo method and relatively more reasonable. In the absence of a large number of
geotechnical sample data, this method provides a new way for slope stability analysis and expands
the application field of calculation methods based on non-probabilistic theory.

Keywords: slope; stability analysis; non-probabilistic reliability; multidimensional parallelepiped
model; correlation

1. Introduction

Slope stability analysis [1–7] is one of the most important research techniques in the
field of geotechnical engineering. Slope stability analysis methods are mainly divided
into qualitative analysis methods, quantitative analysis methods, and uncertainty analysis
methods. Since most of the geotechnical parameters affecting slope stability have uncer-
tainties, such as randomness, fuzziness, and variability, an uncertainty analysis method
is more appropriate for actual slope projects. The non-probabilistic reliability method, as
one of the uncertainty analysis methods, does not require detailed parametric probabilis-
tic statistical characterization to take into account the uncertainty of influencing factors.
Therefore, it is suitable for use when sample data are small. It also has the advantages of
less computational workload and relatively simpler operation than probabilistic reliability
analysis methods.
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The correlation between geotechnical parameters is a result of long-term geological
evolutionary processes and an important factor affecting slope stability. When using the
non-probabilistic reliability method to analyze slope stability, the influence of the correlation
between geotechnical parameters needs to be considered. Currently, domestic research
in China and international research on non-probabilistic reliability analysis of slopes can
be divided into two categories according to the convex set model used: (1) The first is
non-probabilistic reliability analysis based on an interval model. Liu et al. [8], Yu et al. [9],
and Mu [10] used an interval mathematical method to calculate the interval of safety
coefficient of slopes, and then calculated a non-probabilistic reliability index of slopes using
an interval model. This kind of method only needs to determine the upper and lower
boundaries of the interval of geotechnical parameter values, and the calculation process is
relatively simple. However, its limitation is that it cannot take into account the correlation
between geotechnical parameters. In some cases, the interval expansion problem will
arise during the calculation process. (2) The second category is non-probabilistic reliability
analysis based on an ellipsoid model. Han et al. [11], Gao et al. [12], and Shu et al. [13] used
an ellipsoid model to construct the uncertainty domain of geotechnical parameters, and
calculated the non-probabilistic reliability index of slopes using a direct iterative method
to assess the stability of slopes. This type of method considers the correlation between
geotechnical parameters, but the calculation process is relatively complicated. Therefore,
in the field of non-probabilistic reliability analysis of slopes, it is of great significance to
develop a method that can take into account the correlation of geotechnical parameters and
has a relatively simple calculation process.

The multidimensional parallelepiped model proposed by Ni [14] is a class of models
that can take into account the correlation between interval variables. A multidimensional
parallelepiped model can be used to express the situation where the parameters under
consideration are independent or correlated, or where both correlation and independence
coexist [15]. Lv et al. [16] introduced a multidimensional parallelepiped model to deal with
the case of coexistence of correlation and independence of system parameters. Combining it
with the Monte Carlo method, they proposed a method to analyze the uncertainty in the in-
trinsic characteristics of automotive powertrain suspension systems. Zhao et al. [17] applied
a multidimensional parallelepiped model to the interval analysis of complex-valued do-
mains, which significantly alleviated the interval overestimation problem. Zheng et al. [18]
proposed a new topology optimization method based on a multidimensional parallelepiped
model for non-probabilistic reliability, which was used to take into account the interval un-
certainty of parameter correlation, and provided an effective method for solving topology
optimization problems under non-probabilistic uncertainty. The above study verified the
feasibility of the multidimensional parallelepiped model for non-probabilistic reliability
analysis. However, there is no current research work on the use of such a model for slope
stability analysis, and the feasibility of using this model for slope engineering is yet to be
investigated due to the complexity of geotechnical parameters.

This paper proposes a non-probabilistic reliability analysis method of slopes based
on a multidimensional parallelepiped model. First, the multidimensional parallelepiped
model is constructed based on limited sample data of geotechnical parameters. Next, the
performance function of the slope is constructed by using Latin hypercube sampling and
response surface methodology. Then, the limit state equation of the slope can be standard-
ized by using the multidimensional parallelepiped model. Finally, the non-probabilistic
reliability index of the slope is solved using a global optimal solution method. The effects
of different multidimensional parallelepiped models, correlation, and variability of shear
strength parameters on the non-probabilistic reliability index of the slope are investigated.
The novelty of the proposed method lies in the fact that a multidimensional parallelepiped
model is introduced into the non-probabilistic reliability analysis of slopes for the first
time, which solves the problem that the correlation between geotechnical parameters
cannot be considered by traditional interval models. Thus, it has important practical
engineering significance.
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2. Non-Probabilistic Reliability Analysis Method Based on a Multidimensional
Parallelepiped Model

A non-probabilistic reliability analysis method is a structural reliability assessment
method that uses a non-probabilistic convex model theory to describe parameter uncer-
tainty [19]. The convex set models used in this method mainly include interval models
and ellipsoid models; an interval model can only deal with independent interval variables,
while an ellipsoid model can only deal with correlated interval variables. Multidimensional
parallelepiped models are a new class of convex set models that can consider both inde-
pendent interval variables and correlated interval variables [15]. According to the way of
measuring the correlation of interval variables and the way of constructing the shape kernel
matrix, multidimensional parallelepiped models can be subdivided into the following
types: the MP-1 model, the MP-2 model, the rectangular model, the lower triangular model,
and the upper triangular model. Among these models, the MP-1 model and the MP-2
model are the most representative. In this paper, the MP-1 model and the MP-2 model are
used for non-probabilistic reliability analysis.

2.1. Construction of the Multidimensional Parallelepiped Model

X = (X1, X2, · · · , Xn)
T is a vector consisting of n uncertainty parameters of the struc-

ture, where the uncertainty parameter Xi can be expressed in terms of an interval as follows:

Xi =
[

Xi
C − Xi

W , Xi
C + Xi

W
]
, i = 1, 2, · · · , n (1)

where Xi
C is the median of the marginal interval of the uncertainty parameter Xi, and Xi

W

is the deviation of the marginal interval of the uncertainty parameter Xi.
Consider any two uncertainty parameters Xp and Xq (p, q = 1, 2, · · · , n. and p 6= q) in

X = (X1, X2, · · · , Xn)
T . Based on a dataset with a limited number of sample points, the

parallelogram uncertainty domain ABCD can be constructed that satisfies the following
four conditions [15] (as shown in Figure 1):

(1) The parallelogram uncertainty domain Ω is contained in the rectangular domain Ωs.
(2) The vertices A, B, C, and D of the parallelogram uncertainty domain Ω are located on

the diagonal lines of the rectangular domain Ωs.
(3) The parallelogram uncertainty domain Ω is the minimum area parallelogram contain-

ing all sample points.
(4) When the uncertainty parameters Xp and Xq are independent of each other, the

parallelogram uncertainty domain Ω degenerates into the rectangular domain Ωs.

Figure 1. The MP interval model (two-dimensional case): (a) ρXp Xq ≤ 0 and (b) 0 ≤ ρXp Xq .

In Figure 1, the white circles are the sample points, the rectangle domain Ωs formed
by the red dashed lines represents the uncertainty domain in the traditional interval
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model, and the purple dashed lines are the diagonal lines of the rectangle. a denotes
the distance from the center point XC to the vertex A of the parallelogram uncertainty
domain, and b denotes the distance from the center point XC to the vertex B. For the MP-1
multidimensional parallelepiped model [20], the correlation coefficient ρXp Xq between the
uncertainty parameters Xp and Xq is defined as follows:

ρXp Xq =
b− a
b + a

(2)

when the value of a is equal to the value of b, the value of the correlation coefficient ρXp Xq

is equal to 0. At the same time, the uncertainty parameters Xp and Xq are independent of
each other and the uncertainty domain degenerates into a traditional interval model. The
uncertainty domain Ω coincides with the rectangular domain Ωs (the rectangle enclosed
by the red dashed line in Figure 1). When the value of a is not equal to the value of b and
neither the value of a nor the value of b is equal to 0, the value of the correlation coefficient
ρXp Xq is greater than −1 and less than 1. In this case, there is a certain degree of correlation
between the uncertainty parameters Xp and Xq. The uncertainty domain Ω is represented
by the parallelogram ABCD surrounded by the solid lines in Figure 1. Specifically, when
the value of a is equal to 0 (the value of the correlation coefficient ρXp Xq is equal to 1) or
the value of b is equal to 0 (the value of the correlation coefficient ρXp Xq is equal to −1), the
uncertainty domain degenerates into the straight line BD or the straight line AC, which is
represented by the purple dashed line in Figure 1.

For n uncertainty parameters X1, X2, . . . , Xn, the multidimensional correlation coeffi-
cient matrix ρ is defined as follows:

ρ =


ρX1X1 ρX1X2 · · · ρX1Xn

ρX2X1 ρX2X2 · · · ρX2Xn
...

...
. . .

...
ρXnX1 ρXnX2 · · · ρXnXn

 (3)

where ρ is an n× n symmetric matrix; ρXi Xi is the autocorrelation coefficient of the un-
certainty parameter Xi(i = 1, 2, · · · , n), whose value is 1; and ρXp Xq is the correlation
coefficient between any uncertainty parameters Xp and Xq, whose value can be obtained
from Equation (2) by constructing the parallelogram uncertainty domain.

The MP-1 model can be constructed using the following equation:∣∣∣ρ−1T−1R−1
(

X−XC
)∣∣∣ ≤ e (4)

where
T = diag(w1, w2, · · · , wn)

wp = 1
n
∑

q=1
|ρ(p,q)|

, p = 1, 2, · · · , n

R = diag
(
X1

W , X2
W , · · ·Xn

W)
XC =

(
X1

C, X2
C, · · · , Xn

C)T

e = (1, 1, · · · , 1)T


(5)

The most important difference between the MP-2 model and the MP-1 model is the
different definitions of the correlation coefficient and the multidimensional correlation
coefficient matrix for the uncertainty parameters. For the MP-2 model, the correlation
coefficient hXp Xq between any uncertainty parameters Xp and Xq is defined as follows:

hXp Xq =
b2 − a2

b2 + a2 (6)
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The multidimensional correlation coefficient matrix h is defined as follows:

h =


hX1X1 hX1X2 · · · hX1Xn

hX2X1 hX2X2 · · · hX2Xn
...

...
. . .

...
hXnX1 hXnX2 · · · hXnXn


1
2

(7)

where h is an n× n symmetric matrix; hXi Xi is the autocorrelation coefficient of the un-
certainty parameter Xi(i = 1, 2, · · · , n), whose value is 1; and hXp Xq is the correlation
coefficient between any uncertainty parameters Xp and Xq, whose value can be obtained
from Equation (6) by constructing the parallelogram uncertainty domain.

The MP-2 model can be constructed using the following equation:∣∣∣h−1S−1R−1
(

X−XC
)∣∣∣ ≤ e (8)

where
S = diag(v1, v2, · · · , vn)

vp = 1
n
∑

q=1
|h(p,q)|

, p = 1, 2, · · · , n

 (9)

As shown in Figure 2, when the uncertainty domain Ω is described by a multidimen-
sional parallelepiped model, it can be normalized to the uncertainty domain Ω∗ by means
of matrix transformation, regardless of whether the MP-1 model or the MP-2 model is used.
The transformation relation equation from the original X-space to the standard u-space for
the MP-1 model in the two-dimensional case is presented by Jiang et al. [21]:

X1 = X1
W

2
∑

q=1
|ρ(1,q)|

u1 +
X1

W

2
∑

q=1
|ρ(1,q)|

ρX1X2 u2 + X1
C

X2 = X2
W

2
∑

q=1
|ρ(2,q)|

ρX2X1 u1 +
X2

W

2
∑

q=1
|ρ(2,q)|

u2 + X2
C

 (10)

Figure 2. Matrix transformation for the MP model. (a) The original X-space; (b) The standard u-space.
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Similarly, this paper derives a transformation relation equation from the original
X-space to the standard u-space for the MP-2 model in the two-dimensional case:

X1 = X1
W h(1,1)

2
∑

q=1
|h(1,q)|

u1 +
X1

W h(1,2)
2
∑

q=1
|h(1,q)|

u2 + X1
C

X2 = X2
W h(2,1)

2
∑

q=1
|h(2,q)|

u1 +
X2

W h(2,2)
2
∑

j=1
|h(2,q)|

u2 + X2
C

 (11)

Using the above equation, the original vector X = (X1, X2, · · · , Xn)
T can be trans-

formed into the vector u = (u1, u2, · · · , un)
T in the standard space. Thus, the structure

performance function g(X1, X2, · · · , Xn) is changed into the standardized performance
function G(u1, u2, · · · , un).

2.2. Non-Probabilistic Reliability Analysis

In a multidimensional parallelepiped model, the non-probabilistic reliability index
η denotes the shortest distance from the coordinate origin to the limit state surface in
the extended space of the standardized interval variables measured via the minimum
infinity norm ‖•‖∞ (Figure 3 shows the two-dimensional case). It is consistent with the
meaning of the non-probabilistic reliability index η in a traditional interval model. The
non-probabilistic reliability index is defined as follows [22]:

η = min(‖u‖∞)
s.t. G(u1, u2, · · · , un) = 0

}
(12)

Figure 3. Definition of non-probabilistic reliability index.

The solution methods for calculating the non-probabilistic reliability index are mainly
divided into three categories [23]: the definition method, the transformation method, and
the optimization method. Theoretically, the definition method and the transformation
method are accurate methods, while the optimization method is an approximation method.
The optimization method is more adaptable in the case of complexity of the performance
function, but there is the problem of interval expansion in the calculation. Commonly
used in the definition method is the sequential quadratic programming method [24], which
is backed up by good mathematical theory. However, it is limited to the fact that the
performance function is a standard quadratic formula. What is worse, when solving with
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this iterative algorithm, there may be cases where the solution falls into a local optimum or
the iterations do not converge. The transformation method is an analytic method, in which
the global optimal solution method [25] is simple to operate and obtains a stable global
optimal solution.

The steps to compute non-probabilistic reliability indexes using the global optimal
solution method are as follows. First, we solve all the minimum points of the limit state
equation G(u1, u2, · · · , un) = 0 with respect to u1, u2, · · · , un. Second, we reduce the
dimension of the limit state equation as follows:

G(u1 = ±u2, u2, · · · , un) = 0, G(u1 = ±u3, u2, · · · , un) = 0, · · · , G(u1 = ±un, u2, · · · , un) = 0
G(u1, u2 = ±u3, · · · , un) = 0, G(u1, u2 = ±u4, · · · , un) = 0, · · · , G(u1, u2 = ±un, · · · , un) = 0
· · ·
G(u1, · · · , un−1 = ±un, un) = 0

(13)

Then, we find all the minimum points of the above n (n − 1) equations (calcu-
lated according to the n − 1 dimensional problem). The process of reducing the dimen-
sion of the limit state equation and searching for the minimum points is repeated until
the limit state equation is reduced to two dimensions. Finally, we solve the equation
G(u1 = ±u2 = · · · = ±un) = 0 (a total of 2n − 1 equations) and obtain all the root value
points. Then the non-probabilistic reliability index η is the minimum value of the distance
between all the minimum points of the equation and the root value points to the coordinate
origin measured via the infinity norm. In this paper, the global optimal solution method is
used to solve the non-probabilistic reliability index.

As shown in Figure 3, the solid squares represent the normalized parameters’ uncer-
tainty domain. When the non-probabilistic reliability index η = 1, the limit state surface of
the standardized structure performance function is tangent to the parameter uncertainty
domain, and the structure is in a critical state between being reliable and unreliable. When
the non-probabilistic reliability index η > 1, the standardized parameter uncertainty do-
main is within the safety domain and the structure is reliable. The larger the value of η
is, the more reliable the structure is. When the non-probabilistic reliability index η < 1,
a portion of the area of the standardized parameter uncertainty domain is in the failure
domain. Thus, the possibility of failure exists and the structure is unreliable.

3. Non-Probabilistic Reliability Analysis of Slopes Based on a Multidimensional
Parallelepiped Model

First, based on the limited sample data of geotechnical parameters, the means, standard
deviations, and correlation coefficients between different geotechnical parameters are
calculated for each uncertainty parameter, and the marginal interval of each uncertainty
parameter is delineated according to the 3σ truncation rule [26]. The sample data are
screened. If a sample point outside a marginal intervals exist, the sample point will
be excluded. The statistical characterization data for the geotechnical parameters are
recalculated from the remaining sample points, and a new round of screening is performed
until all sample points are within the marginal intervals of the parameters.

Next, the median and deviation of the uncertainty parameters are calculated from the
upper and lower bounding values of the marginal interval of the parameters. As described
in Section 2.1, the multidimensional parallelepiped model is constructed from the sample
data to establish the transformation relation equation of the uncertainty parameters from
the original space to the standard space.

Again, based on the range of the marginal interval of each parameter and the correla-
tion coefficient between the parameters, several groups of sample data are generated via
Latin hypercube sampling (Compared with other experimental design methods such as the
uniform sampling method and orthogonal design method, the Latin hypercube sampling
method has many advantages [27] such as good sample representativeness, applicability
to both independent and correlated variables, and stable sampling valuation). After the
slope safety coefficients corresponding to each group of sample data are computed using
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the limit equilibrium method, we use the quadratic polynomial response surface function
without cross terms to fit the slope performance function as follows:

g(X1, X2, · · ·Xn) = Fs(X1, X2, · · · , Xn)− 1.0 = a +
n

∑
i=1

biXi +
n

∑
i=1

ciX2
i (14)

where a, bi, ci(i = 1, 2, · · · , n) are the factors of polynomial to be determined.
According to Equation (10), when the MP-1 model is used to standardize the parame-

ters, the limit state equation of the slope can be expressed as follows:

g(X) = G(u) = a + b1

 X1
W

2
∑

q=1
|ρ(1,q)|

u1 +
X1

W

2
∑

j=1
|ρ(1,q)|

ρX1X2 u2 + X1
C


+b2

 X2
W

2
∑

q=1
|ρ(2,q)|

ρX2X1 u1 +
X2

W

2
∑

q=1
|ρ(2,q)|

u2 + X2
C


+c1

 X1
W

2
∑

q=1
|ρ(1,q)|

u1 +
X1

W

2
∑

q=1
|ρ(1,q)|

ρX1X2 u2 + X1
C


2

+c2

 X2
W

2
∑

q=1
|ρ(2,q)|

ρX2X1 u1 +
X2

W

2
∑

q=1
|ρ(2,q)|

u2 + X2
C


2

= 0

(15)

According to Equation (11), when the MP-2 model is used to standardize the parame-
ters, the limit state equation of the slope can be expressed as follows:

g(X) = G(u) = a + b1

X1
W h(1,1)

2
∑

q=1
|h(1,q)|

u1 +
X1

W h(1,2)
2
∑

q=1
|h(1,q)|

u2 + X1
C


+b2

X2
W h(2,1)

2
∑

q=1
|h(2,q)|

u1 +
X2

W h(2,2)
2
∑

q=1
|h(2,q)|

u2 + X2
C


+c1

X1
W h(1,1)

2
∑

q=1
|h(1,q)|

u1 +
X1

W h(1,2)
2
∑

q=1
|h(1,q)|

u2 + X1
C


2

+c2

X2
W h(2,1)

2
∑

q=1
|h(2,q)|

u1 +
X2

W h(2,2)
2
∑

q=1
|h(2,q)|

u2 + X2
C


2

= 0

(16)

Finally, based on the above limit state equation that is used, the non-probabilistic
reliability index of the slope is solved via the global optimal solution method. The specific
analysis process is shown in Figure 4.
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Figure 4. Analysis process of the proposed non-probabilistic reliability analysis method for the slope.

4. Example Analysis
4.1. Basic Information

A single-layer homogeneous slope proposed in the literature [28] was studied, and the
spatial variability of soil was not considered. The cross-sectional dimensions of the slope
are shown in Figure 5. The weight γ of the layer of this slope is 20 kN/m3, the modulus of
elasticity E is 100 MPa, and the Poisson’s ratio µ is 0.3. No water table or external water
was considered. Thus, it is appropriate to use the total stress method. This study used
the Bishop method in the limit equilibrium method as the basis for calculating the slope
safety factor. In the non-probabilistic reliability analysis of slopes, we can get two kinds
of slip surfaces. One is the slip surface corresponding to the mean value of geotechnical
parameters, which is only related to the mean value of geotechnical parameters. The other
is the minimum safety factor slip surface. In the non-probabilistic reliability analysis, the
parameters are as interval variables, there will be a lot of slip surfaces. We take the slip
surface with the minimum safety factor, this kind of slip surface will change with the
parameter range of intervals. The cohesion c and the internal friction angle ϕ are uncertain
variables, and the test data of shear strength parameters are shown in Table 1.

Figure 5. The slope calculation cross-section.
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Table 1. Test data of shear strength parameters.

Sample Number Cohesion, kPa Internal Friction Angle, ◦

1 15.50 30.82
2 11.65 32.19
3 15.36 27.83
4 16.96 27.48
5 12.82 30.53
6 16.08 32.33
7 16.30 28.78
8 14.47 31.29
9 20.47 22.34
10 10.78 33.28
11 15.43 27.52
12 11.82 31.44
13 12.43 35.15
14 15.92 33.74
15 17.88 29.74
16 15.11 30.85
17 18.51 30.56
18 11.81 33.42
19 15.61 25.04
20 13.01 28.28
21 12.33 30.81
22 9.92 33.65
23 16.88 25.98
24 22.56 25.21
25 16.10 28.21

4.2. Calculation Results and Analysis
4.2.1. Feasibility Validation of the Non-Probabilistic Reliability Analysis Method
for the Slope

In Table 1, the sample mean values of the cohesion c and the internal friction angle
ϕ are 15.03 kPa and 29.86◦, respectively. The sample standard deviations are 3.02 kPa
and 3.16◦, respectively. The correlation coefficient of the cohesion and the internal friction
angle is −0.70. The Monte Carlo method was used, which is a more accurate method in
probabilistic reliable analysis. And 1 × 107 simulations were performed while considering
or not considering the parameter correlation (the correlation coefficient is 0). The failure
probability of the slope was calculated to be 0 or 0.0032, respectively.

When using the method proposed in this paper for non-probabilistic reliability analysis,
according to the 3σ truncation law, the marginal intervals of the cohesion c and internal
friction angle ϕ are [5.97, 24.09] and [20.38, 39.34], respectively. All the data presented
in Table 1 are located in the range of the marginal intervals; thus, there was no need to
exclude the sample points. The multidimensional parallelepiped model was constructed
based on the sample data, and the global optimal solution method was used to calculate
the non-probabilistic reliability index of the slope. The results are shown in Table 2.

Table 2. Comparison of results of non-probabilistic and probabilistic methods.

Correlation Coefficient Non-Probabilistic Reliability
Index (MP-1 Model)

Non-Probabilistic Reliability
Index (MP-2 Model)

Failure Probability (Monte
Carlo Method)

−0.7 1.1972 1.1973 0
0 0.6023 0.6023 0.0032

As shown in Table 2, under the consideration of the correlation between the cohesion
and the internal friction angle, the non-probabilistic reliability indexes of the slope obtained
based on the MP-1 model and the MP-2 model are very close to each other, and the values
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are all greater than 1, which indicates that the slope is in a stable state. It is in agreement
with the calculation results obtained using the Monte Carlo method in the probabilistic
reliability analysis. Because both the MP-1 model and the MP-2 model degenerate into
a traditional interval model when sample correlation is not taken into account, the non-
probabilistic reliability indexes of the slope obtained based on the MP-1 model and the
MP-2 model are consistent without considering the correlation between the cohesion and
the internal friction angle. At this time, the calculated non-probabilistic reliability indexes
are all less than 1, indicating that there is a risk of destabilization and damage of the slope,
which is also consistent with the calculation results obtained using the Monte Carlo method.

It can be seen that it is feasible to use the non-probabilistic reliability method based on
the multidimensional parallelepiped model to analyze the stability of the slope, and it can
solve the problem that a traditional interval model cannot consider the correlation between
the uncertainty parameters. In this way, the calculation results are more in line with the
actual situation of slope engineering.

4.2.2. Influence of Correlation of Shear Strength Parameters on the Non-Probabilistic
Reliability of the Slope

In order to study the influence of the correlation coefficients of the cohesion c and
the internal friction angle ϕ on the non-probabilistic reliability indexes of the slope, the
sample mean and standard deviation of the original data presented in Table 1 were used
as the benchmark to generate 25 sets of random data with correlation coefficients of −0.7,
−0.5, −0.3, −0.1, 0, 0.1, 0.3, 0.5, and 0.7, respectively. Then, the methodology proposed in
this paper was used to calculate the non-probabilistic reliability indexes of the slope. The
results are shown in Figure 6. In this figure, ME indicates that an ellipsoid model was used,
and MI indicates that a traditional interval model (the special case where the correlation
coefficient is 0 in the MP-1 model and the MP-2 model) was used.

Figure 6. The curve of correlation coefficients of geotechnical parameters and non-probabilistic
reliability indexes.

As shown in Figure 6, when there is a negative correlation between the cohesion c and
the internal friction angle ϕ, the non-probabilistic reliability indexes of the slope obtained
based on the ellipsoid model and those based on the multidimensional parallelepiped
model both decrease with an increase in the correlation coefficient. The magnitude of the
change of the calculation results obtained based on the ellipsoid model is larger, and the
magnitude of the change of the calculation results obtained based on the multidimensional
parallelepiped model is relatively uniform. With correlation coefficients of −0.7 and
−0.5, the failure probabilities of the slope calculated using the Monte Carlo method are,
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respectively, 0 and 0.003% (close to 0). The non-probabilistic reliability indexes of the
slope obtained based on the ellipsoid model and those based on the MP model are greater
than 1, which is reasonable. However, the non-probabilistic reliability indexes of the slope
obtained based on the interval model are less than 1, which underestimates the stability
of the slope. With correlation coefficients of −0.3 and −0.1, the failure probabilities of
the slope calculated using the Monte Carlo method are 0.061% and 0.203%, respectively.
The non-probabilistic reliability indexes of the slope obtained using the MP model and
the interval model are less than 1, which is also reasonable. But the non-probabilistic
reliability indexes of the slope obtained using the ellipsoid model are greater than 1, which
overestimates the stability of the slope.

When there is a positive correlation between the cohesion c and the internal fric-
tion angle ϕ, the non-probabilistic reliability indexes of the slope obtained based on the
ellipsoid model decreases slightly with the increase in the correlation coefficient. The
non-probabilistic reliability indexes of the slope obtained based on the multidimensional
parallelepiped model remain unchanged and are the same as the calculation results ob-
tained based on the interval model. It is consistent with the situation presented in the
literature [21]. There are two reasons to explain this result. On the one hand, in actual slope
engineering, the cohesion and the internal friction angle of soil are negatively correlated
in most cases. And the influence of the negative correlation on slope stability is mainly
considered. On the other hand, as shown in Figure 6, when the correlation coefficient is
greater than 0, the difference between the non-probabilistic reliability indexes of the slope
based on the ellipsoid model and those based on the MP model or the interval model is
small. The values are all less than 1, which indicates that there is the possibility of instability
of the slope. At this time, a change in the value of the non-probabilistic reliability indexes
of the slope has no effect on the judgment of the stability of the slope.

According to Figure 6, the non-probabilistic reliability indexes of the slope obtained
based on the MP-1 model and those obtained based on the MP-2 model are very close and
almost equal. Regardless of how the correlation coefficients of the geotechnical parameters
change, the calculation results based on the MP-1 model and the MP-2 model are always
smaller than those based on the ellipsoid model. None of the values are smaller than the
non-probabilistic reliability indexes calculated based on the traditional interval model,
which proves again that the non-probabilistic reliability method of the slope based on the
multidimensional parallelepiped model not only can take into account the correlation of
the uncertain parameters, but also can obtain more appropriate calculation results than the
ellipsoid model.

4.2.3. Influence of Variability of Shear Strength Parameters on the Non-Probabilistic
Reliability of the Slope

The variability of shear strength parameters is also an important factor affecting slope
stability. In order to study the influence of the variability of the cohesion c and internal
friction angle ϕ on the non-probabilistic reliability indexes of the slope, the data of the
internal friction angle presented in Table 1 were first kept unchanged, and the cohesion was
taken to have five different coefficients of variation (in this study, the coefficient of variation
was defined as the ratio of the deviation to the median of the interval of an uncertainty
variable, which served to compute the marginal interval of the parameter. For example,
when the coefficient of variation δc of the cohesion was taken as 0.5, the marginal interval
of the cohesion c was [7.51, 22.55]), which was taken on the basis of the mean values of
the original data, such as 0.1, 0.3, 0.5, 0.7, and 0.9. After randomly generating 25 sets of
sample data for each, the influence of the variability of the cohesion on the non-probabilistic
reliability indexes of the slope with different correlation coefficients was determined using
the method proposed in this paper, and the results are shown in Figure 7.
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Figure 7. The curve of variation coefficients of the cohesion and non-probabilistic reliability indexes
under different correlation coefficients.

Similarly, while keeping the data of the cohesion presented in Table 1 unchanged,
the internal friction angle was taken to have five different coefficients of variation on
the basis of the mean values of its original data, such as 0.1, 0.3, 0.5, 0.7, and 0.9. After
randomly generating 25 sets of sample data for each, the influence of the variability of the
internal friction angle on the non-probabilistic reliability indexes of the slope with different
correlation coefficients was determined using the method proposed in this paper, and the
results are shown in Figure 8.

Figure 8. The curve of variation coefficients of the internal friction angle and non-probabilistic
reliability indexes under different correlation coefficients.

As shown in Figures 7 and 8, the non-probabilistic reliability indexes of the slope
calculated based on the MP-1 model and the MP-2 model are very close. As the cohesion or
the internal friction angle coefficient of variation increases, the non-probabilistic reliability
index of the slope decreases. This is consistent with the evaluation obtained using the prob-
abilistic reliability method. When using the probabilistic reliability method to calculate the
failure probability of the slope, the stability reliability of the slope is lower when the variabil-
ity of the cohesion c or the internal friction angle ϕ is larger. By comparing Figures 7 and 8,
it can also be seen that the variability of the cohesion has a greater impact on the non-
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probabilistic reliability index of the slope for the example slope, which indicates that the
stability of the slope is more sensitive to the variability of the cohesion.

As shown in Figures 7 and 8, with an increase in the coefficient of variation of the
parameters, the difference between the non-probabilistic reliability indexes of the slope
obtained under different correlation coefficients also changes to a certain extent, exhibiting
a tendency to decrease. This shows that the influence of parameter correlation on slope
stability is also related to the variability of parameters, and this effect is more obvious when
the parameter variability is small. Both variability and correlation of parameters need to be
taken into account when performing non-probabilistic reliability analysis of slopes.

5. Conclusions

In this paper, a non-probabilistic reliability analysis method of slopes based on a mul-
tidimensional parallelepiped model is proposed. The distinctive and significant findings
of the study are as follows: first, the feasibility of the method is verified via case analysis,
which indicates the multidimensional parallelepiped model is suitable for non-probabilistic
reliability analysis of slope engineering. Second, the calculation results of this method are
intermediate between those based on a traditional interval model and those based on an
ellipsoid model, which are more in line with engineering practice. Third, the correlation
between the geotechnical parameters and its own variability have a greater impact on the
non-probabilistic reliability indexes of the slope, which must be taken into account when us-
ing the proposed non-probabilistic reliability method to analyze the stability of slopes. The
research’s significance and implications are as follows: The proposed method only needs a
small number of geotechnical samples to judge the slope stability state, without the need to
assume the probability distribution type of geotechnical parameters through the use of a
large number of samples statistically as in the case of the probabilistic reliability method,
and the correlation of the geotechnical parameters can be taken into account. Moreover,
the multidimensional parallelepiped model is combined with non-probabilistic theory for
slope engineering, which expands the application field of calculation methods based on
non-probabilistic theory and provides a new feasible scheme for slope stability analysis.
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