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Abstract: Natural language understanding (NLU) is an important aspect of achieving human–machine
interactions in the automotive application field, consisting of two core subtasks, multiple-intent detec-
tion, and slot filling (ID-SF). However, existing joint multiple ID-SF tasks in the Chinese automotive
domain face two challenges: (1) There is a limited availability of Chinese multi-intent corpus data
for research purposes in the automotive domain; (2) In the current models, the interaction between
intent detection and slot filling is often unidirectional, which ultimately leads to inadequate accuracy
in intent detection. A novel multi-intent parallel interactive framework based on heterogeneous
graphs for the automotive applications field (Auto-HPIF) was proposed to overcome these issues. Its
improvements mainly include three aspects: firstly, the incorporation of the Chinese bidirectional
encoder representations from transformers (BERT) language model and Gaussian prior attention
mechanism allow each word to acquire more comprehensive contextual information; secondly, the
establishment of a heterogeneous graph parallel interactive network efficiently exploits intent and
slot information, facilitating mutual guidance; lastly, the application of the cross-entropy loss function
to the multi-intent classification task enhances the model’s robustness and adaptability. Additionally,
a Chinese automotive multi-intent dataset (CADS) comprising 13,100 Chinese utterances, seven
types of slots, and thirty types of intents were collected and annotated. The proposed framework
model demonstrates significant improvements across various datasets. On the Chinese automotive
multi-intent dataset (CADS), the model achieves an overall accuracy of 87.94%, marking a notable
2.07% enhancement over the previous best baseline. Additionally, the model performs commendably
on two publicly available datasets. Specifically, it showcases a 3.0% increase in overall accuracy on
the MixATIS dataset and a 0.7% improvement on the MixSNIPS dataset. These findings showcase the
efficacy and generalizability of the proposed model in tackling the complexity of joint multiple ID-SF
tasks within the Chinese automotive domain.

Keywords: automotive applications; spoken language understanding; multi-intent detection; parallel
interactive framework; heterogeneous graph

1. Introduction

Research in the field of automotive applications plays a significant role in advanced
automotive technology, improving automotive performance, safety, and enhancing the
user experience. It also facilitates the application of intelligence, connectivity, and au-
tomation in the automotive industry, making it of vital importance. Common research
areas in automotive applications include automotive communication network security [1],
interactive autonomous driving automotives [2], and the design of functional application
models for in-automotive information and entertainment systems [3]. Establishing inter-
active tools between automotive users and in-automotive systems is a crucial aspect of
achieving intelligence in the automotive industry. In the context of intelligent automotive
applications, NLU plays a critical role in the automotive environment. NLU refers to the
ability of a computer system to comprehend and process natural language expressions. It
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involves techniques such as natural language processing and text classification, aiming to
divide the text into different categories or labels. By classifying the intent of user-spoken
commands, automotive applications can gain a more accurate understanding of user inten-
tions and requirements, enabling them to provide intelligent and personalized responses
and services.

In the multi-intent scenarios of NLU, users may convey multiple related intents
simultaneously through a single sentence or a conversation. Given the semantic similarity
and overlap among intents, the precise identification and classification of distinct intents
within automotive user commands pose significant challenges. Furthermore, the scarcity of
data can result in diminished performance of multi-intent detection models. Meanwhile, the
endeavor of creating an expansive corpus that encompasses a variety of intents expressed
in spoken language adds another layer of complexity to the task. The primary objective
of this paper’s research is to address the issue of multi-intent detection within the context
of automotive user commands. By focusing on this matter, the study aims to elevate the
precision and effectiveness of NLU systems in intricate dialogues specific to the automotive
application domain, thereby offering substantial assistance in enhancing interactions and
performance within automotive applications.

Traditional multi-intent joint detection methods [4,5] often employ fixed weights to
assign importance to each intent, which may not meet the demands as more data and tasks
are incorporated. Further research has unveiled a robust connection between intent detec-
tion and slot filling, and mainstream models [6–8] consider establishing the interconnection
between intents and slots, exploring the utilization of joint learning techniques and deep
learning algorithms to allocate weights adaptively. By leveraging the interaction between
intent detection and slot filling, they aim to enhance the accuracy of intent detection, with
a primary focus on single-intent detection tasks. Regarding multi-intent detection tasks,
the joint multiple ID-SF model [4] explores a multi-tasking framework with a slot-gating
mechanism for combined multiple-intent detection and slot filling. However, this approach
fails to furnish detailed intent information to guide token-level slot filling. In the AGIF
model [5], an intent–slot graph interaction layer is incorporated to capture the significant
correlation between slots and intents. Furthermore, CAI et al. [6] propose a joint multi-
intent detection and slot-filling model based on BERT, explicitly mapping slots to intents.
However, this model lacks bidirectional slot–intent constraints and underutilizes detailed
information in the slot-filling task.

Presently, deep learning algorithms stand as the prevailing method for tackling the
intricacies of multi-intent detection. Nevertheless, attaining a high level of precision using
these algorithms mandates a substantial reservoir of training data, particularly within
widely spoken languages like English. The absence of comprehensive multi-intent datasets
in other languages presents formidable hurdles when applying multi-intent detection
within those linguistic contexts. Furthermore, the existing joint detection models necessitate
meticulous refinement and tailoring to suit distinct application scenarios, thereby securing
the achievement of optimal detection performance. To conduct a more comprehensive
investigation into Chinese multi-intent detection in the automotive domain, this paper
presents the collection and annotation of a Chinese automotive multi-intent dataset (CADS).
CADS is an open-source dataset specifically tailored for intelligent conversations related
to automotive topics. It encompasses a total of 13,100 Chinese utterances, with each
sentence capable of expressing up to three distinct intents. Building upon the CADS
dataset, this paper introduces a novel joint framework model for multi-intent detection
known as Auto-HPIF (automotive heterogeneous parallel interactive framework). This
model integrates the Chinese BERT [7] language model and a Gaussian prior attention
mechanism into the encoder stage. It devises a slot–intent parallel interactive framework
based on heterogeneous graphs within the interaction process of joint multi-intent detection
and slot-filling tasks. Additionally, the cross-entropy loss function is employed for the
multi-intent classification task. The main contributions of this research can be summarized
as follows:
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(1) Addressing the challenges of multi-intent detection in the automotive domain, a Chinese
automotive multi-intent dataset CADS was constructed. It contains 13,100 Chinese
utterances, seven slots, and thirty intent types. The dataset is composed of multiple
data sources, including automotive controls, navigation, and car services, covering
diverse language styles and intent types;

(2) An innovative multi-intent joint model specialized for the automotive domain is
proposed. Its improvements mainly include three aspects. Firstly, it integrates the
Chinese BERT language model and a Gaussian prior attention mechanism within the
encoder stage, enhancing the accuracy and precision of semantic feature extraction.
Secondly, addressing the tasks of multi-intent detection and slot filling, the model
adopts a heterogeneous graph parallel interaction network, thereby further enhancing
the exchange of information and interaction between tasks. Lastly, the successful
resolution of the challenge of inadequate adaptability in the automotive domain’s
multi-intent models is achieved by introducing the cross-entropy loss function;

(3) Thorough experimental evaluations were conducted on the CADS dataset alongside
two publicly available datasets. The extensive results illustrated that Auto-HPIF
significantly enhances the accuracy of both multi-intent classification and slot-filling
tasks. By leveraging pre-training methods, it can adapt to the Chinese language style
and facilitate more efficient human–machine interactions in the automotive scenario.

2. Related Works

This chapter will delve into cutting-edge research related to multi-intent detection
and slot-filling tasks. Firstly, Section 2.1 provides an overview of the recent developments
and technological advancements in the field of NLU. Subsequently, Section 2.2 thoroughly
examines the context and significance of multi-intent detection and slot-filling tasks while
also providing an overview of the current mainstream methods applied in the automotive
domain. Moving forward, Section 2.3 introduces the joint interactive framework as an
effective approach to address these tasks and meticulously dissects the key technical aspects
involved. Finally, Section 2.4 explores the application of pre-trained language models in
multi-intent detection and slot-filling tasks and introduces some influential pre-trained
models along with their notable accomplishments.

2.1. Technological Advancements in the Field of NLU

The dynamic evolution of deep learning has propelled the field of NLU into a realm of
substantial advancements. Neural network technologies, including long short-term mem-
ory (LSTM), detectors, classifiers, and the transformer architecture, have become core tools
in natural language processing. These technologies enable computers to more accurately
comprehend language syntax, semantics, and context, conducting in-depth analyses across
various contexts. Furthermore, the rise of pre-trained language models has brought about
revolutionary changes in the NLU domain. Through pre-training on large-scale text data,
these models capture rich semantic information, thereby enhancing the performance of
downstream tasks such as intent detection and slot filling. Within the NLU field, numerous
innovative approaches tailored to specific tasks and domains have emerged. These ap-
proaches not only expand the application scope of NLU but also provide robust tools and
techniques for addressing real-world problems. In the domain of Chinese natural language
processing (NLP), due to the complex forms of Chinese characters, the flexibility of syntax
structures, and challenges posed by homophones, Chinese NLP tasks encounter unique
difficulties. Many innovative methods and technologies have been explored to enhance
the accuracy, efficiency, and adaptability of Chinese text processing. For instance, paper
addresses the issue of multiple grammar errors and proposes a method for grammatical
correction in Chinese text. Against this backdrop, this paper will focus on tackling the
problem of multi-intent detection in the context of the Chinese automotive domain.
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2.2. Multi-Intent Detection and Slot Filling

Compared with single-intent detection tasks, multi-intent detection tasks require a
more fine-grained classification of the text, which needs to be decomposed into multiple
subtasks and classified when there are multiple intents in a text. As illustrated in Figure 1,
for example, in the sentence “Please lower the temperature of the passenger-side air
conditioning to 18 degrees and also help me turn off the dashcam”. The first step for the
in-automotive system is to determine two intents of the user: air conditioning control
and car function control. This level of fine-grained classification aids the system in better
understanding user intent, thereby enabling accurate differentiation and processing among
multiple tasks.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 22 
 

will focus on tackling the problem of multi-intent detection in the context of the Chinese 
automotive domain. 

2.2. Multi-Intent Detection and Slot Filling 
Compared with single-intent detection tasks, multi-intent detection tasks require a 

more fine-grained classification of the text, which needs to be decomposed into multiple 
subtasks and classified when there are multiple intents in a text. As illustrated in Figure 
1, for example, in the sentence “Please lower the temperature of the passenger-side air 
conditioning to 18 degrees and also help me turn off the dashcam”. The first step for the 
in-automotive system is to determine two intents of the user: air conditioning control and 
car function control. This level of fine-grained classification aids the system in better un-
derstanding user intent, thereby enabling accurate differentiation and processing among 
multiple tasks. 

 
Figure 1. An example of an NLU utterance with multi-intent and slot annotation (IBO format). 

As deep neural networks continue to advance, deep learning techniques have become 
the mainstream approach in multi-intent detection. Article [4] uses a linear chain condi-
tional random field (CRF) classifier to achieve multi-intent detection; however, this ap-
proach is prone to errors in the propagation phase. Paper [8] combines structural features 
and a convolutional neural network (CNN) to propose a multi-intent detection model for 
multi-intent detection by first calculating the distance matrix DIST as an input layer to 
highlight the features of the sentence and, after passing through a convolutional and pool-
ing layer, and after a fully-connected and softmax layer to fully connect the feature ele-
ments, the task type is outputted by softmax. The probability of the output vector is 
judged by the score. A score threshold is established to identify sentences that exhibit the 
intention to complete the multi-intent classification task. 

In the in-automotive domain, Zheng et al. [9] examined the utilization of LSTM and 
GRU for intention detection alongside tasks related to semantic parsing. Given that hier-
archical LSTM does not fully utilize contextual information, Firdaus et al. [10] proposed a 
multi-task model using bidirectional long short-term memory (BiLSTM) and bidirec-
tional-gated recurrent unit (BiGRU) where the input sentence can be considered as a se-
quence and the global representation of the GRU and LSTM learning sequence is used to 
recognize intentions. Although the above intention detection models achieve good recog-
nition results, they do not solve the problem of recognizing multiple intentions in the in-
automotive domain. 

Slot filling is often considered as a sequence annotation task that annotates discourse 
using a finer granularity to associate certain parts of discourse with predefined slot mark-
ers. Traditional slot-filling methods are usually based on conditional random fields (CRFs) 
[11] of RNNs and other [12] deep learning methods. In recent years, attention mechanisms 
have also been widely used in NLP tasks, e.g., the literature [13] incorporates attention 
mechanisms in encoder–decoder models and uses LSTM networks for slot-filling tasks. 
The literature [14] combines pointer networks and attention mechanisms to improve slot-
filling methods.  
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As deep neural networks continue to advance, deep learning techniques have be-
come the mainstream approach in multi-intent detection. Article [4] uses a linear chain
conditional random field (CRF) classifier to achieve multi-intent detection; however, this
approach is prone to errors in the propagation phase. Paper [8] combines structural features
and a convolutional neural network (CNN) to propose a multi-intent detection model
for multi-intent detection by first calculating the distance matrix DIST as an input layer
to highlight the features of the sentence and, after passing through a convolutional and
pooling layer, and after a fully-connected and softmax layer to fully connect the feature
elements, the task type is outputted by softmax. The probability of the output vector is
judged by the score. A score threshold is established to identify sentences that exhibit the
intention to complete the multi-intent classification task.

In the in-automotive domain, Zheng et al. [9] examined the utilization of LSTM and GRU
for intention detection alongside tasks related to semantic parsing. Given that hierarchical
LSTM does not fully utilize contextual information, Firdaus et al. [10] proposed a multi-
task model using bidirectional long short-term memory (BiLSTM) and bidirectional-gated
recurrent unit (BiGRU) where the input sentence can be considered as a sequence and the
global representation of the GRU and LSTM learning sequence is used to recognize intentions.
Although the above intention detection models achieve good recognition results, they do not
solve the problem of recognizing multiple intentions in the in-automotive domain.

Slot filling is often considered as a sequence annotation task that annotates discourse
using a finer granularity to associate certain parts of discourse with predefined slot markers.
Traditional slot-filling methods are usually based on conditional random fields (CRFs) [11]
of RNNs and other [12] deep learning methods. In recent years, attention mechanisms
have also been widely used in NLP tasks, e.g., the literature [13] incorporates attention
mechanisms in encoder–decoder models and uses LSTM networks for slot-filling tasks.
The literature [14] combines pointer networks and attention mechanisms to improve slot-
filling methods.

Despite the good results achieved by the above slot-filling methods, these methods
require an extensive corpus of labeled data, so pre-trained language models are also tested
to be applied to help train slot-filling models. The literature [15] proposes a WFST-BERT
model combining the BERT architecture with a weighted finite-state sensor (WFST), which
uses the linguistic representation capability of BERT to generate contextual representations
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and improves generalization; the literature [16] focuses on zero-sample learning and applies
a momentum comparison approach and a BERT initialization model encoder to accurately
capture semantic patterns; In reference [17], a pre-trained BERT model was employed as a
semantic feature extractor, resulting in enhanced model generalization. Through feature
fusion techniques, the semantic feature vectors from multiple layers of the BERT encoder
were combined to establish contextual associations and maximize the utilization of semantic
feature information. As a result, the model’s performance significantly improved across
various tasks.

2.3. Joint Modeling via the Interactive Framework

The interactive framework widely uses joint intent detection and slot-filling models,
which have greatly progressed. Compared with the traditional stacked joint model that
learns relevant information through ordered hierarchical transfer, the interactive framework
focuses more on the interactive impact of the two tasks of slot filling and intention detection
simultaneously during the training process. Where intention and semantic slots, as semantic
representations of user behavior, share information about user discourse, information from
one task can be used by the other task to mutually improve each other’s performance,
and contextual information from intention detection and semantic slot filling can provide
clues to the other task, making the two tasks perform mutually better and thus optimizing
global performance.

Gangadharaiah et al. [4] introduced a multi-tasking framework with a slot-gate mech-
anism for joint multi-intent detection and slot filling. This framework captures features
between intents and slots by merging intent information through the treatment of an intent
context vector as multiple-intent information. However, this straightforward approach
of merging multiple-intent information does not offer detailed intent information at the
token level, which is crucial for guiding the slot-filling process. To address this problem,
Qin et al. [5] presented the adaptive graph interaction framework (AGIF), which incorpo-
rates an intent–slot graph interaction layer to model the robust correlation between slots
and intents, and further proposes a global–local graph interaction based on this network
GL-GIN [18] to ensure the model runs in parallel and speeds up the inference of the task.
In [19], a joint model BIF-SI based on improved multi-intent detection and slot filling is pro-
posed to address the problems that GL-GIN neglects slot-to-intent guidance, multi-intent
detection tasks incorrectly capture information of other irrelevant intents, and the quality
of contextual semantic feature extraction needs to be further improved. Similarly, [20]
proposes a collaborative guidance network framework that allows the intent detection
and slot-filling tasks to guide each other. Inspired by heterogeneous networks, a hetero-
geneous bidirectional flow interaction structure for joint multi-intent detection and slot
filling was proposed in [21] and utilizes a word-level windowing mechanism to address
the local continuity of slot labels, effectively guiding multi-intent detection with higher
accuracy. Moreover, multi-intent detection tasks have been applied to different domains,
e.g., in agriculture, Ref. [22] proposed a joint model of agricultural intelligent question and
answer (AgHA-IDSF) based on an enhanced heterogeneous attention mechanism, which
can effectively jointly recognize intentions and slots in agricultural discourse.

Building upon the aforementioned interaction framework, this paper further intro-
duces a joint model named Auto-HPIF, aiming to investigate multi-intent detection in
the Chinese automotive domain using heterogeneous graph parallel interaction networks.
The experimental evaluation encompasses three datasets: CADS, along with two publicly
available multi-intent datasets, MixATIS and MixSNIPS. To enhance the model’s general-
ization capability in the Chinese automotive domain, this model employs a fine-tuning
approach that incorporates pre-trained multi-task learning techniques. This endeavor holds
significance for the study of joint intent detection tasks within specific domains.
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2.4. Pre-Trained Language Models

Pre-trained word vectors extract distributed representations of words, i.e., word
vectors, by unsupervised learning from large-scale text data and apply them to various
downstream NLP tasks. In the pre-training process, a large amount of unlabeled text data
is usually used to train word vector models. Prevalent pre-training models like ELMO [23],
GPT [24], and BERT [7] have demonstrated remarkable success in addressing various NLP
tasks, such as textual entailment, semantic similarity, reading comprehension, and question
answering. BERT uses a bidirectional transformer architecture that learns context by mask-
ing randomly selected words and asking the model to make predictions during pre-training.
The emergence of BERT has significantly enhanced the performance of natural language
processing tasks. It has led to the latest best results that have been achieved in many areas,
such as reading comprehension, question and answer, and document classification. The
contextual awareness and semantic expression abilities of Chinese BERT facilitate a more
accurate capture of subtle semantic nuances within the text, thereby enhancing disam-
biguation and improving the efficiency of context-dependent considerations. Leveraging
the robust capabilities of the Chinese BERT pre-trained model, this paper enhances the
performance of the model in specific tasks, resulting in a more precise understanding of
contextual information within dialogues.

3. Corpus Collection and Annotation

This paper presents a dataset construction and annotation work for multi-intent
classification in the Chinese automotive domain. Since there is no publicly available
multi-intent automotive corpus, this paper collects and constructs a Chinese automotive
multi-intent dataset, CADS, and manually processes this dataset corpus according to
intent and slot classification, using predefined labels to classify and label each Chinese
corpus according to its specific meaning and intent. Table 1 shows the specific count
information of utterances containing single-intention, double-intention, and triple-intention.
The dataset comprises 13,100 Chinese words, distributed as follows: the training set consists
of 10,480 utterances, the test set includes 1310 utterances, and 1310 utterances are allocated
to the validation set, maintaining an 8:1:1 ratio.

Table 1. Summary statistics of CADS.

Domain Number of Intents Number of Utterances Intent Types Slot Types

Automotive
Single intent 5000 17 7

Double intent 7450 9 7
Multiple intents 650 4 7

Total - 13,100 30 7

Specifically, seven slots were set in CADS, including mode, device, offset, location,
landmark, song, and singer, and seventeen individual intentions were classified based on
the collected in-automotive corpus, as shown in Table 2.

Table 2. Intent details of CADS (The sample in this table is translated from Chinese. For specific
examples in Chinese, please refer to Table S1 in the Supplementary Materials).

No. Intent Label Sample

1 adjust_ac_temperature_to_number The air conditioning on the passenger side is set to
25 degrees

2 adjust_ac_windspeed_to_number Set the air conditioning fan speed to 2.4 notches
3 close_ac Turn off the air conditioning in the car
4 close_car_device Could you please close the right rear window a bit?
5 collect_music I want to listen to my collection of songs
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Table 2. Cont.

No. Intent Label Sample

6 lower_ac_temperate_little Lower the air conditioning in all positions
7 map_control_query How do I use the navigation system?
8 music_search_artist_song Play ‘Big Fish’ by Zhou Shen
9 navigate_landmark_poi Are there any ATMs nearby?

10 navigate_poi I want to go to Shuncheng Service Center via an
unblocked route

11 open_ac I’m a bit cold, let me turn on the air conditioning for
a while

12 open_ac_mode I want to set it to energy-saving mode.
13 open_car_device Help me open the trunk
14 play _collect_music Play the music from my collection
15 open _collect_music Could you please open the collection of songs

16 raise_ac_temperature_little Increase the temperature of the front right air
conditioning

17 view_trans Show the map in 2D mode

In this paper, a single-intent corpus was randomly combined. A double-intent and
triple-intent corpus were synthesized by writing a script to process the dataset, and when
there were multiple intents in the corpus, each intent tag was linked using the “#” sign to
form a multi-intent tag. A stratified sampling method was used to distribute the intent tags
as evenly as possible, and manual screening was performed to remove the unreasonable
corpus. Finally, the dataset comprised 7450 dual-intent corpora, 650 tri-intent corpora, and
5000 single-intent corpora. It included a total of thirty in-automotive domain-specific intent
types and seven slot labels, providing valuable research data for joint in-automotive intent
detection and slot-filling studies. Table 3 lists some examples to illustrate the features and
representations of different multi-intentions.

Table 3. Some samples of the CADS multi-intent corpus (The sample in this table is translated from
Chinese. For specific examples in Chinese, please refer to Table S2 in the Supplementary Materials).

No. Multi-Intent Label Sample

1 close_ac#close_car_device Turn off the air conditioning in the car, and also
close the left rear window

2 collect_music#lower_ac_
temperature_little

This song is nice, then lower the temperature of the
driver’s air conditioning a bit

3 map_control_query#music_
search_artist_song

Set the navigation to the destination, and then play
‘Forget the World’ by Li Yugang

4 open_ac_mode#open_car_device Switch to recirculation mode and enable the
Daytime Running Lights function

5 collect_music#lower_ac_ tempera-
ture_little#map_control_query

I want to listen to the online music in my collection.
Lower the front air conditioning a bit more, and now
start the navigation

6 open_collect_music#play_collect_
music#raise_ac_temperature_little

Open the collection of songs, and then play from the
collection. Increase the temperature of the right rear
air conditioning a bit

The dataset presented in this paper facilitates the training of a joint intent–slot model,
allowing for automated recognition of user intent and slot filling. This progress signifi-
cantly improves the usability of automotive voice assistants for drivers, enhancing their
convenience. Notably, the dataset comprises genuine communication scenarios from auto-
motive users, with the majority transformed from spoken language to text format through
technical processing. Consequently, the dataset encompasses a range of Chinese dialects
and inflections. The inclusion of dialect data serves to amplify phonetic, syntactic, and
semantic variations when compared to standard Mandarin. This deliberate inclusion sig-
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nificantly improves the diversity of the pre-trained model, rendering it highly adaptable to
a multitude of language expressions, thereby facilitating its practical utility.

4. Auto-HPIF Modeling Approaches

Figure 2 illustrates the architecture of the proposed model, consisting of three main
modules: (a) the common encoder component, (b) the explicit multi-intent slot task com-
ponent, and (c) the implicit heterogeneous intent–slot interaction component. Within this
framework: (a) functions as the foundational encoder, responsible for extracting feature
representations from the input text and obtaining feature vectors for each word; (b) focuses
on the explicit task of multi-intent detection and slot filling. It takes the feature vectors
obtained from (a) and feeds them into a BiLSTM neural network, ultimately producing
coarse-grained slot and intent information; (c) employs a more intricate heterogeneous
graph neural network to achieve implicit interactions between intents and slots, facilitating
a better understanding of the latent associations between them. These three modules
collaborate within the model to achieve the ultimate goal of multi-intent detection and slot
filling. This section first introduces the problem definition of multi-intent detection and
slot-filling tasks, followed by a detailed description of each individual component.
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Chinese sentences).

4.1. Problem Definition

When users engage in spoken expressions within the context of the Chinese auto-
motive domain, their utterances might encompass multiple intents. Multi-intent under-
standing in the Chinese automotive domain aims to extract crucial information from
each conversational turn, with the precise goal of accurately identifying the multiple in-
tents conveyed by the user. Serving as an intermediary between users and the dialogue
system, the multi-intent language unit plays the role of conveying vital intent and slot
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information to subsequent modules of the dialogue system. In the context of multi-intent
detection tasks in the automotive domain, given an in-automotive Chinese language corpus
U = [u1, u2, · · · , un] with n characters, the primary goal of this study’s model is to predict
all potential intents associated with the input. This can be delineated into the following
two aspects:

Multi-intent detection at the sentence level. Assuming that there are m different
intentions (e.g., “automotive control”, “air conditioning control”, “play music”, etc.), multi-
intent detection can be considered a multi-label classification problem. A binary variable
Ii ∈ {0 , 1} is defined for each corpus sample to indicate whether the sample belongs to
the i-th intent label. Then, a sample wrapped with m-intent labels can be represented as
an m-dimensional vector I ={ I1, I2, I3, · · · , Im}T ; if a sample involves the i-th intent, then
Ii = 1 otherwise Ii = 0;

Character-level slot filling. Slot filling extracts task-specific information, such as enti-
ties and attributes, from natural language inputs and assigns this information to predefined
slots. The output sequence is y ={ y1, y2, y3, · · · , yn} where ui denotes the i-th word in the
input sequence and yj denotes the j-th slot in the output sequence.

4.2. Common Encoder Module Based on BERT

This section aims to explore the application of contextual representation methods
to multi-intent detection and slot-filling tasks. Specifically, it will investigate how the
input text U can be processed by the contextual representation E ={ e1, e2, e3, · · · , en} to
more accurately predict the user’s intent and the various slot information contained in the
dialogue. In order to optimize the utilization of semantic features, this paper introduces
a common encoder based on Gaussian prior self-attentiveness, which mainly consists
of Chinese BERT and Gaussian prior self-attentiveness mechanisms. Slot-filling tasks
and intent detection tasks share underlying semantic representation capabilities. Chinese
BERT is pre-trained for Chinese text, and some modifications are made in the input and
embedding layers to better process Chinese text. In addition, Chinese BERT introduces
an n-gram continuous fragment sampling task to facilitate the special nature of Chinese
vocabulary. Suppose u ={ u1, u2, u3, · · · , ut} is a sequence of input utterances, [CLS] tags
and [SEP] tags have been added to the beginning and end of the sequence, and the initial
vector of input sentences, denoted as E ={ e1, e2, e3, · · · , en} ∈ Rn×2d, is obtained after
processing by the pre-training model Chinese BERT as shown in Equation (1):

E = BERT(u[CLS], u1, . . . , ut, u[SEP]) (1)

Considering that the traditional self-attention mechanism cannot take into account the
relative positions and distance differences between different parts of the text, the encoder
part also adopts an a priori self-attention mechanism based on Gaussian transformation [25].
As shown in Equation (2), the encoder part adds a Gaussian prior p(z) as the prior distri-
bution of the query vector q, pi,j denotes the query vector at position j of the i-th sample
fq
(

xi,j
)
, and denotes the result of the input, computed by the query layer. p(z) is a standard

normal distribution, and e is the noise generated from the standard normal distribution
to represent the difference between q and p(z). By adding Gaussian noise to the query
vector to capture the interrelationships and contextual connections among words in a
sentence before calculating the attention scores, the attention weights are smoothed and
more broadly distributed by regularizing the attention distribution, ensuring that each
word does not focus on just a few nearby words when calculating attention, but can take
into account a wider range of contextual information.

qi,j = fq
(
ui,j)+ε, ε ∼ p(z) , z ∼N(0, 1) (2)
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The similarity is scored and normalized using the softmax function (i.e., Equation (3)).

C = softmax(
QKT
√

2d
)V (3)

The final contextual representation is obtained by stitching the E and C in the feature
matrix horizontally H = [h1, h2, · · · , hn] ∈ Rn×2d (i.e., Equation (4)), and this common
encoder module output contains all the word vectors and slot label vectors cascaded to
obtain the contextual representation.

H = [E; C] = [e1, e2, · · · , en; c1, c2, · · · , cn] (4)

4.3. Explicit Multi-Intent–Slot Task Module

Inspired by [26], this section aims to decode the discourse representation H into
a sequence of intuitive intents and slot labels using an intuitive intent decoder and slot
decoder and then feed these token-level slot features and intent information to the next stage
to guide downstream modules to interact with high-level intent categorization and precise
slot-level details. Specifically, to determine whether the input contains multiple intents and
extract task-relevant slot features, the model performs token-level multi-intent detection
and slot filling using an intuitive multi-intent decoder and slot decoder. Subsequently, it
passes this intent information and slot features to the next stage for additional processing.
This involves employing a heterogeneous graph-based slot–intent interaction module to
facilitate the integration of extracted intent and slot information and enhance the overall
multi-intent prediction. As shown in part (b) of Figure 2, an intuitive intent decoder and
slot decoder are introduced to explicitly perform the first intent prediction and slot label
sequence generation for the input discourse and pass this information to the next stage as
inputs for the implicit interaction.

• Intuitive Multiple-Intent Decoder. In the experiments, a bidirectional LSTM is used
as an intuitive intent decoder. The bidirectional LSTM obtains a more comprehensive
understanding of the input sequence by inputting the input sequence into two LSTMs
in temporal and inverse order, respectively, and combining their outputs in time steps
where the hidden vector of the decoder at each decoding time step t is calculated as:

→
h
( f )

t = BiLSTM(yt,
→
h
( f )

t−1) (5)

←
h
(b)

t = BiLSTM(yt,
←
h
(b)

t+1) (6)

hII
t = [

→
h
( f )

t ,
←
h
(b)

t ] (7)

yII
t = sigmoid(W1

I (σ(W2
I hII

t + b2
I ))+b1

I ) (8)

where
→
h
( f )

t is the previous hidden state of the forward LSTM unit,
←
h
(b)

t is the previous
hidden state of the backward LSTM unit, and yII

t = {I1, I2, . . . In
}

is the intention label
information distribution for the t-th token in the discourse.

• Intuitive Slot Decoder. Similar to the intuitive intent decoder approach, the intu-
itive slot decoder uses a bidirectional LSTM. Subsequently, a softmax classifier is
employed to produce the slot label distribution for each word. As shown in Equation
(9), yIS

t = [l1, l2, · · · , lt
]

is the distribution of slot labels generated for each word and
hIS

t is a specific feature of the slot-filling task.

yIS
t = softmax(W1

S(σ(W2
S hIS

t + b2
S))+b1

S) (9)
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4.4. The Implicit Heterogeneous Intent–Slot Interaction Module

The implicit interaction part of the module implements mutual guidance of slot
and intent information by further using prior knowledge to identify intents and slots in
the user input. The module learns embedded representations based on a heterogeneous
graph network and then combines these representations with intent labels to form an
embedded multi-intent predictor. When processing user input, the module can process
different intent and slot information simultaneously and optimize and adjust them through
bidirectional information flow, thus improving the accuracy and efficiency of NLU. As
shown in part (c) of Figure 2, a rational intent decoder and slot decoder are introduced to
achieve fine-grained multi-intent prediction, and a heterogeneous graph network captures
the interaction between different input elements. Specifically, based on the word-level
representations and slot label sequences generated by module (b) for multi-intent prediction,
embedded representations are further learned using the heterogeneous graph network to
improve the ability to encode the semantic relationships between different input elements.
Finally, these learned embedded representations are combined with the intent labels and
processed by the rational intent decoder and slot decoder to obtain the final fine-grained
multi-intent prediction results.

• Heterogeneous Graph Layer. This module combines graph attention [27] and self-
attention mechanisms to construct a heterogeneous network graph layer. The heteroge-
neous network layer is used to learn the relationship between each word in a sentence
and calculate the importance of other words related to that word. At the same time,
prior knowledge is used to guide the model to learn how to match different types of
slot information with the input sentences. By integrating the feature representations
of these words with higher importance and the degree of matching with the slot
predefined, an embedding vector can be generated for that input sentence, and the
corresponding intent category and slot values can be extracted from it. Specifically,
the predicted intent labels yII

t = [s1, s2, . . . , st] and slot information yIS
t = [l1, l2 , L, lt

]
output by module (b) and each word-level embedding H = [h1, h2, · · · , hn] and repre-
sentation are considered as three classes of nodes, and three types of edges are defined:

1. Adjacency relationship edges between word nodes, representing the contextual
information between words in a sentence;

2. The relationship edge between the intent label and the word node, indicating the
connection between the intent label and each word in the input sentence;

3. Relational edges between slot information and word nodes, representing the
connection between slot information and each word in the input sentence.

All the above three edges are directed edges, and their weights indicate the importance
or similarity of that edge. During model training and prediction, the weights of these edges
are computed and aggregated to generate global context-aware embedding vectors and
finally complete the tasks of categorizing intents and filling slots. Through the interaction
of these edges, each word in the input sentence and the relationship between them, as well
as the degree of match between each word and the target slot value, can be considered
simultaneously to generate a comprehensive embedding vector representation. The hetero-
geneous network graph layer G = (V, E) is constructed using the graph neural network
node feature representation and attention mechanism to handle the similarity scores be-
tween nodes. The feature representations obtained from the self-attention mechanism and
the graph-attention mechanism are stitched together as shown in Equation (10):

ei,j= σ(W · (
N

∑
j=1

ai,jWselfhj||
N

∑
j∈Ni

ai,jWgraphhj))) (10)

where aij denotes the similarity score between node i and node j, Wself and Wgraph graph are
the parameter matrices in the self-attention mechanism and graph-attention mechanisms,
respectively, hj is the feature representation of node j; | | denotes the splicing operation,
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σ is an activation function, and ei,j denotes the correlation score of each node j ∈ V with
node i.

Then, the attention mechanism is employed to compute the influence of each neighbor
node j to node i, and they are weighted and summed to obtain the final node representation
h′i, where Ni denotes the set of neighbors of node i, the variables qi and ki are the learnable
parameters used for generating the query vector and the key vector, respectively, βi,j
denotes the weight obtained from the attention mechanism score normalized by the softmax
function, and finally they are weighted and summed to obtain the feature representation
h′′i of position i, as shown in Equations (11)–(14):

αi,j= softmaxj(ei,j) =
exp(ei,j

)
∑k∈Ni

exp(ei,k)
(11)

βi,j= softmaxj(ei,j
′) =

exp( f (W qi, Wk j))
n
∑

k=1
exp( f (W qi, Wkk))

(12)

h′i= σ( ∑
j∈Ni

αi,jhj) (13)

h′′i = σ( ∑
j∈Ni

βi,jhj) (14)

As a result, the feature representation of each word node in the input sentence can be ex-
tracted, and the information of slot nodes and intention nodes is continuously updated by the
heterogeneous graphical layer interaction mechanism, as shown in Equations (15) and (16):

S̃ =
K
| |

k=1
(( ei,j)+βi,j) (15)

L̃ =
K
| |

k=1
σ( ∑

i∈NI

hi′+ ∑
i∈NS

h′′i ) (16)

This approach enables multi-intent classification and provides the necessary informa-
tion for a rational intent generation model, which helps to perform multi-intent detection
tasks. Algorithm 1 illustrates the pseudocode algorithm demonstrating the process of
semantic analysis based on the heterogeneous graph network.

Algorithm 1. The diagram of heterogeneous graph-based semantic analysis.

Input: input_sentence, predicted_intent_label yII
t = {s1, s2, . . . , st}, predicted_slot_information

yIS
t = [l1, l2, · · · , lt]

Output: predicted_intent_category L̃ = [l1′, l2′, . . . , lt ′], predicted_slot_values
S̃ = [s1

′, s2
′, · · · , sn

′]
/* Create Word Nodes and Initialize Node Representations */
Outputs ← Output of the current sentence
for word nodes in input_sentence do

/* Compute Attention Weights */
word_attention_weights = compute_attention_weights(word_nodes)
/* Compute Importance Scores for Other Words Related to Each Word */
word_importance_scores = compute_importance_scores(word_nodes)

end
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Algorithm 1. Cont.

/* Create Intent Label Node and Slot Information Nodes */
/* Create Edges and Initialize Edge Weights */
for edges in the graph do

compute_attention_weights(edges) /* Compute Attention Weights for Edges */
aggregate_node_representations(word_nodes, edges)
/* Generate Global Context-Aware Embedding Vector */
context_aware_embedding_vector = generate_embedding_vector(word_nodes)
/* Extract Intent Category and Slot Values from Embedding Vector */
predicted_intent_category = extract_intent_category(context_aware_embedding_vector)
predicted_slot_values = extract_slot_values(context_aware_embedding_vector)

end
outputs ← predicted_intent_category, predicted_slot_values

• Rational Multiple-Intent Decoder. Through the heterogeneous graphical layer inter-
action mechanism, the updated intent node containing the slot information is obtained
L̃ = [l1′,l2′, . . . , lt′]; to consider both discourse representation and slot information,
this paper continues to use bidirectional LSTM to implement slot information to guide
the intent decoder, where it is the encoded hidden state after alignment. dt−1 is the
hidden state of the decoder at the previous sequential phase, lt is the slot label vector
of the current sequential phase, and the LSTM hidden state is updated by computing
the input vector xt of the current time step as follows:

xt =
[
et; dt−1; Lt

′] (17)

ct= BiLSTM (xt, ct−1, ht−1) (18)

ht= tanh(ct) (19)

yRI
t = softmax

(
Ws
′ht + bs

)
(20)

The hidden state ht of the current sequential phase is passed to the fully connected
layer, and the value of each slot is used as an additional input to generate the intent score
yRI

t for the current sequential phase.

• Rational Slot Decoder. To enhance the final slot filling task, the predicted multi-
intent information is further interacted with the slot information by concatenating
the slot node containing the characteristics corresponding to each predicted intent
label S̃ = [s1

′, s2
′, · · · , sn

′] and the aligned encoder hidden state e as input units to
obtain a new sequence of slot labels yRS

t using a method similar to that of the rational
multiple-intent decoder.

4.5. Joint Training

To simultaneously train the multi-intent detection and slot-filling tasks, there may be
a quantitative imbalance due to the samples of different slot labels. In this study, to address
the issue of unbalanced data, a multi-label classification cross-entropy loss function [28]
was adopted. This function balances the significance of various labels by weighting the sum
of loss terms associated with different labels, thereby enhancing the model’s performance.
The objective function is denoted as:

Lslot =
n

∑
i=1

m

∑
j=1

[(log(1+ ∑
i,j∈Ωneg

esi ) + log(1+ ∑
i,j∈Ωpos

e−si ))] (21)
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where n and m refer to the length of BERT output and the total count of slot categories,
respectively.

In this paper, multiple intents are mapped as a set of labels, forming a multi-label
classification problem, which is optimized using a binary cross-entropy loss function.

Lintent , −
n

∑
i=1

m

∑
j=1

[
ŷj,I log(yi,I) + (1− ŷj,I)log(1−yi,I)] (22)

Here, y and ŷ represent manually annotated intent tags and decoded sentence-level
intent, respectively. Meanwhile, m corresponds to the length of the BERT output, and n
denotes the number of intent tags.

To address issues such as overfitting or underfitting of the model, it becomes essential
to employ a collective optimization approach for the loss function across multiple tasks
instead of individually optimizing the loss function for each task. The definitive formulation
of the loss function is presented below:

Lloss = λ1Lslot + λ2Lintent (23)

where λ1, λ2 are hyperparameters.

5. Experimental Investigations

This section encompasses experimental evaluations and a comprehensive analysis of
the proposed methodology in the paper. We commence by presenting a detailed account of
the experimental setup (Section 5.1), encompassing an overview of key components and
configurations employed for the evaluations. Following this, baseline results are introduced
(Section 5.2), serving as reference points for the enhancements achieved by the proposed
approach. Subsequently, a concentrated focus is placed on experiments conducted on the
CADS dataset (Section 5.3), showcasing the effectiveness of the Auto-HPIF model within the
context of a Chinese in-vehicle environment. Section 5.4 extends the analysis to encompass
public datasets, demonstrating the generalizability of the Auto-HPIF model across diverse
domains. Furthermore, an ablation study is conducted (Section 5.5), dissecting the impact
of the primary innovations proposed in this paper on the model’s performance. Lastly,
an error analysis (Section 5.6) is conducted to gain deeper insights into failure cases and
identify potential directions for future improvements.

5.1. Set Up

This paper uses the self-labeled corpus CADS as an example to validate the effec-
tiveness of the Auto-HPIF framework for the joint task of multi-intent detection in the
automotive domain. In addition, two public datasets, MixATIS [4,29] and MixSNIPS [30,31],
are introduced to evaluate the generalization of the model to other domains. The MixATIS
dataset is a multi-intention dataset that contains conversation data targeting the air travel
reservation domain and involves different types of intentions, such as checking flights,
booking tickets, and canceling orders. MixATIS includes 13,162 discourses for training, 756
for validation, and 828 for testing. The MixSNIPS dataset contains conversation data for
multiple domains (e.g., music, weather, movies, etc.), each with multiple different types of
intents and slots. The MixSNIPS dataset includes 39,776 discourses for training, 2198 for
validation, and 2199 for testing.

As per previous research, the evaluation of intent detection and slot-filling tasks
involved accuracy (Acc) and F1 scores, respectively. To assess the model’s performance
in the sentence-level semantic frame parsing task, the overall accuracy was employed.
Sentence accuracy represents the percentage of correctly predicted intentions and slots
across the entire corpus, indicating the overall performance of both tasks. Conversely,
overall accuracy denotes the percentage of all sentences where both intentions and slots are
correctly predicted.
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The experiments were conducted on a Linux server equipped with an NVIDIA GeForce
RTX 1080 GPU, utilizing the Python 3.7 and the PyTorch 1.12.1 framework. The model
in this paper is built upon Chinese BERT, comprising 12 layers of transformer blocks,
768 hidden states, and 12 attention heads. The BERT base has a total of 110 million
parameters. For the MixATIS and MixSNIPS datasets, a batch size of 16 was used, and the
initial learning rate was set to 1 × 10−5.

5.2. Baseline

This vignette presents some typical baseline models in the field of multi-intent detec-
tion tasks as follows:

• Attention BiRNN [32] proposes a joint BiRNN model based on self-attentiveness,
which predicts intentions by a weighted sum of hidden states;

• Slot-Gated [33] proposes a slot-gating mechanism that directly considers the relation-
ship between SF and ID;

• Bi-Model [34] introduces a bidirectional model that uses BiRNN to decode the intended
task and the slot task separately and shares the hidden state information at each time
step between the two decoders;

• SF-ID [35] proposes an architecture that provides a direct connection between intent
and slot so that they can facilitate each other;

• Stack-Propagation [36] is a stack-propagation architecture that guides SF tasks by
combining decoding intent with encoding information;

• Joint Multiple ID-S [4] is a slot-gating model with attention that uses slot context
vectors and intent context vectors as slot-gating;

• AGIF [5] is a GNN-based adaptive intent–slot graph interaction network that uses
decoded intent and token sequences as nodes;

• GL-GIN [18] is a fast and accurate non-autoregressive model based on GAT that
incorporates global–local graph interaction networks;

• SDJN [37] is a self-distillation architecture that passes intent and slot information to
each other for cyclic optimization and implements self-distillation by using decoded
slots as soft labels for pre-decoded slots;

• Co-Guiding Net [20] proposes a two-stage framework for joint multi-intent detection
and slot-filling models.

5.3. Experiments on CADS

Through experimental investigation, this paper compares the performance of three
typical joint models for multi-intent detection tasks (AGIF, GL-GIN, and Co-Guiding Net)
and Auto-HPIF on the CADS dataset. In this paper, accuracy, recall, F1 value, and precision
are used as evaluation metrics, and the performance of each model on each metric is
compared. Experimental results on the CADS dataset are given in Table 4.

• Experimental Findings: The table observations highlight the following key points:
(1) The accuracy of AGIF is 83.27% for overall performance, 90.31% for intent F1 score,
and 94.58% for slot-filling F1 score; (2) The improvement in overall accuracy to 84.69%
is attributed to the GL-GIN model’s explicit modeling of slot dependencies. This
enhancement is achieved through the implementation of a local slot-aware graph
interaction layer, facilitating effective interconnection among the hidden states of
each slot; (3) Co-Guiding Net introduces a novel co-guiding network based on a two-
stage framework. For the overall accuracy and slot-filling F1 score metrics, it showed
improvements of approximately 1.07% and 0.42%, respectively, compared to GL-GIN.
In terms of the F1 score, Co-Guiding Net demonstrated an increase of around 0.09%
relative to GL-GIN.
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Table 4. Performance comparison (%) of multiple-intent detection and slot filling on CADS datasets
with baseline methods.

Models
CADS

Overall (Acc) Slot (F1) Intent (Acc) Intent (F1)

AGIF [5] 83.27 94.58 90.31 96.58
GL-GIN [18] 84.96 95.00 90.45 98.62

Co-Guiding Net [20] 85.87 95.40 90.53 98.60
Ours (w/o Chinese-BERT) 86.26 95.90 90.57 98.18

Auto-HPIF (ours) 87.94 96.80 90.61 98.90

• Analysis of Experimental Results: Compared to most baselines, Auto-HPIF achieved
the best results in terms of both slot filling and overall performance. The following is
an analysis of the experimental results: (1) In the intent detection task, the overall intent
accuracy of Auto-HPIF with Chinese BERT removed outperforms the best baseline
model, Co-guiding Net, on the CADS dataset, which indicates that the proposed joint
multi-intent detection framework is better adapted to the intent detection task in the
in-automotive domain; (2) Auto-HPIF improves the overall accuracy by 2.07% over
the best baseline model Co-Guiding Net. This is because Auto-HPIF combines Chinese
BERT and Gaussian prior attention mechanism in the shared encoder layer stage,
which not only can better learn the semantic information of the input sequence but
also, by introducing the Gaussian prior attention mechanism, the model can make full
use of the historical information and thus can capture the contextual information of
the input sequence more accurately when dealing with the joint multi-intent detection
task; (3) The heterogeneous network interaction mechanism introduced by Auto-HPIF
allows the slot information and intention information to interact, which also helps
to obtain rich intention information and slot semantic representation for the joint
multi-intent detection task.

5.4. Experimental on the Public Datasets

This paper presents a comprehensive evaluation conducted on two publicly available
datasets. Experimental results on MixATIS and MixSNIPS datasets are given in Table 5.
The primary objective of the evaluation was to analyze the performance of multi-intent
detection models when applied to the English dataset without the use of BERT or other
pre-trained language models. To ensure a fairer comparison, the Chinese BERT pre-trained
model in Auto-HPIF was replaced with a bidirectional LSTM during the experiments. The
modified model was then compared against other models.

• Experimental Findings: The experimental results on the MixATIS dataset showed that
Stack-Propagation had lower slot filling F1, intention detection accuracy, and overall
accuracy compared to Auto-HPIF (w/o Chinese-BERT) by 2.0%, 3.8%, and 8.5%,
respectively. However, some recently proposed models, such as GL-GIN introduced a
global–local graph interaction network structure, which improved the overall accuracy
to 43.5% and 75.4% on the MixATIS and MixSNIPS datasets, respectively. Another
model called SDJN achieved cyclic optimization by exchanging intention and slot
information, resulting in an overall accuracy improvement of 1.1% and 0.3% on the
MixATIS and MixSNIPS datasets, respectively, relative to GL-GIN. Importantly, Auto-
HPIF (w/o Chinese-BERT) achieved the highest intent accuracy of 78.4% and overall
accuracy of 47.6% on the MixATIS dataset, surpassing the second-best model by 1.3%
and 3.0%, respectively. Additionally, on the MixSNIPS dataset, Auto-HPIF (w/o
Chinese-BERT) achieved an overall accuracy of 76.4%, outperforming the second-best
model by 0.7%.
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Table 5. Evaluating multiple-intent detection and slot-filling performance on MixATIS and MixSNIPS
datasets (%).

Models

MixATIS MixSNIPS

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Attention BiRNN [30] 39.1 86.4 74.6 59.5 89.4 95.4
Slot-Gated [31] 35.5 87.7 63.9 55.4 87.9 94.6
Bi-Model [32] 34.4 83.9 70.3 63.4 90.7 95.6
SF-ID [33] 34.9 87.4 66.2 59.9 90.6 95.0
Stack-Propagation [34] 40.1 87.8 72.1 72.9 94.2 96.0
Joint Multiple ID-SF [4] 36.1 84.6 73.4 62.9 90.6 95.1
AGIF [5] 40.8 86.7 74.4 74.2 94.2 95.1
GL-GIN [16] 43.5 88.3 76.3 75.4 94.9 95.7
SDJN [35] 44.6 88.2 77.1 75.7 94.4 96.5
Auto-HPIF
(w/o Chinese-BERT) 47.6 88.4 78.4 76.4 95.1 96.0

• Analysis of Experimental Results: The experimental findings underscore the poten-
tial and applicability of the Auto-HPIF model in addressing complex multi-intent
detection tasks. From an algorithmic design perspective, considering whether the
proposed Auto-HPIF approach is susceptible to the issue of vanishing gradients is of
paramount importance. This study observes that the Auto-HPIF model demonstrates
robust performance across multiple indicators, indicating its effective training and
alleviation of the gradient vanishing problem. This achievement aligns with the find-
ings in reference, which introduces the oriented stochastic loss descent algorithm. This
algorithm addresses the challenge of gradient vanishing, enabling deep networks to
be trained without encountering the aforementioned issue.

5.5. Ablation Study

In this section, a series of ablation experiments were designed to assess the individual
contributions of various components in the proposed method to the performance of intent
detection. The following conclusions can be drawn from Table 6.

Table 6. Ablation study on MixATIS and CADS datasets (%). The numbers marked with an asterisk
(*) indicate that the experimental results on the MixATIS dataset were obtained after removing the
Chinese BERT pre-training model (%).

Models

CADS MixATIS

Slot
(F1)

Intent
(Acc)

Overall
(OA)

Slot
(F1)

Intent
(Acc)

Overall
(OA)

(w/o) Chinese BERT encoder 95.90 90.57 86.26 - - -
(w/o) Gaussian attention

mechanism 96.43 90.38 87.17 87.27 76.69 46.25

(w/o)
Multilabel_crossentropy 96.37 90.53 87.02 87.49 76.84 46.89

(w/o) Interaction mechanism 94.59 89.92 84.96 78.10 76.36 41.07
Auto-HPIF (ours) 96.80 90.61 87.94 88.41 * 77.60 * 47.63 *

(1) After removing the Chinese BERT pre-training model, the overall accuracy of
the Auto-HPIF model on CADS decreases by 0.9%. This is because the Chinese BERT
can convert the input text into a high-dimensional vector representation containing rich
semantic information and contextual relationships, and these vectors are used as the input
of the subsequent model to help improve the accuracy of multi-intent detection.

(2) Omitting the Gaussian prior attention mechanism results in a decrease of 0.37% and
1.38% in the overall accuracy of the Auto-HPIF model on CADS and MixATIS, respectively.
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This indicates that the Gaussian prior attention mechanism plays a crucial role in enabling
the model to distinguish the importance of different parts of text input and focus on critical
information more effectively.

(3) Replacing the multi-label classification cross-entropy loss function, the overall
accuracy of the Auto-HPIF model on CADS and MixATIS decreases by 0.43% and 0.74%,
respectively, which indicates that the multi-label classification cross-entropy loss function
is more effective when applied to the Auto-HPIF model, and its advantage is that it does
not require special adjustment of the loss values of class weights and thresholds, which can
improve the model stability and reliability of the model.

(4) Removing the heterogeneous network interaction layer from the model and utiliz-
ing only the intent-aware slot-filling decoder for the one-way transfer of slot information to
intent information results in a decrease of 2.98% and 6.56% in the overall accuracy of the
Auto-HPIF model on CVDS and MixATIS, respectively. There are two reasons for this:

• Due to the lack of additional interaction mechanisms, there is insufficient information
propagation in the experimental results, leading to poorer performance of the dialogue
system. This is because the heterogeneous network interaction mechanism uses
different types of nodes and edges in the graph to represent different information,
as well as to interact and integrate them to solve tasks. Through the graph attention
network (GAT), it achieves interactions between different types of nodes with non-
shared weights, accurately capturing node features;

• The self-attention mechanism in the model with the heterogeneous network interaction
allows each word to focus on other words in the context and integrate this information
into its feature representation, which helps accurately capture features between word-
level nodes.

5.6. Error Analysis

During the error analysis phase, a detailed examination of the prediction results of the
Auto-HPIF model was conducted to identify potential issues and areas for improvement.
Figure 3 provides an example of a slot prediction error. Based on the user input sequence
mentioned previously, it can be inferred that the user’s intention involves controlling the
air conditioner, which includes actions such as turning it on, adjusting the temperature,
airspeed, and air direction. However, during the identification of the slot value “cool mode
at 22 degrees”, the model mistakenly identifies “set” as the B_offset slot label, resulting in an
incorrect resolution of the entire slot value as “22 degrees”. This error may be attributed to
the model learning a linguistic pattern during training, where the term “cooling” becomes
associated with the slot label and is subsequently considered a valid feature for prediction.
Nevertheless, in real-world scenarios, such patterns may not be encountered frequently,
leading the model to make erroneous predictions when faced with new situations.
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To mitigate such errors in future iterations, several measures can be implemented to
improve the model’s accuracy and robustness. Firstly, increasing the training data would
be beneficial as it enables the model to learn from a more diverse range of examples and
generalize better to novel scenarios. Additionally, introducing more features could give the
model more context and relevant information for making accurate predictions. Furthermore,
optimizing the model architecture can contribute to its overall performance by refining
its underlying mechanisms and improving its ability to capture complex patterns and
relationships within the data. Complementing these technical enhancements, incorporating
manual review and feedback mechanisms can serve as valuable tools for monitoring the
model’s performance during its application. This iterative feedback loop would facilitate
ongoing improvements based on real-world observations and enhance the user experience
when the model is deployed in practical scenarios.

6. Conclusions and Future Works

To overcome the challenges of multi-intent detection tasks in the automotive domain,
this paper constructs a Chinese automotive domain multi-dataset (CADS) to address the
scarcity of Chinese multi-intent corpora. Additionally, this paper proposes a model called
Auto-HPIF, specifically designed for joint multi-intent detection and slot-filling tasks in the
automotive domain. In the encoder stage, the model introduces the Chinese BERT language
model and a Gaussian prior attention mechanism and establishes a heterogeneous graph
parallel interaction network to effectively utilize intent and slot information. Furthermore,
the cross-entropy loss function is applied to Auto-HPIF to enhance the model’s robustness.

Experimental results demonstrate that the Auto-HPIF model achieves outstanding
performance in multi-intent detection and slot-filling tasks within the Chinese automotive
domain. It not only provides an effective solution for efficient processing of multi-intent
understanding but also imbues the field of automotive human–machine interactions and
natural language understanding with deeper potential. These findings further solidify the
model’s value and application prospects in addressing complex and dynamic challenges in
real-world scenarios. They offer a strong foundational reference for future research and
technological advancements.

Future research will focus on advancing the model’s cross-domain applicability and
optimizing computational efficiency to achieve widespread application and continuous
improvement in real-world scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13179919/s1. Table S1: Intent details of CADS; Table S2: Some
samples of the CADS multi-intent corpus; Figure S1: The schematic diagram of a parallel interactive
network framework for joint multi-intent detection and slot filling in the Chinese automotive field;
Figure S2: An example of an error slot label for Auto-HPIF on CADS datasets.
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