A Finite Element Analysis of a Tooth-Supported 3D-Printed Surgical Guide without Metallic Sleeves for Dental Implant Insertion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Workflow for Surgical Guide Design and Manufacturing
2.2. Mesh Geometry Refinement for Finite Element Analysis (FEA)
2.3. Finite Element Analysis on a Tooth-Supported Surgical Guide for Simulating Implant Bed Preparation in the Mandible Bone
- -
- .stl mesh of a tooth-supported surgical guide reduced to a limited extent at the neighboring teeth, optimized, and cleaned in the open-source software MeshLab [24];
- -
- Material properties for surgical guide manufacturing via DLP 3D printing: E-Guide Resin (EnvisionTEC GmbH, Gladbeck, Germany):Flexural strength = 79–86 MPa;Poisson Ratio = 0.3;Density = 1.12 g/cm3;Young Modulus = Tensile Modulus = Elastic Modulus = 2.6 GPa = 2600 MPa;
- -
- Density = 1.2 g/cm3;Young Modulus = 15–30 GPa;Poisson Ratio = 0.3;Hardness (HB) = 56;Flexural strength = 70–150 MPa;
- -
- The mesh used to discretize the guide’s 3D model is composed of 90,217 finite elements (tetrahedrons), connected by 145,237 nodes.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costa, A.J.d.M.; Teixeira Neto, A.D.; Burgoa, S.; Gutierrez, V.; Cortes, A.R.G. Fully Digital Workflow with Magnetically Connected Guides for Full-Arch Implant Rehabilitation Following Guided Alveolar Ridge Reduction. J. Prosthodont. 2020, 29, 272–276. [Google Scholar] [CrossRef]
- Iorgulescu, G.; Cristache, C.M.; Burcea, C.C.; Ionescu, I.; Perieanu, V.S.; Marcov, N.; Burlibasa, M. Ethical and medico-legal aspects behind the use of digital technologies in dentistry. Rom. J. Leg. Med. 2020, 28, 202–207. [Google Scholar] [CrossRef]
- Chandran, S.; Sers, L.; Picciocchi, G.; Luongo, F.; Lerner, H.; Engelschalk, M.; Omar, S. Guided implant surgery with R2Gate®: A multicenter retrospective clinical study with 1 year of follow-up. J. Dent. 2022, 127, 104349. [Google Scholar] [CrossRef]
- Cristache, C.M. Presurgical Cone Beam Computed Tomography Bone Quality Evaluation for Predictable Immediate Implant Placement and Restoration in Esthetic Zone. Case Rep. Dent. 2017, 2017, 1096365. [Google Scholar] [CrossRef] [PubMed]
- Cristache, C.M.; Burlibasa, M.; Tudor, I.; Totu, E.E.; Di Francesco, F.; Moraru, L. Accuracy, Labor-Time and Patient-Reported Outcomes with Partially versus Fully Digital Workflow for Flapless Guided Dental Implants Insertion—A Randomized Clinical Trial with One-Year Follow-Up. J. Clin. Med. 2021, 10, 1102. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Wang, M.; Cheng, X.; Li, Y.; Shi, X.; Liu, F. Evaluation of a dynamic navigation system for training students in dental implant placement. J. Dent. Educ. 2021, 85, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Spille, J.; Helmstetter, E.; Kübel, P.; Weitkamp, J.-T.; Wagner, J.; Wieker, H.; Naujokat, H.; Flörke, C.; Wiltfang, J.; Gülses, A. Learning Curve and Comparison of Dynamic Implant Placement Accuracy Using a Navigation System in Young Professionals. Dent. J. 2022, 10, 187. [Google Scholar] [CrossRef]
- Cristache, C.M.; Gurbanescu, S. Accuracy Evaluation of a Stereolithographic Surgical Template for Dental Implant Insertion Using 3D Superimposition Protocol. Int. J. Dent. 2017, 2017, 4292081. [Google Scholar] [CrossRef]
- Oh, K.C.; Shim, J.S.; Park, J.M. In Vitro Comparison between Metal Sleeve-Free and Metal Sleeve-Incorporated 3D-Printed Computer-Assisted Implant Surgical Guides. Materials 2021, 14, 615. [Google Scholar] [CrossRef]
- Schneider, D.; Schober, F.; Grohmann, P.; Hammerle, C.H.F.; Jung, R.E. In-vitro evaluation of the tolerance of surgical instruments in templates for computer-assisted guided implantology produced by 3-D printing. Clin. Oral Implant. Res. 2015, 26, 320–325. [Google Scholar] [CrossRef]
- Oh, K.C.; Park, J.M.; Shim, J.S.; Kim, J.H.; Kim, J.E.; Kim, J.H. Assessment of metal sleeve-free 3D-printed implant surgical guides. Dent. Mater. 2019, 35, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Elkomy, M.M.; Khamis, M.M.; El-Sharkawy, A.M. Clinical and radiographic evaluation of implants placed with fully guided versus partially guided tissue-supported surgical guides: A split-mouth clinical study. J. Prosthet. Dent. 2021, 126, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Tallarico, M.; Czajkowska, M.; Cicciù, M.; Giardina, F.; Minciarelli, A.; Zadrożny, Ł.; Park, C.-J.; Meloni, S.M. Accuracy of surgical templates with and without metallic sleeves in case of partial arch restorations: A systematic review. J. Dent. 2021, 115, 300–5712. [Google Scholar] [CrossRef]
- Tallarico, M.; Martinolli, M.; Kim, Y.J.; Cocchi, F.; Meloni, S.M.; Alushi, A.; Xhanari, E. Accuracy of Computer-Assisted Template-Based Implant Placement Using Two Different Surgical Templates Designed with or without Metallic Sleeves: A Randomized Controlled Trial. Dent. J. 2019, 7, 41. [Google Scholar] [CrossRef]
- Kalaivani, G.; Balaji, V.R.; Manikandan, D.; Rohini, G. Expectation and reality of guided implant surgery protocol using computer-assisted static and dynamic navigation system at present scenario: Evidence-based literature review. J. Indian Soc. Periodontol. 2020, 24, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Hultin, M.; Svensson, K.G.; Trulsson, M. Clinical advantages of computer-guided implant placement: A systematic review. Clin. Oral Implant. Res. 2012, 23 (Suppl. S6), 124–135. [Google Scholar] [CrossRef]
- Miljanovic, D.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A. Novel and accurate 3D-Printed surgical guide for mandibular reconstruction with integrated dental implants. Comput. Biol. Med. 2022, 151, 106327. [Google Scholar] [CrossRef]
- Nagib, R.; Farkas, A.Z.; Szuhanek, C. FEM Analysis of Individualized Polymeric 3D Printed Guide for Orthodontic Mini-Implant Insertion as Temporary Crown Support in the Anterior Maxillary Area. Polymers 2023, 15, 879. [Google Scholar] [CrossRef]
- Bandela, V.; Kanaparthi, S. Finite Element Analysis and Its Applications in Dentistry; Baccouch, M., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 8; ISBN 978-1-83962-342-4. [Google Scholar]
- Reddy, M.S.; Sundram, R.; Eid Abdemagyd, H.A. Application of Finite Element Model in Implant Dentistry: A Systematic Review. J. Pharm. Bioallied Sci. 2019, 11, S85. [Google Scholar] [CrossRef]
- Mukai, S.; Mukai, E.; Santos-Junior, J.A.; Shibli, J.A.; Faveri, M.; Giro, G. Assessment of the reproducibility and precision of milling and 3D printing surgical guides. BMC Oral Health 2021, 21, 1. [Google Scholar] [CrossRef]
- Son, K.; Lee, K.B. A novel method for precise guided hole fabrication of dental implant surgical guide fabricated with 3d printing technology. Appl. Sci. 2021, 11, 49. [Google Scholar] [CrossRef]
- Yamakawa, S.; Shimada, K. Removing Self Intersections of a Triangular Mesh by Edge Swapping, Edge Hammering, and Face Lifting. In Proceedings of the 18th International Meshing Roundtable, Salt Lake City, UT, USA, 25–28 October 2009; Clark, B.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 13–29. [Google Scholar]
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. Meshlab: An open-source mesh processing tool. In Proceedings of the Eurographics Italian Chapter Conference, Salerno, Italy, 2–4 July 2008; Volume 2008, pp. 129–136. [Google Scholar]
- Leordean, D.; Vilău, C.; Dudescu, M.C. Generation of Computational 3D Models of Human Bones Based on STL Data and CAD Software Packages. Appl. Sci. 2021, 11, 7964. [Google Scholar] [CrossRef]
- Ghionea, I.-G. CATIA v5 How to Transform a STL Surface into a Solid Model—YouTube. Available online: https://www.youtube.com/watch?v=H6_XfjD3yqs (accessed on 15 August 2023).
- Dechow, P.C.; Nail, G.A.; Schwartz-Dabney, C.L.; Ashman, R.B. Elastic properties of human supraorbital and mandibular bone. Am. J. Phys. Anthropol. 1993, 90, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, É.; Magyar, L.; Bojtár, I. Material Properties of the Mandibular Trabecular Bone. J. Med. Eng. 2014, 2014, 470539. [Google Scholar] [CrossRef] [PubMed]
- Odin, G.; Savoldelli, C.; Bouchard, P.-O.; Tillier, Y. Determination of Young’s modulus of mandibular bone using inverse analysis. Med. Eng. Phys. 2010, 32, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Gröning, F.; Bright, J.A.; Fagan, M.J.; O’Higgins, P. Improving the validation of finite element models with quantitative full-field strain comparisons. J. Biomech. 2012, 45, 1498–1506. [Google Scholar] [CrossRef]
- Picos, C.; Pruteanu, O.; Bohosievici, C.; Coman, G.; Braha, V.; Paraschiv, D.; Slatineanu, L.; Gramescu, T. Proiectarea Tehnologiilor de Prelucrare Mecanica Prin Aschiere: Manual de Proiectare; Chisinau University Publishing House: Chisinau, Moldova, 1992; Volume 2, ISBN 5-362-00971-0. [Google Scholar]
- Vlase, A. Tehnologia Constructiilor de Masini; Editura Tehnică: Bucharest, Romania, 1996; ISBN 973-31-0777-8. [Google Scholar]
- Rahman, H.A.; Khairi, N.D.A.; Sani, M.S.M. Finite Element Model Updating of Dissimilar Plate with Rivet Joint. J. Phys. Conf. Ser. 2019, 1262, 012035. [Google Scholar] [CrossRef]
- Federal Aviation Administration Finite Element Modeling and Analysis Validation Finite Element Analysis Validation Requirements and Methods Terminal Objectives. Available online: https://appliedcax.com/docs/femap/femap-symposium-2015-seattle-area/FEA-Validation-Requiremnents-and-Methods-Final-with-Transcript.pdf (accessed on 31 August 2023).
- How to Interpret FEA Results?—Enterfea. Available online: https://enterfea.com/how-to-interpret-fea-results/ (accessed on 31 August 2023).
- Mohanty, R.K.; Mohanty, R.C.; Sabut, S.K. Finite element analysis and experimental validation of polycentric prosthetic knee. Mater. Today Proc. 2022, 63, 207–214. [Google Scholar] [CrossRef]
- Shemtov-Yona, K. Quantitative assessment of the jawbone quality classification: A meta-analysis study. PLoS ONE 2021, 16, e0253283. [Google Scholar] [CrossRef]
- Chatvaratthana, K.; Thaworanunta, S.; Seriwatanachai, D.; Wongsirichat, N. Correlation between the thickness of the crestal and buccolingual cortical bone at varying depths and implant stability quotients. PLoS ONE 2017, 12, e0190293. [Google Scholar] [CrossRef]
- Tahmaseb, A.; Wu, V.; Wismeijer, D.; Coucke, W.; Evans, C. The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis. Clin. Oral Implant. Res. 2018, 29, 416–435. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Song, Y.W.; Park, S.H.; Kim, J.H.; Park, J.M.; Lee, J.S. Clinical factors influencing implant positioning by guided surgery using a nonmetal sleeve template in the partially edentulous ridge: Multiple regression analysis of a prospective cohort. Clin. Oral Implant. Res. 2020, 31, 1187–1198. [Google Scholar] [CrossRef]
- Voulgarakis, A.; Strub, J.R.; Att, W. Outcomes of implants placed with three different flapless surgical procedures: A systematic review. Int. J. Oral Maxillofac. Surg. 2014, 43, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Arora, V.; Kumar, S.; Kalra, P.; Goyal, A. Finite element analysis of dental implant surgical guides. Mater. Today Proc. 2022, 56, 3137–3141. [Google Scholar] [CrossRef]
- Liu, Y.F.; Wu, J.L.; Zhang, J.X.; Peng, W.; Liao, W.Q. Numerical and Experimental Analyses on the Temperature Distribution in the Dental Implant Preparation Area when Using a Surgical Guide. J. Prosthodont. 2018, 27, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Goswami, M.M.; Kumar, M.; Vats, A.; Bansal, A.S. Evaluation of dental implant insertion torque using a manual ratchet. Med. J. Armed Forces India 2015, 71, S327–S332. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.; Li, Q.; Bian, C.; Zhang, A. Oblique Cutting Based Mechanical Model for Insertion Torque of Dental Implant. Chin. J. Mech. Eng. 2022, 35, 56. [Google Scholar] [CrossRef]
- Hada, T.; Kanazawa, M.; Iwaki, M.; Katheng, A.; Minakuchi, S. Comparison of Mechanical Properties of PMMA Disks for Digitally Designed Dentures. Polymers 2021, 13, 1745. [Google Scholar] [CrossRef]
- Meira, J.B.C.; Jikihara, A.N.; Capetillo, P.; Roscoe, M.G.; Cattaneo, P.M.; Ballester, R.Y. Finite element analysis in dentistry. In Dental Biomaterials; World Scientific Publishing Co. Pte Ltd.: 5 Toh Tuck Link, Singapore, 2019; pp. 67–89. ISBN 2529-816X. [Google Scholar]
- Vadiraj, B.; Rao, P.K.V.; Kiran Kumar, K. Application of biomaterials and finite element analysis in dentistry—A review. Mater. Today Proc. 2023, 76, 564–568. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghionea, I.G.; Vatamanu, O.E.B.; Cristescu, A.M.; David, M.; Stancu, I.C.; Butnarasu, C.; Cristache, C.M. A Finite Element Analysis of a Tooth-Supported 3D-Printed Surgical Guide without Metallic Sleeves for Dental Implant Insertion. Appl. Sci. 2023, 13, 9975. https://doi.org/10.3390/app13179975
Ghionea IG, Vatamanu OEB, Cristescu AM, David M, Stancu IC, Butnarasu C, Cristache CM. A Finite Element Analysis of a Tooth-Supported 3D-Printed Surgical Guide without Metallic Sleeves for Dental Implant Insertion. Applied Sciences. 2023; 13(17):9975. https://doi.org/10.3390/app13179975
Chicago/Turabian StyleGhionea, Ionut Gabriel, Oana Elena Burlacu Vatamanu, Ana Maria Cristescu, Mihai David, Izabela Cristina Stancu, Cristian Butnarasu, and Corina Marilena Cristache. 2023. "A Finite Element Analysis of a Tooth-Supported 3D-Printed Surgical Guide without Metallic Sleeves for Dental Implant Insertion" Applied Sciences 13, no. 17: 9975. https://doi.org/10.3390/app13179975
APA StyleGhionea, I. G., Vatamanu, O. E. B., Cristescu, A. M., David, M., Stancu, I. C., Butnarasu, C., & Cristache, C. M. (2023). A Finite Element Analysis of a Tooth-Supported 3D-Printed Surgical Guide without Metallic Sleeves for Dental Implant Insertion. Applied Sciences, 13(17), 9975. https://doi.org/10.3390/app13179975