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Abstract: With the diversification of spinning order varieties and process parameters, the con-
ventional method of determining production plans through trial spinning no longer satisfies the
processing requirements of enterprises. Currently, deficiencies exist in predicting spinning quality
relying on manual experience and traditional methods. The back propagation (BP) neural network
within the realm of deep learning theory faces challenges in handling time series data, while the long
short-term memory (LSTM) neural network, despite its intricate mechanism, exhibits an overall lower
predictive accuracy. Consequently, a more precise predictive methodology is imperative to assist
production personnel in efficiently ascertaining cotton-blending schemes and processing parameters,
thereby elevating the production efficiency of the enterprise. In response to this challenge, we propose
an attention-GRU-based cotton yarn quality prediction model. By employing the attention mech-
anism, the model is directed towards the input features most significantly impacting yarn quality.
Real-world performance indicators of raw cotton and process parameters are utilized to predict
yarn tensile strength. A comparative analysis is conducted against prediction results of BP, LSTM,
and gated recurrent unit (GRU) neural networks that do not incorporate the attention mechanism.
The outcomes reveal that the GRU model enhanced with the attention mechanism demonstrates
reductions of 56.3%, 38.5%, and 36.4% in root mean square error (RMSE), along with 0.367%, 0.158%,
and 0.190% in mean absolute percentage error (MAPE), respectively. The model attains a coefficient
of determination R-squared of 0.954, indicating a high degree of fitness. This study underscores
the potential of the proposed attention-GRU model in refining cotton yarn quality prediction and
its consequential implications for process optimization and enhanced production efficiency within
textile enterprises.

Keywords: cotton yarn quality prediction; BP; LSTM; GRU; attention mechanism

1. Introduction

As a preliminary process in weaving, the spinning process plays a crucial role in the
quality of the resultant fabric. The quality of the yarn produced directly impacts the final
product’s quality. Additionally, the cost of raw cotton constitutes a minimum of 50% of the
overall fabric production expenses. Consequently, it is imperative to establish cotton-blending
strategies and processing parameters based on yarn quality indices. [1,2]. However, the current
production in spinning workshops is driven by orders, and specific production processes
are planned according to order requirements. With the diversification of order varieties and
processing parameters, the previous approach of determining production schemes through
extensive trial spinning can no longer meet the processing demands of enterprises [3].
Furthermore, due to the diversity of raw materials and the complexity of process routes,
relying solely on the personal experience of technical personnel results in uncertainties in
controlling yarn quality.

Real-time analysis of production parameter characteristics of cotton yarn during the
manufacturing process to achieve accurate predictions of yarn quality in spinning is a
crucial measure for enhancing yarn quality in spinning mills [4]. In response to this
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situation, scholars both domestically and internationally have proposed a series of data-
driven methods for predicting yarn quality. For instance, Ogulata et al. [5] optimized
the input parameter quality of artificial neural networks using linear regression. They
employed variables, such as stretching rate and maximum load of elastic fabrics, as input
parameters for the model, thereby facilitating predictions of fabric elongation and recovery.
Balci et al. [6], through the LM algorithm, predicted color values of cotton samples under
different peel levels by adjusting the model’s hidden layer node count and input quantity.
Gharehaghaji et al. [7] employed a method of multiple linear regression to assess the
performance of their developed model. This assessment was carried out by validating the
model using test data to predict the mean squared error (MSE) and the correlation coefficient
(R-value). Through this approach, they achieved the prediction of the stretchability of
cotton-wrapped nylon core yarn. The model’s validation on predicting yarn elongation
exhibited a mean squared error of 0.365 for the validation dataset. Yang et al. [8] established
an applied regression (AR) mathematical model to predict and control spinning tension,
with the aim of achieving real-time and effective tension control in the spinning process.
Lv et al. [9] employed an optimized support vector machine (SVM) model for quality
prediction in small-sample spinning processes. Despite achieving a 3% enhancement in
predictive accuracy compared to a conventional SVM prediction model, this optimized
model exhibited sensitivity to parameter selection and the choice of kernel function. Yan
et al. [10] established a multivariate linear regression model between cotton bale/slap
and yarn strength, as well as sliver CV quality indicators, effectively reducing raw cotton
waste. However, it struggles to adapt well to complex nonlinear relationships. Zhou
et al. [3] studied the impact of synthetic-fiber-spinning process parameters on winding
tension using a gray prediction model, providing an applicable approach for predicting
spinning tension, yet lacking sufficient predictive accuracy. With the rapid advancement of
deep learning theory, its advantages in nonlinear data processing have gradually emerged.
Researchers have continuously optimized and extensively utilized the BP neural network
for yarn quality prediction. Liu et al. [11] introduced a four-layer backpropagation neural
network with dual hidden layers for the prediction of cotton yarn quality in the spinning
process. In comparison to a three-layer network, this four-layer architecture exhibited
improvements in both training steps and average error. Specifically, the relative average
error for predicting yarn tensile strength was reduced by 2.1%. Li et al. [12,13] optimized
the weight and threshold of the BP neural network using bio-inspired algorithms, such as
genetic algorithms and fireworks algorithms, thereby enhancing the optimization speed
and accuracy of the yarn quality prediction model. In summary, leveraging the potential of
deep learning theory, particularly the BP neural network, presents a promising avenue for
refining the prediction of yarn quality, catering to the intricacies of spinning processes and
contributing to enhanced production outcomes.

However, the spinning process involves a time-series task scenario characterized by
interconnected pre-processing and post-processing stages [14,15]. Most prediction models
based on BP neural networks primarily utilize physical indicators of raw cotton as input
parameters and analyze the production parameters of cotton yarn only at the same time
point. They rarely involve the input of process parameters from different preceding and
subsequent stages of production. Even if such consideration is made, the temporal influence
of processing stages on yarn quality is often overlooked. Consequently, these models fail to
establish connections among the temporal characteristics of various spinning workshop
production stages, leading to an inability to meet the accuracy requirements of actual
quality inspections for yarn spinning.

As a network sensitive to time sequences, the LSTM neural network has found
widespread application in scenarios involving sequential data. Hu Zhenlong [16] op-
timized the input feature parameters of the LSTM neural network through the use of the
convolutional neural networks (CNN) algorithm. Furthermore, they fine-tuned cotton
fiber performance indicators and production parameters based on the sequence of yarn
processing. This approach led to predictions of quality metrics, such as yarn strength
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and total cotton content. The average absolute error of their model’s predictive results
was recorded as 0.080, which was lower than comparative models, such as the BP neural
network. However, the complexity of their network structure inadvertently compromised
the overall operational efficiency of yarn quality prediction.

In conclusion, this study addresses the challenges in cotton-spinning production
related to raw cotton properties, process parameters, and yarn quality data. By integrat-
ing actual production process requirements from workshops and employing an attention
mechanism-improved GRU neural network, we establish a cotton yarn quality prediction
model that accounts for processing temporalities. This approach aims to enhance the
accuracy of prediction results, which may otherwise suffer due to the sequential nature of
spinning processes and production procedures. Ultimately, this model assists production
personnel in efficiently determining cotton-blending strategies and processing param-
eters, thereby contributing to improved enterprise production efficiency. The primary
contributions of this study are outlined as follows:

1. A cotton yarn quality prediction model based on attention-GRU was devised. This
model incorporates an attention mechanism that directs the model’s focus towards
the most significant input features influencing yarn quality. Additionally, a dynamic
adaptation of the loss change threshold has been introduced to determine the optimal
number of iterations for different datasets. This approach not only enhances the
precision of model predictions but also boosts prediction efficiency.

2. A research dataset was constructed incorporating raw cotton performance indicators
and data from the regular carding process. By organizing raw cotton performance
indicators and processing information from the spinning workshop, a driving dataset
was established for the model, aligning it more closely with practical scenarios in
cotton yarn spinning.

3. Through performance comparisons with BP, LSTM, and GRU prediction models, the
practical utility of the cotton yarn prediction model developed in this study was
validated. This offers valuable insights for researchers in the field of yarn production
quality prediction and serves as a reference for their endeavors.

2. Cotton Yarn Quality Prediction Model

Cotton spinning is the process of transforming cotton fibers into cotton yarn and
thread. This spinning process is divided into two main processing routes: regular carding
and fine carding, as illustrated in Figure 1. The processing stages encompass cotton carding,
sliver drafting, coarse yarn spinning, and fine yarn spinning, among others [17].
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Based on the manufacturing characteristics of cotton spinning, it is evident that the
outcomes of preceding processing stages will impact subsequent stages. Taking the re-
lationship among the last drafting, coarse yarn spinning, and fine yarn spinning as an
example, the unevenness in the weight of fine yarn and the CV value of sliver stiffness
determine whether pronounced weft-wise or warp-wise streaks appear in the final cotton
fabric [18]. Both of these factors are influenced by the internal fiber structure of coarse yarn.
Similarly, enhancing the structural coherence of coarse yarn necessitates addressing the
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fiber straightness in the last drafting process. Furthermore, in the context of carding, the
regular carding process involves directly supplying carded cotton sliver for drafting, while
the fine carding process entails passing the carded sliver through a pre-drafting and coiling
process before undergoing further combing [19,20]. These two processes yield distinct
differences in texture, durability, and uniformity in the resulting yarn.

Consequently, when predicting yarn quality, it becomes imperative to consider the
output of the preceding processing stage as input parameters for the subsequent stage.
However, the predictive approach of the BP neural network involves feeding multiple spinning
parameters into the network model simultaneously at a given moment [as depicted in Figure 2],
thereby failing to unearth the temporal dependencies within the spinning process. To cater to the
demand for analyzing temporal data within the spinning process, this study introduces recurrent
neural networks (RNNs) to establish interconnections between input spinning parameters,
enabling the model to capture the sequential nature of the spinning process.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 18 
 

Based on the manufacturing characteristics of cotton spinning, it is evident that the 
outcomes of preceding processing stages will impact subsequent stages. Taking the rela-
tionship among the last drafting, coarse yarn spinning, and fine yarn spinning as an ex-
ample, the unevenness in the weight of fine yarn and the CV value of sliver stiffness de-
termine whether pronounced weft-wise or warp-wise streaks appear in the final cotton 
fabric [18]. Both of these factors are influenced by the internal fiber structure of coarse 
yarn. Similarly, enhancing the structural coherence of coarse yarn necessitates addressing 
the fiber straightness in the last drafting process. Furthermore, in the context of carding, 
the regular carding process involves directly supplying carded cotton sliver for drafting, 
while the fine carding process entails passing the carded sliver through a pre-drafting and 
coiling process before undergoing further combing [19,20]. These two processes yield dis-
tinct differences in texture, durability, and uniformity in the resulting yarn. 

Consequently, when predicting yarn quality, it becomes imperative to consider the 
output of the preceding processing stage as input parameters for the subsequent stage. 
However, the predictive approach of the BP neural network involves feeding multiple 
spinning parameters into the network model simultaneously at a given moment [as de-
picted in Figure 2], thereby failing to unearth the temporal dependencies within the spin-
ning process. To cater to the demand for analyzing temporal data within the spinning 
process, this study introduces recurrent neural networks (RNNs) to establish interconnec-
tions between input spinning parameters, enabling the model to capture the sequential 
nature of the spinning process. 

 
Figure 2. Spinning quality prediction model based on BP neural network. 

This paper focuses on the spinning production workshop of a company situated in 
Shijiazhuang, Hebei Province, China. The spinning process of this company is predomi-
nantly centered around cotton spinning and cotton blending. 

2.1. The GRU Neural Network 
Currently, the long short-term memory (LSTM) network, a type of recurrent neural 

network (RNN) designed to alleviate the vanishing gradient problem, has emerged as a 
predominant method in text processing and time-series forecasting [21,22]. Nevertheless, 
the intricate architecture of LSTM considerably extends the training time of neural net-
works, thereby reducing operational efficiency. Addressing this concern, Cho et al. [23] 
introduced the gated recurrent unit (GRU) neural network, which builds upon the foun-
dation of LSTM and effectively enhances model-training speed while also mitigating over-
fitting tendencies. The internal network structure of GRU resembles that of LSTM (as de-
picted in Figure 3). 

Figure 2. Spinning quality prediction model based on BP neural network.

This paper focuses on the spinning production workshop of a company situated in Shi-
jiazhuang, Hebei Province, China. The spinning process of this company is predominantly
centered around cotton spinning and cotton blending.

2.1. The GRU Neural Network

Currently, the long short-term memory (LSTM) network, a type of recurrent neural
network (RNN) designed to alleviate the vanishing gradient problem, has emerged as a
predominant method in text processing and time-series forecasting [21,22]. Nevertheless,
the intricate architecture of LSTM considerably extends the training time of neural networks,
thereby reducing operational efficiency. Addressing this concern, Cho et al. [23] introduced
the gated recurrent unit (GRU) neural network, which builds upon the foundation of LSTM
and effectively enhances model-training speed while also mitigating overfitting tendencies.
The internal network structure of GRU resembles that of LSTM (as depicted in Figure 3).

It is evident that distinct from LSTM’s three gates—output, input, and forget—GRU in-
corporates only two gates: the update gate and the reset gate. The information propagation
process within the GRU cell is illustrated by Equation (1):

rt = σ(Wrx · c + Wrh · ht−1)

h̃ = tanh(Whx · xt + Whh(rt · ht−1))
zt = σ(Wzx · xt + Wzh · ht−1)

ht = (1− zt) · ht−1 + zt · h̃

(1)

where: xt represents the input at time step t; ht−1 denotes the hidden state at time step t− 1;
σ signifies the sigmoid activation function; rt stands for the reset gate; h̃ represents the
candidate information at time step t; zt signifies the update gate; ht denotes the hidden state
at time step t; Wrx, Wrh, Whx, Whh, Wzx, Wzh represent the weight parameters of the unit.
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Therefore, within the GRU neural network, the reset gate selectively discards the
previous output information based on the current input, while the update gate determines
the extent to which the prior output information is integrated into the current output
information. By employing this mechanism, GRU continuously forgets less significant
historical data and retains crucial new information, facilitating a more effective capture of
temporal dependencies within sequential data.

2.2. The Attention Mechanism

In practical scenarios, cotton yarn quality undergoes continuous variations due to
various factors. The impact of raw cotton performance indicators and distinct processing
stages on yarn quality often exhibits variations. Conventional GRU neural networks,
however, do not differentiate among these feature inputs, making it challenging to discern
critical information from the inputs. The attention mechanism emulates the resource
allocation mechanism of human attention, concentrating focus on pivotal elements while
diminishing attention on non-critical elements [24]. The attention mechanism is commonly
employed to enhance Seq-to-Seq models. The Seq-to-Seq model, originally introduced in
the field of machine translation, concatenates two RNNs (LSTM, GRU) where the input
RNN functions as an encoder convert input sequences into hidden states before transmitting
them to another RNN, referred to as the decoder. This process facilitates the mapping of
variable-length output sequences. Employing the encoder–decoder architecture for training
not only resolves the challenge of fixed input and output lengths in traditional tasks but
also enhances training efficiency. As illustrated in Figure 4, the Seq-to-Seq model with the
incorporation of the attention mechanism operates by performing correlation calculations
between the hidden states of the encoder and a specific unit within the decoder [25]. After
obtaining the weighting values, the encoder’s hidden states are weighted and summed.
The summation result is then concatenated with the hidden state of the respective unit,
yielding the model’s prediction output with the attention mechanism integrated.
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Therefore, this study aims to enhance the predictive accuracy of the model by employ-
ing the attention mechanism to allocate weights to the hidden states of the GRU neural
network. This adaptive allocation enables the model to focus on the most influential input
features affecting yarn quality, thereby improving its predictive precision.

2.3. Attention-GRU Prediction Model

Drawing upon the aforementioned analysis, this paper introduces an attention-enhanced
GRU-based model for predicting yarn quality in spinning (illustrated in Figure 5). The
model’s detailed description is provided below:
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(1) The raw cotton performance indicators and process parameters of each processing
stage are essentially independent time series. In order to integrate these influential features
impacting cotton yarn quality, this study draws inspiration from word-embedding tech-
niques employed in natural language processing [26]. Assuming there are N raw cotton
performance indicators, these are transformed into N-dimensional feature vectors, denoted
as (x1

1, x2
1, . . . , xN

1 ), and utilized as the initial input. The formula for calculating the input
dataset of the model for raw cotton is given by Equation (2).

X =


x1

1 , x2
1 , x3

1 , . . . , xl
1 , xl+1

1
x1

2 , x2
2 , x3

2 , . . . , xl
1 , xl+1

2
. . .

x1
N , x2

N , x3
N , . . . , xl

1 , xl+1
N

 (2)

Furthermore, for the ease of model training, the original input data is normalized
using the min–max normalization method to fall within the range of (−1,1), as expressed
by Equation (3).

x′ =
x− xmin

xmax − xmin
(3)

where: x represents the original input data, xmax and xmin denote the maximum and
minimum values of the input data, respectively, and x′ signifies the normalized input data
after the min–max normalization process.

(2) Constructing a single-layer GRU neural network architecture facilitates a com-
prehensive learning of the input feature information, enabling the capture of temporal
dependencies within the sequential data. This architecture aims to predict yarn quality by
employing the data from the past l + 1 time steps to forecast the data at the subsequent time
step, necessitating only a single decoding step. The output of the GRU layer comprises
two components: the hidden state sequence H (h1, h2, . . . , hn) from the encoder and the
first hidden state parameter h1

′ from the decoder. The computation formula for the GRU
output vector is depicted by Equation (4).

HGRU = (h1, h2, · · ·, hn), h1
′ (4)

(3) The attention layer analyzes the significance of feature information at different time
steps based on the magnitude of weights, continuously iterating to update and optimize
the optimal weight parameters. The calculation formula for the attention mechanism is
presented in Equation (5). 

et = score
(
ht, h1

′)
at = softmax(et)
C = ∑n

t=1 at · ht
s = contact(C, h′1)

(5)

where: ht corresponds to the hidden state at time t within the set H; t = 1, 2, . . . , n score
denote the similarity function utilized for calculating the cosine similarity score et between
ht and h1

′; softmax stands for the normalized exponential function, transforming et into
weight values at for each hidden state; contact signifies the concatenation function; and s
signifies the prediction output with the attention mechanism incorporated.
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(4) The output from the attention layer is connected to a fully connected neural network
where the output end of the fully connected network aggregates information, yielding the
predicted value of yarn quality. This process is formulated in Equation (6).

−
y = L11 · s1 + L12 · s2 + · · ·+ L1n · sn (6)

where:
−
y represents the predicted value of yarn quality by the model, and L denotes the

aggregation coefficients of the various units within the fully connected layer.

(5) Utilizing the loss function, the model’s output
−
y is subjected to loss calculation in

comparison to the actual quality y. The Adam optimizer is then chosen to optimize the
model’s parameters. Adam achieves parameter optimization by computing both the first
and second moments of gradients, which facilitates the design of independent adaptive
learning rates for different parameters. This mechanism enables the neural network’s
weights to be iteratively updated based on training data, ultimately steering the output
value of the loss function towards its optimal state. The model employs the mean squared
error (MSE) algorithm as its loss function, as represented in Equation (7).

Emse =
1
n∑n

i=1 (yi − yi) (7)

where: n denotes the number of samples; yi and yi, respectively, represent the predicted
value and the actual value for the i-th sample; and Emse signifies the degree of loss.

(6) An adaptive loss change threshold is utilized to dynamically determine the optimal
number of iterations for the model across different datasets. This method involves recording
the positive loss change values obtained from the initial ‘a’ training iterations of the model.
These values are then employed to calculate the loss change threshold tailored to the
corresponding training dataset. With the loss change threshold as a reference, the training
iteration count for the model is dynamically determined. The formula for calculating
the adaptive loss change threshold and the training iteration positioning benchmark is
presented in Equation (8). The procedure for computing the adaptive loss change threshold
for the model is depicted in Figure 6.

∆e = lossb+1 − lossb

Pd = 1
a ·

a
∑

i=1
∆ei

to : (lossb+a+1 − lossb+a) > Pd

(8)

where: lossb represents the loss value for the model at the ‘b’-th training iteration, and ∆e
denotes the positive loss change value corresponding to the ‘b + 1’-th training iteration of
the model where ∆e is greater than zero. Pd signifies the loss change threshold calculated
for the initial ‘a’ training iterations of the model, and to indicates the optimal iteration
count for training determined by positioning the model based on the loss change threshold
tailored to the specific dataset.
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3. Case Analysis

To validate the effectiveness of the predictive model, this section will utilize yarn
quality data from a textile enterprise in the city of Shijiazhuang. The attention-GRU model
will be constructed using the PyTorch library in Python. Through this, experimental
validation of the predictive model will be conducted. Furthermore, a comparative study
will be undertaken, contrasting the results with those of the GRU, LSTM, and BP neural
network predictions where the attention mechanism has not been introduced.

3.1. Dataset Preparation

Considering the variations in spinning methods, process workflows, and spinning
equipment among different yarn varieties, we have selected yarn type C27.8 as the subject
of experimentation for this section. This particular yarn variety follows a processing route
of pure cotton carding and encompasses the utilization of key spinning equipment, including
the TC5-1 type cotton-carding machine, the FA306 type drawing frame, the RSB-D45c type
drawing frame, the FA468E type roving frame, and the JWF1516JM type ring-spinning frame.

The chosen output parameter for the model is yarn tensile strength, which serves as a
crucial indicator of yarn quality. Yarn tensile strength directly determines the processing
performance and final application of the yarn. In the field of cotton spinning, factors
influencing yarn strength primarily encompass fiber properties and yarn structure. Higher
fiber strength, finer fineness, and longer length result in higher yarn strength. Conversely,
yarn strength decreases when the yarn experiences folding, bending, or kinking. Further-
more, both fiber properties and yarn structure are significantly influenced by the process
parameters of each spinning stage. Therefore, employing the regular carding process as a
case study, we proceed to conduct an in-depth analysis of the influence exerted by each
individual processing stage on yarn tensile strength:

• The speed of the carding roller and the tin roller in the carding machine is one of the
key factors influencing the carding quality [27].

• Increasing the speed effectively enhances the carding rate and area, thereby reducing
cotton knots and impurities. However, higher speeds intensify the increase in short
fiber content where for every 1% increase in short fiber content below 16 mm in cotton
yarn, there is a corresponding decrease in yarn strength by 1–2% [28].

• The blending process in the drawing frame elongates and evens out cotton fibers. The
spinning speed of the drawing frame can impact the uniformity of fiber blending, thus
influencing yarn strength [29].

• There exists a parabolic relationship between the coefficients of the coarse and fine yarn
processes and cotton yarn tensile strength [30,31]. As the twist coefficient increases,
the intermolecular cohesion of cotton fibers strengthens. However, the introduction of
additional twist reduces axial forces, leading to uneven fiber breakage. Furthermore,
spindle speed in both processes is a critical factor affecting yarn strength.

Therefore, in the selection of input indicators, we consider six parameters, such as
the micronaire value as indicators of raw cotton performance. Meanwhile, we utilize the
collected crucial spinning equipment information as indicators for the process parameters
of each stage. Subsequently, based on these indicators, 50 sets of training samples and 10
sets of testing samples for the neural network model are selected. (All yarns are spun under
the same production environment). Table 1 presents a subset of the sample data used in
this section.
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Table 1. Partial sample data.

Micronaire
Value

Fiber
Strength

Fiber
Fine-
ness

Fiber
Matu-
rity

Short
Fiber

Rate(%)

Fiber
Neps

Carding
Cylin-

der
Speed
(r/min)

Carding
Doffer
Speed
(r/min)

Feed
Roller
Speed

(m/min)

Final
Draft-

ing
Roller
Speed

(m/min)

Rough
Yarn
Twist
Coeffi-
cient

Rough
Yarn
Spin-
dle

Speed
(r/min)

Fine
Yarn
Twist
Coeffi-
cient

Fine
Yarn
Spin-
dle

Speed
(r/min)

Tensile
Strength
(cn/tex)

4.68 29.5 174 0.86 10.8 243 1007 473 350 401 115 950 350 13,683 16.38
4.50 30.4 172 0.85 11.1 249 1022 470 345 410 113 933 356 13,612 16.11
4.61 29.8 171 0.85 10.6 244 1073 467 360 404 115 966 352 13,630 16.57
4.57 31.8 171 0.85 10.4 248 988 480 350 395 115 957 348 13,667 17.09
4.54 28.2 170 0.86 11.2 241 994 469 345 399 120 982 340 13,682 16.45
4.71 29.7 173 0.86 10.4 240 1039 471 350 395 120 923 353 13,625 16.37
4.49 31.9 172 0.85 10.7 243 990 478 355 400 114 952 355 13,708 16.54
4.34 29.8 174 0.86 11.0 243 1017 465 350 410 114 975 360 13,680 16.13
4.42 31.0 171 0.86 11.1 245 1056 469 350 406 120 990 358 13,702 16.21
4.66 29.2 172 0.86 10.6 242 986 471 345 394 110 973 348 13,633 16.52

3.2. Parameter Configuration

To effectively compare the predictive results of yarn quality, it is necessary to maintain
consistency in the selection of basic parameters for the BP, LSTM, and GRU neural networks,
as shown in Table 2. In the table, the BP neural network, being a feedforward neural
network, has different dimensions and quantities of input units compared to the recurrent
neural networks. Following the performance indicators of the raw cotton and the process
steps of regular carding, the numbers of input units for the BP, LSTM, and GRU neural
networks are set to 14, 6, and 6, respectively.

Table 2. Comparison model parameter settings.

Parameter Name BP LSTM GRU

Number of Hidden Layer Neurons 24 24 24
Activation Function relu sigmoid sigmoid

Loss Function MSE MSE MSE
Optimization Algorithm Adam Adam Adam

Learning Rate 0.0001 0.0001 0.0001
Number of Iterations 10,000 10,000 10,000
Training Batch Size 50 50 50

Input Dimension and Quantity (50,14) (50,6,6) (50,6,6)

3.3. Model Testing and Comparison

Firstly, the training of the four models was conducted using the provided dataset,
resulting in the derivation of iterative loss values and training durations for each model.

The training performance parameters of each model can be inferred from Figure 7
and Table 3. It is observed that the BP neural network exhibits the fastest training speed;
however, its loss consistently remains at a higher level and cannot be reduced. In contrast,
the GRU model demonstrates a 14.3% reduction in training duration compared to LSTM.
Furthermore, the attention-GRU predictive model, which has undergone optimization
through attention mechanisms to enhance input parameter quality, achieves the lowest
average training loss of 0.005.

From the point of view of actual yarn production cycle and cost of spinning mill,
although the attention-GRU model after adding attention mechanism will increase a certain
second time cost in training time compared with ordinary GRU, in fact, textile enterprises
can accept the time cost of this second level. On the contrary, if the quality of the yarn
is not guaranteed, the impact on production is huge. Because the production cycle of
yarn is long, once the yarn quality problem occurs, it can only be found at the end of
the yarn production process, which greatly extends the reaction adjustment time of the
corresponding process and cannot be dealt with in time so that a large number of yarn
quality is not up to standard, resulting in production waste, which is unacceptable to
textile enterprises. Thus, despite the extension of training duration due to the attention
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mechanism within the attention-GRU model, it ultimately attains the lowest loss value
among the four models. This highlights the efficacy of this mechanism in enhancing the
model’s ability to discern complex patterns within the dataset, thereby substantiating its
effectiveness in predicting the quality of regular carded yarn.
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Table 3. Training duration and average loss value of each model.

Method BP LSTM GRU AT-GRU

Training Duration (s) 10.32 27.84 21.27 32.31
Average Loss Value 0.019 0.009 0.008 0.005

With the objective of maintaining the superior predictive accuracy of the attention-
GRU model proposed in this paper while further reducing the number of model iterations
and training time and enhancing predictive efficiency, a strategy involving the implementa-
tion of an adaptive loss change threshold was employed for model retraining, as illustrated
in Figure 8. Taking the total iteration count from the model parameter settings table in
Section 3.2 as a reference, corresponding positive loss change values were calculated for
the first three-quarters of the total iteration count. This calculation yielded an adaptive loss
change threshold of 0.00074 for the current training dataset. Ultimately, the optimal itera-
tion count for the model was determined as 7535 iterations, corresponding to a loss value
of 0.0048 (point ‘e’). Following model optimization, the training duration was reduced to
24.35 s.
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After the training process, a correlation analysis was conducted on the final data of
the four models. To assess the degree of proximity between the actual quality data and the
predicted values of the models, the coefficient of determination R2 was introduced. The
formula is represented as follows:

R2 = 1− ∑n
i=1 (yi − yi)

2

∑n
i=1 (y− yi)

2 (9)

where: y represents the average value of n instances of yi.
As shown in Figure 9, the coefficients of determination R2 for the four models are 0.825,

0.903, 0.905, and 0.954, respectively. The experimental results indicate that the attention-
GRU model exhibits a higher training fit between predicted and actual values in the context
of yarn quality prediction, compared to the GRU, LSTM, and BP neural network prediction
models without the incorporation of the attention mechanism.

To further evaluate the predictive performance of the proposed models, each trained
model is used to predict the outcomes of 10 test samples. The predictive feedback times for
each model on the test samples are presented in Table 4.

Table 4. Comparison of model prediction feedback time.

Test Sample No.
Predictive Model

BP LSTM GRU Attention-GRU

1 1.03 2.17 2.04 3.81
2 1.49 2.34 2.06 3.62
3 0.98 1.99 2.17 4.17
4 1.32 2.03 1.88 3.73
5 1.21 2.15 2.00 3.89
6 0.86 2.45 2.30 4.61
7 1.08 1.76 1.83 3.29
8 1.14 2.22 2.01 3.76
9 1.03 2.03 2.14 2.48
10 1.09 2.42 1.62 3.61

Total Time(ms) 11.23 21.56 20.05 36.97
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As evident from Table 4, the predictive feedback times for the test data among the four
models range from 11.23 ms to 36.97 ms. Among these, the BP neural network demonstrates
the shortest predictive feedback time. While the attention-GRU prediction model proposed
in this study does not achieve the optimal prediction feedback time, its millisecond-level
predictive feedback time is of minimal consequence for textile production characterized by
long production cycles. This slight variation in feedback time is not expected to significantly
impact the value of the model’s predictive results.

In addition, the models were quantitatively evaluated using two loss functions that
represent regression errors: mean absolute percentage error (MAPE) and root mean square
error (RMSE). Smaller values of these metrics indicate more accurate quality prediction
results. The formulas are as follows:

Emape =
100%

n ∑n
i=1 (yi− yi)2 (10)

Ermse =

√
1
n∑n

i=1 (yi− yi)2 (11)

The predicted outcomes and the predictive performance of each model are presented in
Figure 10 and Table 5, respectively. Figure 10 illustrates that the prediction curve generated
by the attention-GRU model closely approximates the curve of actual quality values.
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As shown in Table 5, the attention-GRU model demonstrates superior performance
compared to the other three methods in terms of root mean square error (RMSE). It show-
cases substantial reductions of 56.3%, 38.5%, and 36.4% when compared to the other
methods, respectively. Moreover, the mean absolute percentage error (MAPE) values for
the attention-GRU model decreased by 0.367%, 0.158%, and 0.190% when contrasted with
the other methods. In addition, Table 4 provides insight into the goodness of fit of the
models on the test dataset. Considering the earlier discussion on training fit, it is evident
that the attention-GRU model exhibits the least degree of overfitting. This can be attributed
to the attention-GRU cotton quality prediction model’s capability to seamlessly incorpo-
rate temporal correlations between preceding and subsequent production processes. By
simultaneously considering cotton indicator parameters and process production data, the
model aligns more effectively with the actual production processes. The incorporation
of the attention mechanism further enhances the model’s ability to select and optimize
driving parameters, leading to a notable reduction in prediction errors.

Table 5. Comparison of model prediction results.

Test Sample No. Actual Value
BP LSTM GRU Attention-GRU

Prediction Error Prediction Error Prediction Error Prediction Error

1 16.21 16.33 0.12 16.22 0.01 16.15 0.06 16.18 0.03
2 16.28 16.52 0.24 16.43 0.15 16.44 0.16 16.19 0.09
3 16.57 16.71 0.14 16.42 0.15 16.45 0.12 16.61 0.04
4 16.59 16.66 0.07 16.72 0.13 16.57 0.02 16.66 0.07
5 16.11 16.18 0.07 16.10 0.01 16.10 0.01 16.14 0.03
6 16.37 16.37 0.00 16.37 0.00 16.27 0.10 16.38 0.01
7 16.53 16.75 0.22 16.56 0.03 16.43 0.10 16.63 0.10
8 16.52 16.60 0.08 16.47 0.05 16.60 0.08 16.49 0.03
9 16.78 16.84 0.06 16.87 0.09 16.84 0.06 16.72 0.06
10 16.13 16.19 0.06 16.23 0.10 16.19 0.06 16.13 0.00

Ermse 0.128 0.091 0.088 0.056
Emape/% 0.646 0.437 0.469 0.279

R2 0.636 0.814 0.827 0.931

The aforementioned analysis indicates that the application of the proposed attention-
GRU model maintains a leading position in the context of yarn quality prediction. It
demonstrates the lowest fit loss value on the training dataset. Moreover, by implement-
ing an adaptive loss change threshold, the training time of the model has been reduced,
further enhancing the predictive efficiency of the model. Additionally, during the quan-
titative evaluation of predictive results on the test dataset, the proposed attention-GRU
model showcases the lowest predictive loss value. This emphasizes that the model’s predic-
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tions closely approximate the actual values of yarn tensile strength, demonstrating its strong
generalization ability and effectiveness in the context of yarn quality prediction applications.

4. Conclusions

In this study, we proposed an improved GRU neural network model with the incorpo-
ration of the attention mechanism for predicting the tensile strength of cotton yarn, consid-
ering the temporal nature of processing stages and their impact on yarn quality. Through a
comparative analysis using real sample data, the following conclusions were drawn:

(1) Compared to the BP neural network, GRU and LSTM neural networks have
demonstrated their capability to effectively capture the temporal nature of the spinning
process and the influence of process parameters on yarn quality. Their predictive models
exhibit relatively lower training loss values on the training data for yarn production.

(2) By employing the strategy of adapting the loss change threshold for the proposed
Attention-GRU model, the optimal number of iterations and corresponding training loss
values for the model have been dynamically determined. This adjustment has resulted in a
reduction of the training time from 32.31 s to 24.35 s. While ensuring the model’s superior
predictive accuracy, this approach further enhances the predictive efficiency of the model.

(3) The attention mechanism can effectively highlight key information in factors
affecting yarn quality. By comparing the predictive performance of various models using
test data, the attention GRU model has an overall better predictive performance than GRU,
LSTM, and BP neural networks without the attention mechanism. Its average prediction
error MAPEs have been reduced by 0.367%, 0.158%, and 0.190%, respectively.

The proposed model and methodology for predicting cotton yarn tensile strength can
serve as a foundation for future research into understanding and managing the impact
factors and strategies for quality control in other textile production processes.
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