Least Squares Reverse Time Migration of Ground Penetrating Radar Data Based on Modified Total Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. LSRTM
2.2. MTV Normalization
Algorithm 1: LSRTM-MTV Algorithm |
Where Equation (2) is satisfied Calculate Equation (1) for ∆U; Calculate Equation (7) for Ez and ϕ; if Equation (9) is satisfied return Ez and ϕ; end Calculate Equation (8) for g; Use Wolfe conditions to get the iteration step size; Use L-BFGS to update the reflection coefficient. Load MTV and denoise the results with Equations (14)–(16); end Stop until the convergence condition is satisfied. |
3. Numerical Examples
4. Laboratory Data Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bungey, J.H. Sub-surface radar testing of concrete: A review. Constr. Build. Mater. 2004, 18, 1–8. [Google Scholar] [CrossRef]
- Feng, D.; Wang, X.; Zhang, B. Specific evaluation of tunnel lining multi-defects by all-refined GPR simulation method using hybrid algorithm of FETD and FDTD. Constr. Build. Mater. 2018, 185, 220–229. [Google Scholar] [CrossRef]
- Liu, H.; Takahashi, K.; Sato, M. Measurement of dielectric permittivity and thickness of snow and ice on a brackish lagoon using GPR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 820–827. [Google Scholar] [CrossRef]
- Feng, D.; Cao, C.; Wang, X. Multiscale full-waveform dual-parameter inversion based on total variation regularization to on-ground GPR data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9450–9465. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Chen, Z.; Yu, N.; Kong, W.; Li, T.; Wang, E.; Wu, X.; Liu, Y. Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum. Measurement 2022, 192, 110886. [Google Scholar] [CrossRef]
- Fisher, E.; McMechan, G.A.; Annan, A.P. Acquisition and processing of wide-aperture ground-penetrating radar data. Geophysics. 1992, 57, 495–504. [Google Scholar] [CrossRef]
- Moran, M.L.; Greenfield, R.J.; Arcone, S.A.; Delaney, A.J. Multidimensional GPR array processing using Kirchhoff migration. J. Appl. Geophy. 2000, 43, 281–295. [Google Scholar] [CrossRef]
- Bradford, J.H.; Privette, J.; Wilkins, D.; Ford, R. Reverse-time migration from rugged topography to image ground-penetrating radar data in complex environments. Engineering 2018, 4, 661–666. [Google Scholar] [CrossRef]
- Ristow, D.; Rühl, T. Fourier finite-difference migration. Geophysics 1994, 59, 1882–1893. [Google Scholar] [CrossRef]
- Zhuge, X.; Yarovoy, A.G.; Savelyev, T.; Ligthart, L. Modified Kirchhoff migration for UWB MIMO array-based radar imaging. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2692–2703. [Google Scholar] [CrossRef]
- Stolt, R.H. Migration by Fourier transform. Geophysics. 1978, 43, 23–48. [Google Scholar] [CrossRef]
- Whitmore, N.D. Iterative depth migration by backward time propagation. In SEG Technical Program Expanded Abstracts 1983; Society of Exploration Geophysicists: Houston, TX, USA, 1983; pp. 382–385. [Google Scholar]
- Baysal, E.; Kosloff, D.D.; Sherwood, J.W.C. Reverse time migration. Geophysics 1983, 48, 1514–1524. [Google Scholar] [CrossRef]
- Liu, S.; Lei, L.; Fu, L.; Wu, J. Application of pre-stack reverse time migration based on FWI velocity estimation to ground penetrating radar data. J. Appl. Geophys. 2014, 107, 1–7. [Google Scholar] [CrossRef]
- Sava, P.C.; Biondi, B.; Etgen, J. Wave-equation migration velocity analysis by focusing diffractions and reflections. Geophysics 2005, 70, U19–U27. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, H.; Gong, J. Application of GPR reverse time migration in tunnel lining cavity imaging. Appl. Geophys. 2020, 17, 277–284. [Google Scholar] [CrossRef]
- Guo, S.; Duan, J.; Zhang, J.; Li, X.Z. Application of GPR in urban road hidden diseases detection. Prog. Geophys. 2019, 34, 1609–1613. (In Chinese) [Google Scholar]
- Liu, H.; Long, Z.; Tian, B.; Han, F.; Fang, G.; Liu, Q. Two-dimensional reverse-time migration applied to GPR with a 3-D-to-2-D data conversion. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 4313–4320. [Google Scholar] [CrossRef]
- He, J.; Rocha, D.C.; Leser, P.E.; Sava, P.; Leser, W.P. Least-squares reverse time migration (LSRTM) for damage imaging using Lamb waves. Smart Mater. Struct. 2019, 28, 065010. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, L. Least-squares reverse-time migration with modified total-variation regularization. In Proceedings of the 2015 SEG Annual Meeting, New Orleans, LA, USA, 18–23 October 2015. [Google Scholar]
- Wang, J.; Sacchi, M. Sparse regularization for least-squares AVP migration. In CSEG National Convention, Expanded Abstracts; 2005; pp. 117–120. Available online: https://csim.kaust.edu.sa/files/ErSE328.2013/PDF/LSM.sparse.pdf (accessed on 31 August 2023).
- Dutta, G.; Schuster, G. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation. Geophysics 2014, 79, S251–S262. [Google Scholar] [CrossRef]
- Wang, X.; Feng, D. Multiparameter full-waveform inversion of 3-D on-ground GPR with a modified total variation regularization scheme. IEEE Geosci. Remote Sens. Lett. 2020, 18, 466–470. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Z. Imaging of elastic seismic data by least-squares reverse time migration with weighted L2-norm multiplicative and modified total-variation regularizations. Geophys. Prospect. 2020, 68, 411–430. [Google Scholar] [CrossRef]
- Tran, H.-T.; Cheng, H.; Lin, X.; Duong, M.-K.; Huang, R. The relationship between physical human-exoskeleton interaction and dynamic factors: Using a learning approach for control applications. Sci. China Inf. Sci. 2014, 57, 1–13. [Google Scholar] [CrossRef]
- Wang, X.; Feng, D.S.; Wang, X.Y. GPR multiple-scale full waveform dual-parameter simultaneous inversion based on modified total variation regularization. Chin. J. Geophys. 2020, 63, 4485–4501. [Google Scholar]
- Feng, D.; Li, T.; Li, G.; Wang, X. Reverse time migration of GPR data based on accurate velocity estimation and artifacts removal using total variation de-noising. J. Appl. Geophys. 2022, 198, 104563. [Google Scholar] [CrossRef]
- Irving, J.; Knight, R. Numerical modeling of ground-penetrating radar in 2-D using MATLAB. Comput. Geosci. 2006, 32, 1247–1258. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, Y.; Sun, H.; Zhang, H. Single-step data-domain least-squares reverse-time migration using Gabor deconvolution for subsalt imaging. IEEE Geosci. Remote Sens. Lett. 2019, 17, 13–16. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, Y.; Sen, M.K. Least-squares reverse time migration in elastic media. Geophys. J. Int. 2017, 208, 1103–1125. [Google Scholar] [CrossRef]
- Niesen, U.; Shah, D.; Wornell, G. Adaptive alternating minimization algorithms. In Proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 1641–1645. [Google Scholar]
- Zhao, S.; Al-Qadi, I. Development of regularization methods on simulated ground-penetrating radar signals to predict thin asphalt overlay thickness. Signal Process. 2017, 132, 261–271. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Goldstein, T.; Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2009, 2, 323–343. [Google Scholar] [CrossRef]
- Giannakis, I.; Giannopoulos, A.; Warren, C. Realistic FDTD GPR antenna models optimized using a novel linear/nonlinear full-waveform inversion. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1768–1778. [Google Scholar] [CrossRef]
- Wang, X.; Yu, T.; Feng, D.; Ding, Y.; Li, B.; Liu, Y.; Feng, Z. A high-efficiency spectral element method based on CFS-PML for GPR numerical simulation and reverse time migration. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 1232–1243. [Google Scholar] [CrossRef]
- Zhang, B.; Dai, Q.; Yin, X.; Li, Z.; Feng, D.; Sun, Y.; Wang, X. An optimized choice of UCPML to truncate lattices with rotated staggered grid scheme for ground penetrating radar simulation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8695–8706. [Google Scholar] [CrossRef]
- Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
LSRTM | LSRTM-TV | LSRTM-MTV | |
---|---|---|---|
MSE | 0.0649 | 0.0593 | 0.0512 |
Iterations | 90 | 42 | 90 |
Time (min) | 33.9255 | 11.9032 | 23.5991 |
λ1 = 0.0001 | λ1 = 0.001 | λ1 = 0.01 | |
MSE | 0.0641 | 0.0563 | 0.0512 |
LSRTM-TV | LSRTM-MTV | |
MSE | 0.0667 | 0.0572 |
Number | Material | Size (cm) | Burial Depth (cm) | Dielectric Constant |
---|---|---|---|---|
1 | Pipes (solid) | 5 (radius) | 22 | 4.0 |
2 | Pipes (solid) | 10 (radius) | 50 | 4.0 |
3 | Cuboid abnormal (empty) | 20 × 10 | 15 | 1.0 |
4 | Pipes (empty) | 5 (radius) | 20 | 1.0 |
5 | Pipes (empty) | 10 (radius) | 50 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Q.; Wang, S.; Lei, Y. Least Squares Reverse Time Migration of Ground Penetrating Radar Data Based on Modified Total Variation. Appl. Sci. 2023, 13, 10028. https://doi.org/10.3390/app131810028
Dai Q, Wang S, Lei Y. Least Squares Reverse Time Migration of Ground Penetrating Radar Data Based on Modified Total Variation. Applied Sciences. 2023; 13(18):10028. https://doi.org/10.3390/app131810028
Chicago/Turabian StyleDai, Qianwei, Shaoqing Wang, and Yi Lei. 2023. "Least Squares Reverse Time Migration of Ground Penetrating Radar Data Based on Modified Total Variation" Applied Sciences 13, no. 18: 10028. https://doi.org/10.3390/app131810028
APA StyleDai, Q., Wang, S., & Lei, Y. (2023). Least Squares Reverse Time Migration of Ground Penetrating Radar Data Based on Modified Total Variation. Applied Sciences, 13(18), 10028. https://doi.org/10.3390/app131810028