Cancer Treatment: An Overview of Pulsed Electric Field Utilization and Generation
Abstract
:1. Introduction
2. The Main Hallmarks of Cancer
- Ignore signals that tell them to grow as normal cells, resulting in their undergoing abnormal growth and proliferation.
- Ignore signals that tell them to stop dividing or to undergo programmed cell death (apoptosis).
- Deceive the immune system and reprogram it to support the growth and proliferation of cancer cells and prevent immune cells from killing them.
- Can induce the generation of new blood vessels (angiogenesis) near the tumour to supply the growing tumour with nutrients and oxygen and facilitate the removal of waste products.
3. Tumour Treating Field and Electroporation Process
- In reversible electroporation (RE), temporary pores are formed and the cell reseals after a period of time and survives. This method facilitates drug delivery by increasing cell permeability, and can be useful for modifying or inserting DNA and other molecules into cells.
- In irreversible electroporation (IRE), the pulse parameters exceed a certain level based on the delivered pulses that prevents the cell from resealing. This can cause permanent damage in the form of pores, eventually leading to apoptosis.
4. Biological Cell Modelling
- Finite Element Models: these models use numerical techniques to represent the electrical properties of biological cells and tissues in three-dimensional space [36].
Equivalent Circuit Model
5. Nano/Pico-Second Pulsed Electric Field Effect on Mammalian Cells
6. Reversible and Irreversible Electroporation Parameters
6.1. Induction of Transmembrane Voltage by PEF
6.2. Membrane Threshold Voltage
7. Electrode Shapes
- Plate electrodes, shown in Figure 6a, utilize two parallel plates separated by a distance to deliver a homogenous electric field to tissues; unfortunately, they cannot be fitted easily to treat affected organs internally without the need for surgery. Therefore, they can be used only with accessible types of tumours.
- Needle electrodes, shown in Figure 6b, can be built using a different number of electrodes (starting at two), and the needles can be placed in different relevant formations with respect to each other. The number and placing of electrodes affects the shape of the electric field, leading to different effects on the tumour for the same pulse parameters.
- Clamp electrodes, shown in Figure 6c, have almost the same shape as plate electrodes. They are made up of two electrodes fixed onto the inner faces of the clamp, which is used to hold the organ or tissues in direct contact with the electrodes. As with plate electrodes, these can only be used for accessible tumours.
- Catheter electrodes are inserted in catheter tubes to reach the affected organ, which requires skilled clinicians able to navigate to the target and fix the tubes without harming any surrounding areas.
8. Voltage Pulse Parameters and Selection
9. Pulse Generators
9.1. Classical PGs
- A.
- Marx PG
- B.
- Pulse-Forming Network
- C.
- Blumlein PG
9.2. Power Electronics-Based PGs
9.2.1. Capacitive Storage-Based PGs
- A.
- Non-Modular PGs
- B.
- Modular PGs
- C.
- Hybrid PGs
9.2.2. Inductive Storage-Based PGs
10. The Feasibility and Utilization of PGs in Tumour Treatment
11. Comparison of Pulse Generators
- Utilization of an LV input source,
- Low charging time and high repetition rate,
- Modularity and scalability,
- Ability to generate LV/HV and long/short pulses (synergetic pulses),
- Flexibility in generating unipolar and bipolar pulses without any hardware modification and in various shapes, ensuring versatility for different applications,
- Reduced count of required sensors (voltage and current),
- Simple control and operation,
- A small footprint with higher power density and lower weight.
Feature | Classical | Inductive | Non-Modular | Modular | Hybrid |
---|---|---|---|---|---|
Supply voltage | LV/HV | LV | LV | HV | LV/HV |
Pulse shape | exponential | flexible | square/flexible | flexible | flexible |
Pulse polarity | uni/bipolar | uni/bipolar | uni/bipolar | uni/bipolar | uni/bipolar |
Modularity | non-modular | modular | non-modular | modular | semi-modular |
Control | NA | complicated | simple | complicated | complicated |
Footprint | moderate/large | large | moderate | high | high |
Sensors | NA | required | required | required | required |
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Mechanism | Description |
---|---|
Anti-mitotic action | During the metaphase, the uniform electric field causes the dipolar molecules such as tubulin 1 to align with the field. Thus, TTF interferes with tubulin polymerization and de-polymerization. Then, during the anaphase, TTF prevents the assembly of septin protein complexes by inhibiting the localisation of the septin proteins to the mitotic spindle 2. During the last phase, cytokinesis 3, the field converges at the cleavage furrow, which exhibits forces on the polarised objects, resulting in abnormal chromosome segregation and cell death. |
Impairing/suppressing DNA repair | TTF has been shown to suppress and downregulate BRCA and Fanconi anaemia pathway genes 4, which are associated with increased replication stress and the formation of double-strand breaks. Furthermore, repair of double-strand breaks is reduced because of the impairment of homologous recombination repair by TTF. |
Enhanced autophagy | A process by which a cell breaks down and destroys old, damaged, or abnormal proteins and other substances in its cytoplasm. It has been proposed that TTF therapy can mitigate the inhibitory effects of the PI3K/Akt/mTORC 5 signalling pathway on autophagy, resulting in greater activation of autophagy. Further investigations are needed to determine whether autophagy is triggered as a cell-survival or cell-death signal in response to TTF. |
Promoting immunogenic cell death | TTF stimulates macrophages 6, leading them to release reactive oxygen species, nitric oxide, and proinflammatory cytokines such as interleukin (IL)-, tumour necrosis factor (TNF)-, and IL-6. Furthermore, TTF promotes immunogenic cell death by recruiting and maturing dendritic cells 7, ultimately resulting in increased accumulation of CD4+ and CD8+ T cells at the tumour site. Combining TTF with anti-PD-1 therapy has the potential to boost PD-L1 expression in infiltrating dendritic cells and macrophages, thereby further enhancing the antitumour immune response. |
Suppressing cancer cell migration | TTF diminishes the ability of cancer cells to migrate and invade via mechanisms dependent on the nuclear factor (NF)-B, mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K)/Akt pathways. |
Increasing cell membrane permeability | TTF initiates and increases the number, size, and capacity of pores in the cell membrane, which increases membrane permeability and enhances drug absorption by the cell, thereby promoting the electrochemotherapy modality. |
TTF Concomitant with | Description |
---|---|
Radiotherapy | TTF shares one of the described mechanisms affecting the cancer cell, namely, causing damage to DNA and suppressing DNA repair, resulting in cancer cell death (i.e., an apoptotic effect). This effect has been demonstrated to be more effective if TTF is applied before radiotherapy. The application of TTF concomitantly with radiotherapy has been found to present enhanced efficacy in pancreatic and GBM cancers [11,113,114]. |
Immunotherapy | TTF concomitant with immunotherapy in preclinical studies has shown enhanced antitumour immunity and additive effects both in vitro and in vivo without affecting T-cell-mediated cytotoxicity. TTF was used alongside anti-PD-1 and anti-CTLA-4 1, and resulted in reduced tumour volume [11,115]. |
Targeted therapy | In preclinical studies, utilization of TTF with PARPI 2 resulted in an enhancing anti-mitotic effect, reduced cell replication, and increased apoptosis, and a further enhancement was achieved with the utilization of radiotherapy in the treatment process. Moreover, studies have shown that using TTF with multikinase inhibitors 3 can resulted in reduced cancer cell invasion and migration along with enhanced autophagy [116,117]. |
Chemotherapy and taxanes | TTF has been shown by several clinical studies to enhance the efficacy of treatment concomitantly with chemotherapy with a low rate of toxicity and increased survival rates of patients. TTF weakens tight endothelial junctions and induces reversible pores in the cell membrane, allowing for increasing drug concentration inside the cell and enhancing treatment efficacy [118,119]. Taxanes are cytotoxic treatment drugs that target microtubules. Taxanes are effectively used to treat solid tumours, and have been in use for more than forty years. Taxanes induce microtubule polymerization, which leads to the growth of polar protein chains. Utilizing TTF to exert forces on the dipolar tubulin leads to abnormal chromosome segregation and cell death. Thus, cancer treatment efficacy can be enhanced by utilizing both therapies together to target tubulin [11,120]. |
References
- Stampfli, R. Reversible electrical breakdown of the excitable membrane of a Ranvier node. An. Acad. Bras. Cienc. 1958, 30, 57–61. [Google Scholar]
- Neumann, E.; Rosenheck, K. Permeability changes induced by electric impulses in vesicular membranes. J. Membr. Biol. 1972, 10, 279–290. [Google Scholar] [CrossRef]
- Okino, M.; Mohri, H. Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn. J. Cancer Res. GANN 1987, 78, 1319–1321. [Google Scholar] [CrossRef]
- Miklavčič, D.; Mali, B.; Kos, B.; Heller, R.; Serša, G. Electrochemotherapy: From the drawing board into medical practice. Biomed. Eng. Online 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Cadossi, R.; Ronchetti, M.; Cadossi, M. Locally enhanced chemotherapy by electroporation: Clinical experiences and perspective of use of electrochemotherapy. Future Oncol. 2014, 10, 877–890. [Google Scholar] [CrossRef]
- Davalos, R.V.; Mir, L.M.; Rubinsky, B. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 2005, 33, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Davalos, R.V.; Bischof, J.C. A Review of Basic to Clinical Studies of Irreversible Electroporation Therapy. IEEE Trans. Biomed. Eng. 2015, 62, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Mun, E.J.; Babiker, H.M.; Weinberg, U.; Kirson, E.D.; Von Hoff, D.D. Tumor-treating fields: A fourth modality in cancer treatment. Clin. Cancer Res. 2018, 24, 266–275. [Google Scholar] [CrossRef]
- Voloshin, T.; Schneiderman, R.S.; Volodin, A.; Shamir, R.R.; Kaynan, N.; Zeevi, E.; Koren, L.; Klein-Goldberg, A.; Paz, R.; Giladi, M.; et al. Tumor Treating Fields (TTFields) hinder cancer cell motility through regulation of microtubule and actin dynamics. Cancers 2020, 12, 3016. [Google Scholar] [CrossRef]
- Karanam, N.K.; Story, M.D. An overview of potential novel mechanisms of action underlying Tumor Treating Fields-induced cancer cell death and their clinical implications. Int. J. Radiat. Biol. 2021, 97, 1044–1054. [Google Scholar] [CrossRef]
- Vergote, I.; Macarulla, T.; Hirsch, F.R.; Hagemann, C.; Miller, D.S. Tumor Treating Fields (TTFields) Therapy Concomitant with Taxanes for Cancer Treatment. Cancers 2023, 15, 636. [Google Scholar] [CrossRef] [PubMed]
- Al Ahmad, M.; Al Natour, Z.; Mustafa, F.; Rizvi, T.A. Electrical characterization of normal and cancer cells. IEEE Access 2018, 6, 25979–25986. [Google Scholar] [CrossRef]
- Trainito, C.I.; Sweeney, D.C.; Čemažar, J.; Schmelz, E.M.; Français, O.; Le Pioufle, B.; Davalos, R.V. Characterization of sequentially-staged cancer cells using electrorotation. PLoS ONE 2019, 14, e0222289. [Google Scholar] [CrossRef] [PubMed]
- Novocure. Optune®: What is Optune? Available online: https://www.optune.com/ (accessed on 20 June 2023).
- Novocure. Optune LUA®: What is Optune LUA? Available online: https://www.optunelua.com/ (accessed on 20 June 2023).
- Kawauchi, D.; Ohno, M.; Honda-Kitahara, M.; Miyakita, Y.; Takahashi, M.; Yanagisawa, S.; Tamura, Y.; Kikuchi, M.; Ichimura, K.; Narita, Y. Clinical characteristics and prognosis of Glioblastoma patients with infratentorial recurrence. BMC Neurol. 2023, 23, 9. [Google Scholar] [CrossRef]
- Novocure. Optune®: Instructions for Use. Available online: https://www.optune.com/pdfs/Optune_IFU_8.5x11.pdf (accessed on 20 June 2023).
- Novocure. Optune LUA®: Instructions for Use. Available online: https://www.optunelua.com/pdfs/Optune-Lua-MPM-IFU.pdf (accessed on 20 June 2023).
- Rominiyi, O.; Vanderlinden, A.; Clenton, S.J.; Bridgewater, C.; Al-Tamimi, Y.; Collis, S.J. Tumour treating fields therapy for glioblastoma: Current advances and future directions. Br. J. Cancer 2021, 125, 623. [Google Scholar] [CrossRef]
- Hejmadi, M. Introduction to Cancer Biology, 2nd ed.; Bookboon: London, UK, 2010. [Google Scholar]
- National Cancer Institute, A. What Is Cancer? Available online: https://www.cancer.gov/about-cancer/understanding/what-is-cancer (accessed on 15 May 2023).
- Licciulli, S. New Dimensions in Cancer Biology: Updated Hallmarks of Cancer Published. Available online: https://www.aacr.org/blog/2022/01/21/new-dimensions-in-cancer-biology-updated-hallmarks-of-cancer-published/ (accessed on 21 June 2023).
- Patel, A. Benign vs malignant tumors. JAMA Oncol. 2020, 6, 1488. [Google Scholar] [CrossRef] [PubMed]
- Lucia, O.; Sarnago, H.; Garcia-Sanchez, T.; Mir, L.M.; Burdio, J.M. Industrial electronics for biomedicine: A new cancer treatment using electroporation. IEEE Ind. Electron. Mag. 2019, 13, 6–18. [Google Scholar] [CrossRef]
- Society, A.C. Cancer Treatment Types. Available online: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types.html (accessed on 15 May 2023).
- Society, A.C. What Is Cancer? American Cancer Society. Available online: https://www.cancer.org/cancer/understandingcancer/what-is-cancer.html (accessed on 23 August 2023).
- Frandsen, S.K.; Gissel, H.; Hojman, P.; Tramm, T.; Eriksen, J.; Gehl, J. Direct Therapeutic Applications of Calcium Electroporation to Effectively Induce Tumor NecrosisCalcium Loading by Electroporation Causes Tumor Necrosis. Cancer Res. 2012, 72, 1336–1341. [Google Scholar] [CrossRef]
- Frey, W.; Gusbeth, C.; Sakugawa, T.; Sack, M.; Mueller, G.; Sigler, J.; Vorobiev, E.; Lebovka, N.; Álvarez, I.; Raso, J.; et al. Environmental applications, food and biomass processing by pulsed electric fields. In Bioelectrics; Springer: Tokyo, Japan, 2016; pp. 389–476. [Google Scholar] [CrossRef]
- Elgenedy, M.A.; Massoud, A.M.; Ahmed, S.; Williams, B.W.; McDonald, J.R. A Modular Multilevel Voltage-Boosting Marx Pulse-Waveform Generator for Electroporation Applications. IEEE Trans. Power Electron. 2019, 34, 10575–10589. [Google Scholar] [CrossRef]
- Sheikholeslami, A.; Adabi, J. High-voltage pulsed power supply to generate wide pulses combined with narrow pulses. IEEE Trans. Plasma Sci. 2014, 42, 1894–1901. [Google Scholar] [CrossRef]
- Reberšek, M.; Miklavčič, D. Beyond electroporation pulse parameters: From application to evaluation. In Handbook of Electroporation; Springer International: Cham, Switzerland, 2017; Volume 2. [Google Scholar] [CrossRef]
- Moser, J.C.; Salvador, E.; Deniz, K.; Swanson, K.; Tuszynski, J.; Carlson, K.W.; Karanam, N.K.; Patel, C.B.; Story, M.; Lou, E.; et al. The mechanisms of action of Tumor Treating Fields. Cancer Res. 2022, 82, 3650–3658. [Google Scholar] [CrossRef]
- Foster, K.R.; Schwan, H.P. Dielectric properties of tissues and biological materials: A critical review. Crit. Rev. Biomed. Eng. 1989, 17, 25–104. [Google Scholar] [PubMed]
- Schoenbach, K.H.; Peterkin, F.E.; Alden, R.W.; Beebe, S.J. The effect of pulsed electric fields on biological cells: Experiments and applications. IEEE Trans. Plasma Sci. 1997, 25, 284–292. [Google Scholar] [CrossRef]
- Neal II, R.E.; Garcia, P.A.; Robertson, J.L.; Davalos, R.V. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans. Biomed. Eng. 2012, 59, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Shamoon, D.; Dermol-Cerne, J.; Rems, L.; Reberšek, M.; Kotnik, T.; Lasquellec, S.; Brosseau, C.; Miklavčič, D. Assessing the electro-deformation and electro-poration of biological cells using a three-dimensional finite element model. Appl. Phys. Lett. 2019, 114, 063701. [Google Scholar] [CrossRef]
- Kotnik, T.; Miklavčič, D. Transmembrane voltage induced by applied electric fields. In Handbook of Electroporation; Springer International: Cham, Switzerland, 2017; Volume 2. [Google Scholar] [CrossRef]
- Kranjc, M.; Miklavčič, D. Electric field distribution and electroporation threshold. In Handbook of Electroporation; Springer International: Cham, Switzerland, 2017; Volume 2, pp. 1043–1058. [Google Scholar] [CrossRef]
- Poignard, C.; Silve, A.; Wegner, L.H. Different approaches used in modeling of cell membrane electroporation. In Handbook of Electroporation; Springer International: Cham, Switzerland, 2017; Volume 2. [Google Scholar] [CrossRef]
- Schoenbach, K.; Joshi, R.; Beebe, S.; Baum, C. A scaling law for membrane permeabilization with nanopulses. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1224–1235. [Google Scholar] [CrossRef]
- Beebe, S.J.; Fox, P.M.; Rec, L.J.; Willis, E.L.K.; Schoenbach, K.H. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 1–23. [Google Scholar] [CrossRef]
- Nuccitelli, R.; Pliquett, U.; Chen, X.; Ford, W.; James Swanson, R.; Beebe, S.J.; Kolb, J.F.; Schoenbach, K.H. Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem. Biophys. Res. Commun. 2006, 343, 351–360. [Google Scholar] [CrossRef]
- Nuccitelli, R.; Tran, K.; Lui, K.; Huynh, J.; Athos, B.; Kreis, M.; Nuccitelli, P.; De Fabo, E.C. Non-thermal Nanoelectroablation of UV-induced Murine Melanomas Stimulates an Immune Response. Pigment. Cell Melanoma Res. 2012, 25, 618–629. [Google Scholar] [CrossRef]
- Schoenbach, K.H. From the basic science of biological effects of ultrashort electrical pulses to medical therapies. Bioelectromagnetics 2018, 39, 257–276. [Google Scholar] [CrossRef]
- Schmidt, G.; Juhasz-Böss, I.; Solomayer, E.F.; Herr, D. Electrochemotherapy in breast cancer: A review of references. Geburtshilfe Frauenheilkunde 2014, 74, 557–562. [Google Scholar] [CrossRef]
- Buescher, E.S.; Smith, R.R.; Schoenbach, K.H. Submicrosecond intense pulsed electric field effects on intracellular free calcium: Mechanisms and effects. IEEE Trans. Plasma Sci. 2004, 32, 1563–1572. [Google Scholar] [CrossRef]
- Vernier, P.T.; Sun, Y.; Marcu, L.; Salemi, S.; Craft, C.M.; Gundersen, M.A. Calcium bursts induced by nanosecond electric pulses. Biochem. Biophys. Res. Commun. 2003, 310, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Shaner, S.; Savelyeva, A.; Kvartuh, A.; Jedrusik, N.; Matter, L.; Leal, J.; Asplund, M. Bioelectronic microfluidic wound healing: A platform for investigating direct current stimulation of injured cell collectives. Lab Chip 2023, 23, 1531–1546. [Google Scholar] [CrossRef]
- Zhang, J.; Blackmore, P.F.; Hargrave, B.Y.; Xiao, S.; Beebe, S.J.; Schoenbach, K.H. The characteristics of nanosecond pulsed electrical field stimulation on platelet aggregation in vitro. Arch. Biochem. Biophys. 2008, 471, 240–248. [Google Scholar] [CrossRef]
- Schoenbach, K.H.; Xiao, S. Nanosecond pulses and beyond—Towards antenna applications. In Proceedings of the 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies, Portorož, Slovenia, 6–10 September 2015; Springer: Singapore, 2016; Volume 53, pp. 24–27. [Google Scholar] [CrossRef]
- Pucihar, G.; Krmelj, J.; Reberšek, M.; Napotnik, T.B.; Miklavčič, D. Equivalent pulse parameters for electroporation. IEEE Trans. Biomed. Eng. 2011, 58, 3279–3288. [Google Scholar] [CrossRef] [PubMed]
- Haberl, S.; Miklavčič, D.; Serša, G.; Frey, W.; Rubinsky, B. Cell membrane electroporation-Part 2: The applications. IEEE Electr. Insul. Mag. 2013, 29, 29–37. [Google Scholar] [CrossRef]
- Kotnik, T.; Miklavčič, D. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys. J. 2006, 90, 480–491. [Google Scholar] [CrossRef]
- Neumann, E.; Kakorin, S.; Tœnsing, K. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem. Bioenerg. 1999, 48, 3–16. [Google Scholar] [CrossRef]
- Burnett, P.; Robertson, J.K.; Palmer, J.M.; Ryan, R.R.; Dubin, A.E.; Zivin, R.A. Fluorescence imaging of electrically stimulated cells. J. Biomol. Screen. 2003, 8, 660–667. [Google Scholar] [CrossRef]
- Cheng, D.K.L.; Tung, L.; Sobie, E.A. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am. J. Physiol.-Heart Circ. Physiol. 1999, 277, H351–H362. [Google Scholar] [CrossRef] [PubMed]
- Čemažar, M.; Jarm, T.; Miklavčič, D.; Lebar, A.M.; Ihan, A.; Kopitar, N.A.; Serša, G. Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electromagn. Biol. Med. 1998, 17, 263–272. [Google Scholar]
- Qin, Z.; Jiang, J.; Long, G.; Lindgren, B.; Bischof, J.C. Irreversible electroporation: An in vivo study with dorsal skin fold chamber. Ann. Biomed. Eng. 2013, 41, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Melikov, K.C.; Frolov, V.A.; Shcherbakov, A.; Samsonov, A.V.; Chizmadzhev, Y.A.; Chernomordik, L.V. Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys. J. 2001, 80, 1829–1836. [Google Scholar] [CrossRef]
- Weaver, J.C. Electroporation of cells and tissues. IEEE Trans. Plasma Sci. 2000, 28, 24–33. [Google Scholar] [CrossRef]
- Neumann, E. The relaxation hysteresis of membrane electroporation. In Electroporation and Electrofusion in Cell Biology; Springer: Boston, MA, USA, 1989; pp. 61–82. [Google Scholar]
- Frey, W.; White, J.A.; Price, R.O.; Blackmore, P.F.; Joshi, R.P.; Nuccitelli, R.; Beebe, S.J.; Schoenbach, K.H.; Kolb, J.F. Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys. J. 2006, 90, 3608–3615. [Google Scholar] [CrossRef]
- Cukjati, D.; Batiuskaite, D.; André, F.; Miklavčič, D.; Mir, L.M. Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 2007, 70, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Redondo, L.M. Basic concepts of high-voltage pulse generation. In Handbook of Electroporation; Springer International: Cham, Switzerland, 2017; Volume 2. [Google Scholar] [CrossRef]
- Chen, W.; Peng, Y.; Liu, Z.; Lu, Y.; Ou, L.; Wang, S. Development of Bipolar Pulse Power Supply Based on Peak Closed-Loop Control Method. IEEE Trans. Plasma Sci. 2023, 51, 211–219. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Ma, W.; Xu, Y.; Wang, L.; Guan, Z. Formation of active species by bipolar pulsed discharge in water. IEEE Trans. Plasma Sci. 2012, 40, 2360–2365. [Google Scholar] [CrossRef]
- Dong, S.; Wang, Y.; Yu, L.; Ma, J.; Yao, C. A Bipolar Pulse Generator Based on Inductive Isolation. Diangong Jishu Xuebao Trans. China Electrotech. Soc. 2020, 35, 5050–5056. [Google Scholar] [CrossRef]
- Elgenedy, M.A.; Massoud, A.; Holliday, D.; Ahmed, S.; Williams, B.W. High-voltage pulse generator using sequentially charged full-bridge modular multilevel converter Sub-modules, for water treatment applications. J. Eng. 2019, 2019, 4537–4544. [Google Scholar] [CrossRef]
- Kotnik, T.; Kramar, P.; Pucihar, G.; Miklavčič, D.; Tarek, M. Cell membrane electroporation—Part 1: The phenomenon. IEEE Electr. Insul. Mag. 2012, 28, 14–23. [Google Scholar] [CrossRef]
- Saulis, G. Electroporation of cell membranes: The fundamental effects of pulsed electric fields in food processing. Food Eng. Rev. 2010, 2, 52–73. [Google Scholar] [CrossRef]
- Saito, K.; Hoki, K.; Minamitani, Y. Effect of brine and temperature in sterilization using nanosecond pulsed electric fields for packaged fresh foods. In Proceedings of the 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC), San Francisco, CA, USA, 6–9 July 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Sack, M.; Schultheiss, C.; Bluhm, H. Triggered Marx generators for the industrial-scale electroporation of sugar beets. IEEE Trans. Ind. Appl. 2005, 41, 707–714. [Google Scholar] [CrossRef]
- Sarnago, H.; Lucia, O.; Naval, A.; Burdio, J.M.; Castellvi, Q.; Ivorra, A. A Versatile Multilevel Converter Platform for Cancer Treatment Using Irreversible Electroporation. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 236–242. [Google Scholar] [CrossRef]
- Clementson, J.; Rahbarnia, K.; Grulke, O.; Klinger, T. Design of A, B, and C pulse forming networks using the VINPFN application. IEEE Trans. Power Electron. 2014, 29, 5673–5679. [Google Scholar] [CrossRef]
- Ghawde, H.; Harchandani, R. Comparison of pulse forming networks for Marx generator. In Proceedings of the 2017 International Conference on Nascent Technologies in Engineering, ICNTE 2017, Vashi, India, 27–28 January 2017. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ghaforinam, H.R. Improving the pulse generator BOOST PFN to increase the amplitude and decrease the pulse duration of the voltage. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1699–1704. [Google Scholar] [CrossRef]
- Kung, C.C.; Chauchard, E.A.; Lee, C.H.; Rhee, M.J. Kilovolt Square Pulse Generation by a Dual of the Blumlein Line with a Photoconductive Semiconductor Opening Switch. IEEE Photonics Technol. Lett. 1992, 4, 621–623. [Google Scholar] [CrossRef]
- Angelis, A.D.; Zeni, L.; Leone, G. Blumlein configuration for variable length high-voltage pulse generation by simultaneous switch control. Electron. Lett. 2006, 42, 205–207. [Google Scholar] [CrossRef]
- Gaudreau, M.P.; Hawkey, T.; Petry, J.; Kempkes, M.A. A solid state pulsed power system for food processing. In Proceedings of the PPPS 2001—Pulsed Power Plasma Science 2001, Las Vegas, NV, USA, 17–22 June 2001; Volume 2. [Google Scholar] [CrossRef]
- Redondo, L.; Silva, J.F. Flyback versus forward switching power supply topologies for unipolar pulsed-power applications. IEEE Trans. Plasma Sci. 2008, 37, 171–178. [Google Scholar] [CrossRef]
- Zabihi, S.; Zare, F.; Ledwich, G.; Ghosh, A.; Akiyama, H. A novel high-voltage pulsed-power supply based on low-voltage switch–capacitor units. IEEE Trans. Plasma Sci. 2010, 38, 2877–2887. [Google Scholar] [CrossRef]
- Elserougi, A.; Massoud, A.M.; Ahmed, S. A boost-inverter-based bipolar high-voltage pulse generator. IEEE Trans. Power Electron. 2016, 32, 2846–2855. [Google Scholar] [CrossRef]
- Elserougi, A.; Ahmed, S.; Massoud, A. A boost converter-based ringing circuit with high-voltage gain for unipolar pulse generation. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2088–2094. [Google Scholar] [CrossRef]
- Redondo, L. A DC voltage-multiplier circuit working as a high-voltage pulse generator. IEEE Trans. Plasma Sci. 2010, 38, 2725–2729. [Google Scholar] [CrossRef]
- Elserougi, A.; Massoud, A.M.; Ibrahim, A.; Ahmed, S. A high voltage pulse-generator based on DC-to-DC converters and capacitor-diode voltage multipliers for water treatment applications. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3290–3298. [Google Scholar] [CrossRef]
- Rezanejad, M.; Sheikholeslami, A.; Adabi, J. Modular switched capacitor voltage multiplier topology for pulsed power supply. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 635–643. [Google Scholar] [CrossRef]
- Delshad, M.R.; Rezanejad, M.; Sheikholeslami, A. A new modular bipolar high-voltage pulse generator. IEEE Trans. Ind. Electron. 2016, 64, 1195–1203. [Google Scholar] [CrossRef]
- Redondo, L.M.; Fernando Silva, J. Repetitive high-voltage solid-state marx modulator design for various load conditions. IEEE Trans. Plasma Sci. 2009, 37, 1632–1637. [Google Scholar] [CrossRef]
- Redondo, L. New four-switches bipolar solid-state Marx generator. In Proceedings of the 2013 19th IEEE Pulsed Power Conference (PPC), San Francisco, CA, USA, 16–21 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Sakamoto, T.; Nami, A.; Akiyama, M.; Akiyama, H. A repetitive solid state Marx-type pulsed power generator using multistage switch-capacitor cells. IEEE Trans. Plasma Sci. 2012, 40, 2316–2321. [Google Scholar] [CrossRef]
- Canacsinh, H.; Redondo, L.; Silva, J.F. Marx-type solid-state bipolar modulator topologies: Performance comparison. IEEE Trans. Plasma Sci. 2012, 40, 2603–2610. [Google Scholar] [CrossRef]
- Redondo, L.; Silva, J.F.; Tavares, P.; Margato, E. High-voltage high-frequency Marx-bank type pulse generator using integrated power semiconductor half-bridges. In Proceedings of the 2005 European Conference on Power Electronics and Applications, Dresden, Germany, 11–14 September 2005; IEEE: Piscataway, NJ, USA, 2005; p. 8. [Google Scholar] [CrossRef]
- Elserougi, A.A.; Massoud, A.M.; Ahmed, S. A modular high-voltage pulse-generator with sequential charging for water treatment applications. IEEE Trans. Ind. Electron. 2016, 63, 7898–7907. [Google Scholar] [CrossRef]
- Debnath, S.; Qin, J.; Bahrani, B.; Saeedifard, M.; Barbosa, P. Operation, control, and applications of the modular multilevel converter: A review. IEEE Trans. Power Electron. 2014, 30, 37–53. [Google Scholar] [CrossRef]
- Dekka, A.; Wu, B.; Fuentes, R.L.; Perez, M.; Zargari, N.R. Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1631–1656. [Google Scholar] [CrossRef]
- Rocha, L.L.; Silva, J.F.; Redondo, L.M. Multilevel high-voltage pulse generation based on a new modular solid-state switch. IEEE Trans. Plasma Sci. 2014, 42, 2956–2961. [Google Scholar] [CrossRef]
- Rocha, L.L.; Silva, J.F.; Redondo, L.M. Seven-level unipolar/bipolar pulsed power generator. IEEE Trans. Plasma Sci. 2016, 44, 2060–2064. [Google Scholar] [CrossRef]
- Elserougi, A.A.; Massoud, A.M.; Ahmed, S. Modular multilevel converter-based bipolar high-voltage pulse generator with sensorless capacitor voltage balancing technique. IEEE Trans. Plasma Sci. 2016, 44, 1187–1194. [Google Scholar] [CrossRef]
- Elgenedy, M.A.; Darwish, A.; Ahmed, S.; Williams, B.W. A modular multilevel-based high-voltage pulse generator for water disinfection applications. IEEE Trans. Plasma Sci. 2016, 44, 2893–2900. [Google Scholar] [CrossRef]
- Elgenedy, M.A.; Darwish, A.; Ahmed, S.; Williams, B.W. A modular multilevel generic pulse-waveform generator for pulsed electric field applications. IEEE Trans. Plasma Sci. 2017, 45, 2527–2535. [Google Scholar] [CrossRef]
- Elgenedy, M.A.; Darwish, A.; Ahmed, S.; Williams, B.W. A transition arm modular multilevel universal pulse-waveform generator for electroporation applications. IEEE Trans. Power Electron. 2017, 32, 8979–8991. [Google Scholar] [CrossRef]
- Elgenedy, M.A.; Massoud, A.M.; Ahmed, S.; Williams, B.W. A high-gain, high-voltage pulse generator using sequentially charged modular multilevel converter submodules, for water disinfection applications. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 6, 1394–1406. [Google Scholar] [CrossRef]
- Elgenedy, M.A.; Darwish, A.; Ahmed, S.; Williams, B.W.; McDonald, J.R. High-voltage pulse generator based on sequentially charged MMC-SMs operating in a voltage-boost mode. IET Power Electron. 2019, 12, 749–758. [Google Scholar] [CrossRef]
- Redondo, L.M.; Fernando Silva, J.; Margato, E. Analysis of a modular generator for high-voltage, high-frequency pulsed applications, using low voltage semiconductors (< 1 kV) and series connected step-up (1:10) transformers. Rev. Sci. Instrum. 2007, 78, 34702. [Google Scholar] [CrossRef]
- Liu, K.; Luo, Y.; Qiu, J. A repetitive high voltage pulse adder based on solid state switches. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1076–1080. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, W.; Wang, Y.; Li, Z.; Rao, J. A Solid-State Pulse Adder for High-Voltage Short Pulses and Low-Voltage Long Pulses. IEEE Trans. Plasma Sci. 2022, 50, 3107–3112. [Google Scholar] [CrossRef]
- Elserougi, A.A.; Faiter, M.; Massoud, A.M.; Ahmed, S. A transformerless bipolar/unipolar high-voltage pulse generator with low-voltage components for water treatment applications. IEEE Trans. Ind. Appl. 2017, 53, 2307–2319. [Google Scholar] [CrossRef]
- Elserougi, A.A.; Abdelsalam, I.; Massoud, A.M.; Ahmed, S. A full-bridge submodule-based modular unipolar/bipolar high-voltage pulse generator with sequential charging of capacitors. IEEE Trans. Plasma Sci. 2017, 45, 91–99. [Google Scholar] [CrossRef]
- Abdelsalam, I.; Elgenedy, M.A.; Ahmed, S.; Williams, B.W. Full-bridge modular multilevel submodule-based high-voltage bipolar pulse generator with low-voltage dc, input for pulsed electric field applications. IEEE Trans. Plasma Sci. 2017, 45, 2857–2864. [Google Scholar] [CrossRef]
- Darwish, A.; Elgenedy, M.A.; Finney, S.J.; Williams, B.W.; McDonald, J.R. A step-up modular high-voltage pulse generator based on isolated input-parallel/output-series voltage-boosting modules and modular multilevel submodules. IEEE Trans. Ind. Electron. 2019, 66, 2207–2216. [Google Scholar] [CrossRef]
- Lindblom, A. Inductive Pulse Generation. Ph.D. Thesis, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2006. Volume 159. [Google Scholar]
- Holma, J.; Barnes, M.J. The prototype inductive adder with droop compensation for the CLIC kicker systems. IEEE Trans. Plasma Sci. 2014, 42, 2899–2908. [Google Scholar] [CrossRef]
- Jo, Y.; Oh, G.; Gi, Y.; Sung, H.; Joo, E.B.; Lee, S.; Yoon, M. Tumor treating fields (TTF) treatment enhances radiation-induced apoptosis in pancreatic cancer cells. Int. J. Radiat. Biol. 2020, 96, 1528–1533. [Google Scholar] [CrossRef]
- Karanam, N.K.; Shang, Z.; Story, M.D.; Saha, D. Tumor Treating Fields in combination with radiation cause significant delay in tumor growth in in-vivo mice modelsignificant delay in tumor growth in in-vivo mice model. Cancer Res. 2022, 82, 3316. [Google Scholar] [CrossRef]
- Voloshin, T.; Kaynan, N.; Davidi, S.; Porat, Y.; Shteingauz, A.; Schneiderman, R.S.; Zeevi, E.; Munster, M.; Blat, R.; Tempel Brami, C.; et al. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy. Cancer Immunol. Immunother. 2020, 69, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Davidi, S.; Jacobovitch, S.; Shteingauz, A.; Martinez-Conde, A.; Braten, O.; Tempel-Brami, C.; Zeevi, E.; Frechtel-Gerzi, R.; Ene, H.; Dor-On, E.; et al. Tumor treating fields (TTFields) concomitant with sorafenib inhibit hepatocellular carcinoma in vitro and in vivo. Cancers 2022, 14, 2959. [Google Scholar] [CrossRef]
- Karanam, N.K.; Ding, L.; Aroumougame, A.; Story, M.D. Tumor treating fields cause replication stress and interfere with DNA replication fork maintenance: Implications for cancer therapy. Transl. Res. 2020, 217, 33–46. [Google Scholar] [CrossRef]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.M.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [PubMed]
- Ceresoli, G.L.; Aerts, J.; Madrzak, J.; Dziadziuszko, R.; Ramlau, R.; Cedres, S.; Hiddinga, B.; VanMeerbeeck, J.; Mencoboni, M.; Planchard, D.; et al. Abstract CT201: Final results of Phase II STELLAR trial: TTFields with chemotherapy in unresectable malignant pleural mesothelioma. Cancer Res. 2019, 79, CT201. [Google Scholar] [CrossRef]
- Giladi, M.; Schneiderman, R.S.; Voloshin, T.; Porat, Y.; Munster, M.; Blat, R.; Sherbo, S.; Bomzon, Z.; Urman, N.; Itzhaki, A.; et al. Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Sci. Rep. 2015, 5, 18046. [Google Scholar] [CrossRef]
Characteristics | Benign Tumours | Malignant Tumours |
---|---|---|
Cell growth | Grow slowly | Grow quickly |
Shape | Have distinct borders | Have irregular borders |
Effect on nearby tissues | Do not invade surrounding tissues | Invade surrounding tissues |
Spread | Do not invade other parts of the body | Can spread to other parts of the body |
Treatment | Require invasive surgical removal if the tumour leads to blockage or compression of nearby structures, or if it becomes malignant | One or a combination of these modalities: surgery, radiotherapy, chemotherapy, immunotherapy |
Pulse Parameters | Electrode Parameters |
---|---|
Waveform Peak Polarity Duration Rise and fall time Total number of pulses Repetition rate | Shape Separation distance Alignment angle of electrodes |
High-Voltage | Low-Voltage | Synergetic | |
---|---|---|---|
Application | Short-Pulses | Long-Pulses | Pulses |
Cell death | IRE | IRE | IRE |
Introduction of small molecules | RE | RE | – |
Extraction of molecules | RE | RE | – |
Introduction of large molecules | RE | – | RE |
Cell fusion | RE | RE | – |
RE | IRE | |||
---|---|---|---|---|
In Vitro | In Vivo | In Vitro | In Vivo | |
Peak | 400∼ | — | 250∼ | 500∼ |
# of pulses | 8 | — | 10∼3000 | 8∼180 |
Duration | — | ∼ | ∼ |
Parameter | Symbol | Description |
---|---|---|
Plateau voltage | V | The desired pulse peak voltage |
Pulse width | The pulse duration and calculated between pulse rise and fall at V | |
Overshoot voltage | The exceeded value over plateau during rise time | |
Undershoot voltage | The exceeded value below zero during fall time. | |
Voltage drop | The voltage sag below plateau during the pulse period | |
Rise time | Duration pulse takes to up-rise from to of plateau voltage | |
Fall time | Duration pulse takes to decrease from to of () |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshahat, M.A.; Elgenedy, M.A.; Aboushady, A.A.; Williams, M.T.S. Cancer Treatment: An Overview of Pulsed Electric Field Utilization and Generation. Appl. Sci. 2023, 13, 10029. https://doi.org/10.3390/app131810029
Alshahat MA, Elgenedy MA, Aboushady AA, Williams MTS. Cancer Treatment: An Overview of Pulsed Electric Field Utilization and Generation. Applied Sciences. 2023; 13(18):10029. https://doi.org/10.3390/app131810029
Chicago/Turabian StyleAlshahat, Mahmoud A., Mohamed A. Elgenedy, Ahmed A. Aboushady, and Mark T. S. Williams. 2023. "Cancer Treatment: An Overview of Pulsed Electric Field Utilization and Generation" Applied Sciences 13, no. 18: 10029. https://doi.org/10.3390/app131810029
APA StyleAlshahat, M. A., Elgenedy, M. A., Aboushady, A. A., & Williams, M. T. S. (2023). Cancer Treatment: An Overview of Pulsed Electric Field Utilization and Generation. Applied Sciences, 13(18), 10029. https://doi.org/10.3390/app131810029