
Citation: Zhao, Y.; Lv, Y.; Li, C.

Hardware Acceleration of Satellite

Remote Sensing Image Object

Detection Based on Channel Pruning.

Appl. Sci. 2023, 13, 10111. https://

doi.org/10.3390/app131810111

Academic Editors: Feng Gao, Jin

Zheng and Qizhi Xu

Received: 14 August 2023

Revised: 2 September 2023

Accepted: 5 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Hardware Acceleration of Satellite Remote Sensing Image
Object Detection Based on Channel Pruning
Yonghui Zhao , Yong Lv and Chao Li *

College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China;
hero9968@nefu.edu.cn (Y.Z.); 2021116215@nefu.edu.cn (Y.L.)
* Correspondence: lichaonefuzyz@nefu.edu.cn; Tel.: +86-158-4650-7221

Abstract: Real-time detection of satellite remote sensing images is one of the key technologies in
the field of remote sensing, which requires not only high-efficiency algorithms, but also low-power
and high-performance hardware deployment platforms. At present, the image processing hardware
acceleration platform mainly uses an image processing unit (GPU), but the GPU has the problem
of large power consumption, and it is difficult to apply to micro-nano satellites and other devices
with limited volume, weight, computing power, and power consumption. At the same time, the
deep learning algorithm model has the problem of too many parameters, and it is difficult to directly
deploy it on embedded devices. In order to solve the above problems, we propose a YOLOv4-
MobileNetv3 field programmable gate array (FPGA) deployment scheme based on channel layer
pruning. Experiments show that the acceleration strategy proposed by us can reduce the number of
model parameters by 91.11%, and on the aerial remote sensing dataset DIOR, the average accuracy
of the design scheme in this paper reaches 82.61%, the FPS reaches 48.14, and the average power
consumption is 7.2 W, which is 317.88% FPS higher than the CPU and reduces the power consumption
by 81.91%. Compared to the GPU, it reduces power consumption by 91.85% and improves FPS by
8.50%. Compared with CPUs and GPUs, our proposed lightweight algorithm model is more energy-
efficient and more real-time, and is suitable for application in spaceborne remote sensing image
processing systems.

Keywords: satellite remote sensing; FPGA; YOLOv4; pruning; quantify

1. Introduction

Remote sensing image target detection has been extensively applied in various fields,
including land resources planning [1], glacier change monitoring [2], disaster prevention
and relief [3], military national defense [4], urban safety supervision [5], forestry vegetation
monitoring [6], and many others. It holds significant scientific research value and offers
broad application prospects. Remote sensing image object detection can be broadly catego-
rized into traditional human-based feature extraction methods and deep learning-based
methods [7]. Traditional methods involve manually designing effective feature extractors to
perform target detection. On the other hand, deep learning methods employ convolutional
neural networks (CNNs) to extract features in a data-driven manner, allowing for contin-
uous learning and achieving object detection tasks. With the continuous advancement
and maturation of deep learning theory and technology, object detection performance
based on deep learning has surpassed traditional methods by a significant margin. It has
also gained broader applications in various domains, including image classification and
object detection tasks. Deep learning-based general object detection algorithms include
anchor-based methods. Prominent examples of anchor-based algorithms are one-stage
detection algorithms like SSD [8]; the YOLO series [9]; and two-stage detection methods like
Faster R-CNN [10] and Mask R-CNN [11]. Each of these algorithms has its own strengths
and offers distinct advantages in practical engineering applications. The two-stage de-
tection algorithm divides the object detection process into two stages. First, it generates

Appl. Sci. 2023, 13, 10111. https://doi.org/10.3390/app131810111 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810111
https://doi.org/10.3390/app131810111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0003-4396-9866
https://orcid.org/0009-0004-2777-0838
https://orcid.org/0000-0003-1932-7698
https://doi.org/10.3390/app131810111
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810111?type=check_update&version=1

Appl. Sci. 2023, 13, 10111 2 of 24

candidate regions and then refines their positions before classifying them. The advantages
of the two-stage detection algorithm are its low detection and recognition error rates, as
well as a low rate of false positive detections. However, it has the drawback of slower
detection speed, making it less suitable for real-time object detection tasks in videos or
images. Therefore, two-stage detection algorithms are commonly used in applications that
require high-precision object detection, such as face recognition, medical image analysis,
and so on. In contrast, the one-stage detection algorithm does not involve a separate stage
for generating candidate regions. Instead, it directly generates the category probability
and position coordinate values of the objects. The final detection result can be obtained
after a single pass, resulting in faster detection compared to the two-stage algorithm.
Therefore, single-stage detection algorithms are commonly used in scenarios that require
fast processing, such as real-time video monitoring, autonomous driving, and so on.
In recent years, there have been significant advancements in anchor-free object detec-
tion algorithms, such as CenterNet [12] and FCO (fully convolutional one-stage object
detection) [13]. These algorithms revolutionize the traditional approach by eliminating the
dependence on predefined anchors.

Target detection in remote sensing images has garnered significant attention in the
field. The advancement of remote sensing satellite technology in recent years has spurred
research in spaceborne remote sensing image target detection systems. When applying
target detection in spaceborne remote sensing images to practical engineering, it becomes
crucial to consider not only detection accuracy but also real-time capabilities of the network
model and power consumption of the deployment platform. These factors play a vital
role in ensuring efficient and effective target detection in the context of remote sensing
imagery. To illustrate, let us consider the power constraints of small remote sensing
satellites like CubeSats. These satellites typically operate within a power budget of only
2–8 W [14]. In contrast, GPU platforms such as A100, RTX 2080Ti, RTX 3090, Tesla V100,
and others have power consumption levels that far exceed the carrying capacity of the
satellite. This stark difference in power requirements poses a significant challenge when it
comes to deploying these GPU platforms directly on board. Therefore, it becomes essential
to explore alternative approaches or optimize existing algorithms to ensure efficient and
effective target detection within the power limitations of small remote sensing satellites.
As a result, the conventional approach in satellite remote sensing image processing involves
transmitting the captured images from satellites or aerial drones to GPU platforms on the
ground for further processing. Due to the power limitations of small remote sensing
satellites, it is more practical to offload the computational tasks to powerful GPU platforms
that are readily available on the ground. This approach allows for the utilization of
high-performance computing resources while overcoming the power constraints of the
satellite. By transmitting the images to a GPU platform on the ground, researchers can
leverage the capabilities of these platforms to process the remote sensing data efficiently and
accurately. However, the process of downloading image data to the ground for processing
introduces significant delays in data processing, resulting in reduced system efficiency.
This limitation poses challenges in meeting real-time detection requirements [15]. To
address this issue, researchers have begun exploring the deployment of convolutional
neural network (CNN) models on application-specific integrated circuits (ASICs) and field
programmable gate arrays (FPGAs) [16]. These specialized hardware platforms offer the
potential for accelerating and optimizing the processing of image data, thereby improving
overall system efficiency. By leveraging the parallel computing capabilities of ASICs and
FPGAs, researchers aim to overcome the latency associated with transmitting data to the
ground, enabling more efficient real-time detection. This research direction can overcome
the challenges posed by traditional GPU processing and meet the stringent requirements of
real-time detection in remote sensing applications. Among them, FPGAs have emerged as
an alternative to GPUs in spaceborne scenarios due to their advantages such as low power
consumption, high performance, parallel computing capabilities, programmability, and

Appl. Sci. 2023, 13, 10111 3 of 24

customization. They possess the characteristics of high flexibility and lower cost compared
to ASICs [17].

When deploying CNN models on embedded devices, it is common to trade off some
accuracy in order to improve detection speed and reduce the number of model parameters.
Currently, commonly used methods include model compression [18] and the utilization
of more lightweight network models [19] to decrease the model size. These techniques
enable the deployment of CNN models on embedded devices with reduced computational
complexity and memory footprint, while still maintaining acceptable performance levels.

To cater to the real-time target detection needs of remote sensing images in spaceborne
applications, while addressing challenges related to deep learning model parameters, com-
putational complexity, and hardware platform deployment, this paper presents an efficient
lightweight algorithm called YOLOv4-MobileNetv3. Additionally, channel pruning is
performed on this algorithm. Furthermore, the Xilinx Vitis AI tool chain is employed
to quantize, compile, and deploy the pruned network model at the edge. The primary
contributions of this paper can be summarized as follows:

• Significant Reduction in Model Parameters: The acceleration strategy we proposed
achieves a remarkable reduction in the number of model parameters, with the param-
eter size being only 0.09 times that of the original YOLOv4. This reduction not only
enhances the efficiency of model storage but also contributes to faster inference times.

• Proposed Deployment Scheme: We have developed a novel deployment scheme
for YOLOv4-MobileNetv3 on an FPGA using channel layer pruning. The proposed
deployment scheme addresses the challenges of high power consumption and real-
time performance in hardware deployment platforms for object detection, enabling
efficient implementation on resource-constrained hardware.

• Superiority in Energy Efficiency and Real-Time Processing: Our lightweight algorithm
model outperforms CPUs and GPUs in terms of both energy efficiency and real-time
performance. This makes our proposed solution highly suitable for spaceborne remote
sensing image processing systems, where the efficient utilization of resources is crucial.

The remaining sections of this paper are structured as follows: Section 2 provides
an overview of related work, including common lightweight network model structures,
compression techniques for network models, and FPGA deployment of CNN models.
Section 3 presents the experimental design for this study. It begins by introducing image
enhancement techniques, followed by the detailed description of the improved YOLOv4-
MobileNetv3 network model structure, then introduces the related experimental work
of sparse training and channel pruning for YOLOv4-MobileNetv3. Finally, it covers the
process of utilizing Vitis AI for quantizing the pruned network model and compiling it for
deployment on FPGA platforms. Section 4 outlines the experimental setup and analyzes the
results. It evaluates and compares the performance of the improved network model against
the mainstream network model. Additionally, it analyzes and compares the performance
of the network model deployed on different hardware platforms. Lastly, Section 5 provides
a summary of the entire paper. It discusses the key findings and future research directions
in this field.

2. Related Work
2.1. Lightweight Network

Using a lightweight network as the backbone feature extraction network can better
deploy CNN models to embedded devices. At present, the mainstream lightweight net-
works mainly include the ShuffleNet series [20], NasNet [21], GhostNet [19], SqueezeNet,
WeightNet, MicroNet, the EfficientNet series, the MobileNet series, etc. SqueezeNet reduces
the number of input channels for pooling and images in the network model by employing
1× 1 convolution and packet convolution [22]; The SqueezeNext network structure borrows
from the residual structure and uses the separation convolution reduction operation [23].
Figure 1 shows the network architecture diagram of ShuffleNet, MobileNetv1, MobileNetv2,
and WeightNet. In the ShuffleNet series of networks, the ShuffleNetv1 network proposes

Appl. Sci. 2023, 13, 10111 4 of 24

a channel shuffle operation, which can not only reduce the amount of network compu-
tation, but also increase the convolution dimension; The ShuffleNetv2 network proposes
a channel split operation, which divides the input features into two parts, which can
achieve the effect of feature reuse while achieving the effect of accelerating the network [24];
The WeightNet network integrates CondConv and SENet on the weight space, and directly
generates convolution kernel weights by adding a packet fully connected layer after the
activation vector, thereby improving the computational efficiency [25]; MobileNetv1 is a
lightweight network developed by Google for the deployment of neural networks on the
mobile terminal, using depthwise convolution (DWC) and pointwise convolution (PWC)
to build deep separable convolution greatly improves the running speed, but also bringing
a large amount of information loss of images [26]; MobileNetv2 network is a lightweight
convolutional neural network launched by Google in 2018, which has two innovations
compared to the MobileNetv1 network: inverted residuals (inverted residual structure)
and linear bottlenecks. The inverted residual structure is first on the input feature matrix,
through 1 × 1 convolution to upgrade the dimension and increase the channel size. Then,
the DW convolution kernel of 3 × 3 is used for convolution processing, and finally the
dimensionality reduction is carried out by the convolution kernel of 1 × 1 [27].

1x1 Gconv

Channel
Shuffle

1x1 GConv

3x3
DWConv

Add

1x1 Gconv

Channel
Shuffle

1x1 GConv

3x3 DWConv
(stride=2)

Concat

BN_ReLU

BN

BN

ReLU

3x3 AVG
Pool

(stride=2)

BN_ReLU

BN

BN

ReLU

1x1 Gconv

1x1 GConv

3x3
DWConv

Add

BN

ReLU

BN_ReLU

BN_ReLU

(a)ShuffleNet

(c)WeightNet

WN

Grouped
FC

FCs

Conv Conv Conv

WN WN

weight weight weight

Weight network

Dwise 3x3，
stride=5,Relu

6

Conv 1x1，
Relu6

Input

(b)MobileNetv1

Add

Conv
1x1,Linear

Dwise
3x3,Relu6

Conv
1x1,Relu6

Input Input

Conv
1x1,Linear

Dwise
3x3,Relu6

Conv
1x1,Relu6

Stride=1 block Stride=2 block

(d)MobileNetv2

Figure 1. Comparison of convolutional blocks with different network structures.

Appl. Sci. 2023, 13, 10111 5 of 24

2.2. Model Pruning and Quantization

Since the popularization of deep convolutional neural networks, convolutional neural
networks have gradually developed in the direction of making deeper and more complex
network structures. By increasing the number of layers of the deep convolutional data
network, stronger representation ability is obtained, which improves the accuracy and
generalization ability of the model [28]. However, the complex network structure also
brings problems such as large number of parameters, high computational complexity, and
slow detection speed, and such deep models are difficult to deploy from bulky servers to
embedded and mobile devices with limited computing power and memory space.

Some researchers have discovered through studies of the human brain that neuronal
synapses initially increase and subsequently decrease in individuals as they continue
to develop. This phenomenon has given rise to the concept of pruning. Neural net-
work pruning has demonstrated the ability to reduce model parameters by over 80%
while significantly enhancing inference performance, with minimal impact on accuracy.
Jonathan et al. proposed the lottery hypothesis to find out the winning lottery tickets of
large networks by pruning experiments on the weights of the smallest magnitude, and the
winning ticket weights will return to the initial value before training, thus proving that
the luck of the winning ticket comes from initialization [29]. Li et al. proposed a pruning
method based on the L1 norm, and used the L1 norm to prune unimportant weights.
This approach does not introduce additional regularization, but has limitations due to
the L1 norm and is not applicable to some special weights [30]. Han et al. [31] propose a
method to use model training to learn the connection and prune the model small weight
join, which reduces the amount of storage required by AlexNet by 233.1 M without loss
of accuracy. Liu et al. proposed a simple and efficient pruning scheme that advances the
scale factor in the batch normalized (BN) layer towards 0 by L1 regularization, and prunes
unimportant channels by assessing the importance of the λ parameters of the BN layer.
This method has the characteristics of generalization accuracy, and a certain accuracy can
be restored after fine-tuning the pruned model [32]. Molchanov et al. proposed a method
to use Taylor expansion to evaluate the influence of neurons on loss values, and then prune
small neurons through continuous iterative pruning [33].

Model quantification came into interest in the 2010s. Model quantization can con-
vert the floating-point algorithm of the neural network model into fixed-point numbers,
and taking 8-bit quantization as an example, the 32-bit floating-point number model can be
compressed by 75% without reducing the model accuracy [34]. Quantization can effectively
accelerate model inference and is important for model deployment. Rastegari et al. [35]
approximated and simplified the model weights by binary representation of CNN model
weights, and achieved comparable accuracy with standard networks in ImageNet clas-
sification while reducing floating-point number operations. Han et al. [31] proposed a
three-stage model compression method in the technology of the predecessor technique:
pruning, training quantization, and Hoffman coding, which reduced the number of model
weight parameters by tens of times. In the network quantization and weight sharing
section, the network model is compressed by reducing the number of bits required for
weights. Their method reduces the total number of weights by connecting the same
weights and fine-tuning the weights being shared. The 4× 4 matrices in the upper left
and lower right corners of Figure 2 represent the weight matrix and gradient matrix, re-
spectively, and the four colors green, light green, yellow, and dark blue represent four
different bins where the weights are quantified, and they share the same values for the
weights of the same bins. At the time of update, all gradients are added in groups by
bin, then multiplied by the learning rate (lr) and subtracted from the last shared centroid.
This allows the COTV layer in the model to be quantized by 8 bits, reducing memory while
maintaining accuracy. Courbariaux et al. [36] proposed a training quantization method
for binary networks, quantized the BinaryConnect activation value to 1 bit, and replaced
addition and multiplication operations with bitwise operations, which effectively reduced
the memory consumption of memory. In 2022, Wang et al. [37] proposed a quantitative

Appl. Sci. 2023, 13, 10111 6 of 24

improvement strategy based on learnable lookup tables (LLT), which greatly reduced the
computational cost by converting quantification into a lookup process.

cluster

1.89

0.81

0.03

2.03

0

1.96

0.15

0.96

1.42

0

1.18

1.45

1.39

1.13

2.14

0.01

3

0

1

3

1

3

1

0

2

1

0

2

2

0

3

1

0.07

0.01

0.01

0.03

0.02

0.02

0.01

0.01

0.01

0.04

0.02

0.03

0.02

0.01

0.12

0.02

0.03

0.04

0.02

0.04

1.00

0.00

1.50

2.00

0.97

0.04

1.48

1.96

0.01

0.02

0.03

0.03

0.02

0.01

0.01

0.12

0.01

0.01

0.02

0.12

0.01

0.04 0.02

0.07

3:

2:

1:

0:

Group by

Weights
(32 bit float) Cluster index

(2 bit uint) Centroids
Fine-tuned
centroids

Reduce

Gradient
xlr

Figure 2. Weight sharing.

2.3. FPGA Acceleration of CNN

In recent years, researchers have focused their attention on how to deploy CNNs
on hardware acceleration platforms. On the one hand, CNN has a large amount of cal-
culation and a large amount of data. How to optimize the network algorithm for hard-
ware deployment has become a research hotspot. Some researchers have optimized the
computational data flow of CNNs to take advantage of the parallelism of the algorithm.
Li et al. [38] proposed an algorithm framework of CBFF-SSD, based on SSD, using
lightweight MobileNet as the feature extraction network of the algorithm model.
At the same time, a deep learning processing hardware architecture supporting parallel pro-
cessing of feature maps was designed, and the deployment of the model was completed on
Xilinx XC7Z100. Caba [39] and others developed a highly optimized new HyperLCA algo-
rithm for the limited power consumption budget and low-bandwidth downlink of remote
sensing platforms such as drones, and used Xilinx (San Jose, CA, USA) Zynq-7000 seri-
eschips to complete the FPGA Heterogeneous acceleration. This design scheme can achieve
real-time detection effect in real-life hyperspectral application engineering. Compared
with the three GPUs of Jetson Nano, Jetson TX2, and Jetson XavierNX, their FPGA solu-
tion is lower in price and higher in performance, and has the lowest power consumption,
being just over 3 W. Fan H. [40] proposed the design scheme of deploying SSDLiteM2-
MobileNetv2 on Xilinx ZC706, and realized the 8-bit fixed-point quantization of SSDLiteM2-
MobileNetv2 through the quantization scheme. The experimental scheme reached a detec-
tion speed of 65 frames per second, meeting the requirements of real-time detection need.
Zhang et al. [41] completed the deployment of the improved YOLOv2 network model
on Xilinx (San Jose, CA, USA) ZYNQ xc7z035, and the power consumption was only
5.96 W. Based on the YOLOX-s network model, Wang et al. optimized its core convo-
lution module. At the same time, they designed a three-way prefetch cache queue to
make full use of the on-chip data reuse model to solve the external DDR bandwidth in the
multi-level cache process. The cache bottleneck problem is solved and the model infer-
ence performance is improved. The design architecture achieves an average throughput
of 399.62 GOPS, and the computing efficiency of DSP reaches 97.56%. Compared with
other researchers’ designs, resource utilization has been greatly improved. Yan T. et al. [42]
proposed a scheme to automatically deploy CNN on FPGA. A series of hardware-oriented
CNN improvements are proposed to reduce the model complexity. Based on this, a
reconfigurable array of processing engines and an efficient convolution computing ar-
chitecture are designed as hardware accelerators. At the same time, a compilation tool
chain is also introduced to realize the automatic conversion of CNN models to hardware
instructions, which facilitates the deployment of various network models on hardware.
Finally, the deployment of the improved models of VGG16 and YOLOv2 on FPGA was

Appl. Sci. 2023, 13, 10111 7 of 24

realized, and the power consumption on Xilinx AC701 (San Jose, CA, USA) is 6.77 W and
6.51 W, respectively. This solves the problem that most FPGA acceleration solutions can
only target specific network models, and meet the low power consumption requirements of
airborne or spaceborne platforms. Tan [43] proposed an FPGA deployment scheme based
on network pruning and subgraph fusion, which reduces the number of model parameters
by 11 times and achieves 9–10 times inference acceleration while sacrificing part of the
detection accuracy of the model.

On the other hand, numerous researchers are leveraging the Vitis AI development
environment offered by Xilinx to accelerate artificial intelligence computations and explore
optimal neural network architectures for specific applications. Vitis AI offers a compre-
hensive development platform for efficiently deploying deep learning models on Xilinx
FPGAs and SoCs. Key components of Vitis AI include its compilers and runtime libraries.
They facilitate the transformation of models trained using popular deep learning frame-
works like TensorFlow, PyTorch, and Caffe into highly efficient hardware accelerators
through quantization and compilation techniques. By harnessing the parallel computing
capabilities of FPGAs and SoCs, these accelerators enable real-time applications and edge
devices to benefit from low-latency, high-throughput inference acceleration. By utilizing
Vitis AI, users can perform pruning, quantization, and compilation operations on network
models, and deploy them onto the FPGA of the Zynq-ultraScale series, including KV260,
ZCU102, ZCU104, and ZCU106. Wang et al. [44] proposed a YOLOv3 convolutional neural
network accelerator based on the FPGA+ARM architecture of the AXI bus. The YOLOv3
network model was quantified and pruned through the Vitis AI tool chain, and finally
deployed on Xilinx Zynq ZCU104 accelerating convolutional neural networks. The power
consumption of this solution is 25 W, and the FPS is 84.5518. Compared with GPU GeForce
GTX1080, it has lower power consumption and higher detection real-time performance.
Chen [45] and others used the Vitis AI 1.4 framework to complete the deployment of the
neural network model on the Xilinx ZCU 104 FPGA, and finally achieved 88.8% mAP and
28 FPS, realizing the real-time detection of the road unevenness detection system.

2.4. Difference from Existing Works

Most prior studies have predominantly focused on using lightweight feature extrac-
tion networks or applying pruning techniques independently. Currently, research on the
combination of lightweight network architectures with model pruning methods is limited,
leaving further scope for reducing model parameters. Furthermore, some outdated CNN
models such as SSD, YOLOv2, and YOLOv3 have achieved deployment on the FPGA end,
but their detection performance is somewhat inadequate. Conversely, the novel network
structure operators of some new models like CenterNet, YOLOv5, and YOLOv7 necessitate
substantial modifications to enable deployment on edge devices with restricted operators
and instruction sets, significantly impacting development cycles [46]. In summary, we
choose YOLOv4 as the reference model and employ MobileNetv3 to lightweight the feature
extraction network of YOLOv4. Subsequently, we employ a channel pruning strategy
for model pruning and further optimize the model parameters. Finally, to compress the
network model further and accomplish deployment on KV260, we utilize Xilinx (San Jose,
CA, USA) Vitis AI quantizer based on PTQ (post-training quantization) to quantize the
floating-point parameters into fixed-point data before model deployment.

3. Methodology
3.1. GridMask-Mosaic Data Augmentation

Data enhancement is a common method in the field of image processing to improve the
robustness of network models. The common methods are to crop, rotate, adjust brightness,
flip, and mask the image. Compared with YOLOv3, YOLOv4 uses the Mosaic algorithm in
data enhancement, which can better help the model to better learn targets from different
angles and locations, thereby improving the generalization ability and robustness of the
network model [47]. Mosaic data enhancement is an improved version of CutMix, and

Appl. Sci. 2023, 13, 10111 8 of 24

the two have certain similarities in theory. CutMix data augmentation involves splicing
two images together, where a random region is selected from one image and cut out, then
pasted onto another image to create a new training sample. This helps the model learn
to handle boundaries and contextual information between different objects. Mosaic data
augmentation, on the other hand, randomly arranges and reorganizes four input images by
applying random zooming, random cropping, random flipping, and color gamut changes
to generate a new composite image. This provides diverse and varied training samples,
aiding the model in learning to adapt to various complex scenes and object combinations.
Mosaic data enhances the image processing effect, as shown in Figure 3.

Figure 3. Mosaic data enhancement effect.

In practical applications, due to the complex shooting background environment, it
is inevitable that some remote sensing images will be occluded. The existing datasets do
not contain a sufficient number of occlusion scenes, and the data augmentation techniques
incorporated in the YOLOv4 network model do not support augmentation for occlusion.
In order to solve this problem, we use the GridMask algorithm to perform a target random
erasure operation on the training set part of the DIOR dataset, so as to achieve the purpose
of improving the robustness of the network model.

GridMask belongs to the data enhancement algorithm of the information deletion
category, which pays special attention to the degree of grasp of image information deletion.
Too much deletion of image information will cause the remaining image information to
fail to correctly express the target information, thus becoming noisy data, while too little
deletion of image information will cause the target to be unaffected and cannot improve the
robustness of the model [48]. The GridMask algorithm is based on the original information
deletion algorithm, and uses evenly distributed square areas to delete image information,
so that large areas of continuous images will not be deleted. The data enhancement effect
of GridMask combined with Mosaic is shown in Figure 4.

For the GridMask data enhancement algorithm, set the output image to f (x) = x×M,
in which x ∈ RH×C×W represents the input image and M ∈ (0, 1)H×Wrepresents the binary
mask. If it is 1, the original image information is retained, otherwise the original image
information is deleted, which f (x) represents the output image after the image has been
processed by the GM algorithm. Use parameters

(
r, d, δx, δy

)
to represent M and M is

unique, where r means the ratio of retaining the input image information, d determines the
size of the deleted area, and δx and δy are the distance from the first complete unit to the
image boundary.

Appl. Sci. 2023, 13, 10111 9 of 24

Where r represents the proportion of information in the input image, and for the
parameter r, define the hold ratio t given to M as shown in Equation (1):

t =
sum(M)

W × H
(1)

where W and H refer to the width and height of the input image, respectively; if t is too
small, the image will lose too much information, and the remaining area will become
noisy data, which cannot achieve the effect of improving the robustness of the model.
The relationship between r and t is shown in Equation (2).

t = 2r− r2 (2)

where d determines the size of a single deleted region, and when r remains unchanged,
the relationship between the side lengths l and d of a single deleted region is shown in
Equation (3).

l = d× r (3)

For d, the larger the d, the larger the l, and during training, the proportions are kept
unchanged. In addition, randomness is added to expand the diversity of the image, and
the value of d is shown in Equation (4).

d = random(dmin, dmax) (4)

When d is small, the probability of experimental failure can be reduced, but when it
is too small, it will lead to poor experimental results and cannot effectively improve the
robustness of the model. The masks of r and d can be determined by moving δx and δy, and
the values of δx and δy are shown in Equations (5) and (6), respectively.

δx = random(0, d− 1) (5)

δy = random(0, d− 1) (6)

Input

GridMask

GridMask

GridMask

GridMask

Mosaic

OutputData augmentation

Figure 4. GridMask-Mosaic data enhancement effect.

3.2. YOLOv4-MobileNetv3 Framework

Through the analysis of the network structure of YOLOv4, it can be seen that using
CSPDarkNet53 as the backbone extraction network can achieve better feature extraction
capabilities, but the network model still has the problem of a large number of parameters
and high computational complexity, which will consume a lot of computing resources and
is not suitable for deployment to embedded devices and FPGAs. We propose the YOLOv4-
MobileNetv3 network framework to solve the problem of large model parameters and high
computational complexity. The YOLOv4-MobileNetv3 network framework is shown in

Appl. Sci. 2023, 13, 10111 10 of 24

Figure 5. By adopting the lightweight network MobileNetv3 as the backbone extraction
network, the depthwise separable convolution is used to improve the network convolution
layer to reduce the amount of parameters. MobileNetv3 is a lightweight network that,
compared to other lightweight networks like Ghost, achieves higher performance while
maintaining its lightweight nature through the introduction of effective design strategies
and improved structure. It excels in accuracy and is particularly suitable for tasks that
require higher precision. By using lightweight components and operations, MobileNetv3
effectively reduces the number of parameters and computational complexity, resulting in
better efficiency in resource-constrained environments such as mobile devices. This means
that it can run on lower computational resources and is well suited for embedded devices
and mobile applications. In order to make the DPU support the neural network operator
of the network model, we also use the LeakyReLU function as the activation function,
and the LeakyReLU function is shown in the Equation (7). LeakyReLU is a commonly
used activation function in neural networks that enhances the robustness of the network.
Unlike the traditional ReLU activation function, LeakyReLU returns a small slope (typically
0.01) on its negative input range instead of simply returning 0. Its main advantage is
that it increases the robustness and non-linearity of neural networks while addressing
some training issues. The parameter α is a constant smaller than 1, typically set to 0.01.
The purpose of this function is to increase the non-linear characteristics of neural networks
and prevent the issue of dead neurons in the output layer. Additionally, LeakyReLU
can mitigate the problem of vanishing gradients during training, thereby improving the
training performance of the neural network. The SPP model pooling sizes of the original
YOLOv4 are 9 and 10, but due to compatibility problems with the DPU operator of KV260,
maxpool can only be downloaded from 22–88. So, we modified the pooling size of the
SPP model of YOLOv4 to 3, 5 and 7. Changing the pool size of the initial SPP model
can result in information loss and a decrease in spatial resolution, which may impact
detection performance for certain specific tasks. However, reducing the pool size allows us
to decrease computational requirements to some extent, thereby improving the inference
speed and efficiency of the model.

LeakyReLU = max(0, x) + α×min(0, x) (7)

Figure 5. YOLOv4-MobileNetv3 framework.

MobileNetv3 continues the linear bottlenecks and inverted residuals of MobileNetv2,
introduces 3× 3 depth separable convolution, uses the hswish activation function instead
of the swish function to reduce the amount of calculation, and adds the SE attention
mechanism module to improve the detection accuracy of the network model.

After modifying the feature extraction network and activation function, you only need
to train according to the normal method of the YOLOv4 model. Experiments show that the
parameters of the improved YOLOv4-MobileNetv3 model after lightweight processing are
11.47 M, which is 82.09% less than the original YOLOv4 network model.

Appl. Sci. 2023, 13, 10111 11 of 24

3.3. YOLOv4-MobileNetv3 Model Channel Pruning

The inference stage of the network model requires a large amount of memory band-
width, and the YOLOv4-MobileNetv3 model still has redundant weights and activation
values after lightweight processing, which leads to inefficient calculation in the model
inference stage. In addition, due to the limitation of instruction sets and basic operations
on hardware devices, many innovative modules or network layers will fail compilation,
which greatly limits the deployment of lightweight networks on the embedded side and
FPGA [49]. In view of the above situation, channel pruning is used to further compress the
YOLOv4-MobileNetv3 network model.

Compared to pruning methods that remove individual neurons, channel pruning
does not introduce sparsity into the initial CNN model architecture, thus requiring no
special hardware or software to implement [50]. This makes channel pruning extremely
versatile in network model pruning, applicable to almost all model inference platforms,
and suitable for hardware acceleration [51]. In channel pruning, the training acceleration
of the YOLOv4-MobileNetv3 network model is achieved by using batch normalization (BN)
between adjacent convolutional layers. The normalization operation is shown in Equation (8).

y =
γ(x− x̄)√

θ2 + ε
+ β (8)

where x̄ represents the mean of the input feature x, θ2 represents the variance, β represents
the bias, and γ represents the trainable scale factor. During training, γ is used to distinguish
between important and non-important channels of the YOLOv4-MobileNetv3 network
model. After selecting the pruning rate, non-critical channels are pruned, as shown in
Figure 6. Channel sparsity training is performed by using L1 regularization on γ; sparsity
training loss f (γ) is shown in Equations (9) and (10).

f (γ) = L(γ) + µ||γ||1 (9)

||γ||1 = |γ1|+ |γ2|+ |γ3|+ |γ4|+ · · ·+ |γn| (10)

Ci1

Ci2

Ci3

Ci4

Cin

.

.

.

ith
Conv_layer

BN_layer

C(i+1)1

C(i+1)2

1.17

0.01

0.46

0.02

0.93

After
pruning

Ci1

Ci3

Cin

.

.

.

ith

Conv_layer BN_layer

C(i+1)1

C(i+1)2

1.171

0.46

0.93

Original network Pruned network

(i+1)th
Conv_layer

(i+1)th
Conv_layer

Figure 6. Channel pruning.

The L(γ) in the first part of the equation represents the loss of YOLOv4-MobileNetv3;
µ represents the penalty factor; ||γ||1 represents the L1 norm of γ. Equation (11) is obtained
by expanding Equation (9) at γ∗, where H is represented as a Hessian matrix, and since the
trainable scale factors γ in the parameter are independent of each other, H can become a
diagonal matrix, as shown in Equation (12).

f (γ) = L(γ∗) + 0.5(γ− γ∗)× (γ− γ∗)T × H (11)

Appl. Sci. 2023, 13, 10111 12 of 24

H =

H(1,1)
. . .

H(n,n)

 (12)

Then, the original formula f (γ) can be expanded into Equation (13).

f (γ) = L(γ∗) + ∑
i=0

[0.5H(i,i)(γi − γ∗i)
2 + µ|γi|] (13)

Combined with the γ assumption of mutual independence, we can obtain Equation (14).

f (γi) = L(γi) + 0.5H(i,i)(γi − γ∗i)
2 + µ|γi| (14)

Equation (15) can be obtained by deriving the above Equation. For the Sgn function, if
the input is ω∗i than 0, the Sgn function will return 1; if it is equal to 0, the Sgn function will
return 0; if it is less than 0, the Sgn function will return −1.

H(i,i)(ωi −ω∗i) + µ× Sgn(ω∗i) = 0 (15)

In summary, it can be obtained γi, as shown in Equation (16).

γi =

 Sgn
(
γ∗i
)
(|γ∗i −

µ
H(i,i)

), |γ∗i | >
µ

H(i,i)

0, |γ∗i | ≤
µ

H(i,i)

(16)

The scale factor of each BN layer of the YOLOv4-MobileNetv3 network before and
after pruning is shown in Figures 7 and 8. It can be seen that after the sparse training is
completed, the γ coefficient is concentrated around 0, which means that the sparse training
is saturated. The output of a channel close to 0 approximates a constant and can be clipped.

Figure 7. The distribution of γ coefficients in each BN layer before sparse training.

Figure 8. The distribution of γ coefficients in each BN layer after sparse training.

After sparse training at 300 epochs, channel pruning was performed on the sparse
YOLOv4-MobileNetv3 network model using a pruning rate of 0.85. The experimental

Appl. Sci. 2023, 13, 10111 13 of 24

results show that the parameter size of the model after pruning is 9.42 M, and the parameter
size is reduced by 2.05 M.

3.4. Vitis AI Deploys CNN

This paper adopts Xilinx Zynq (AMD Xilinx, San Jose, CA, USA) a software and hard-
ware collaborative acceleration platform combining FPGA and ARM UltraScale + MPSoC
realizes the edge deployment of YOLOv4-MobileNetv3. UltraScale + MPSoC is composed
of two core devices: programmable logic (PL) and a processing system (PS). It overcomes
the lack of real-time computing capability of the ARM processor, and improves the limited
algorithm realization capability of the FPGA. UltraScale + MPSoC adopts TSMC’s 16 nm
FinFET process node, which not only has high performance, but also greatly reduces power
consumption.

3.4.1. YOLOv4-MobileNetv3 Model Quantization

It is important to note that quantification methods also need to be used in conjunction
with specific hardware platforms. For example, NVIDIA uses TensorRT to quantify network
models and deploy them on Nano, TX1, and TX2 devices. Since our FPGA evaluation
boards are part of the Zynq UltraScale+ MPSoC series, we can choose Vitis AI’s quantizer
to quantize the model. The Vitis AI quantizer can reduce the computational complexity of
the network model with little loss of inference accuracy. The deep learning frameworks
currently supported by the Vitis AI quantizer are PyTorch and TensorFlow, and the quan-
tizer names are vai_q_pytorch and vai_q_tensorflow, respectively. We use Int8 fixed-point
quantization to optimize the algorithm model, and convert the 32-bit floating-point number
into an 8-bit fixed-point number format. The quantization algorithm is as Algorithm 1.
In the Vitis AI quantizer, the Pytorch quantizer supports two different methods: post-
training quantization (PTQ) and quantize aware training (QAT), to quantize deep learning
models. This paper selects the PTQ scheme to quantize the YOLOv4-MobileNetv3 model.
PTQ is a technology that converts the pretrained floating-point model into a quantized
model, and its characteristic model accuracy loss is extremely low. Model quantification
generally needs to determine the number of quantized pictures according to the scene. The
more detection categories and the more complex the scene, the more pictures required for
quantization. Combined with the characteristics of many detection scenes in the DIOR
dataset, this experiment uses 4000 images as a representative calibration dataset for calibra-
tion to run several batches of inference on the floating-point model to obtain the distribution
of activations.

Algorithm 1: Model Quantization
Input: input 32-bit floating-point weight
Output: Deployment file

1 Floating point model;
2 pretreatment;
3 Quantify the weight and calibrate the activation;
4 while Calibration data set (No label) do
5 if and else;
6 if Qualified don’t accuracy then
7 Quantitative fine-tuning;
8 End of quantization.
9 else

10 End of quantization.
11 end
12 end
13 Generate the DPU model ;
14 Compile;
15 Deployment.

Appl. Sci. 2023, 13, 10111 14 of 24

3.4.2. YOLOv4-MobileNetv3 Model Compilation and Deployment

The quantized network model needs to be compiled and mapped into a highly op-
timized DPU instruction stream before the DPU core can be scheduled on the FPGA
to achieve hardware acceleration. The compiler in the Vitis AI suite can perform the
compilation operation of the quantized network, which includes an optimizer, parser,
and code generator. After the Vitis AI Library compiler (VAL_C) analyzes the topology
of the optimized and quantized input model, VAL_C will build an internal calculation
graph as an intermediate representation (IR), and build a control flow and data flow
based on this. Then, it compiles and optimizes operations based on the calculation graph.
Finally, the code generator will map the optimized calculation graph to the DPU
instruction stream.

3.4.3. DPU Core Configuration

A deep learning processor (DPU) is a programmable accelerator optimized for neural
network models. It consists of a set of parameterizable IP cores that can be implemented
through hardware programming without layout and wiring. DPU supports most op-
erations of deep learning, such as convolution, pooling, full connection, activation, etc.
Vitis AI provides a series of DPUs for Xilinx’s Kria KV260, Versal card, AIveo card, Zynq
UltraScale + MPSoC and other embedded devices. The parameters of the DPU can be
configured according to the application, so as to improve throughput, latency, and scala-
bility, and unique differences and flexibility are achieved in terms of power consumption.
The DPU architecture parameters are shown in Table 1. Combining the logic resources
of KV260 and the parameters of the network model, we choose B4096 as the core of the
DPU architecture. The DPU 4096 architecture provides high computational power and
processing speed, making it suitable for handling complex tasks and large-scale data.
The KV260 faces high demands for computational resources, requiring the processing of
massive amounts of data and complex calculations. The high-performance computing
capability of the DPU 4096 makes it an ideal choice to meet these requirements. Addi-
tionally, the DPU 4096 architecture has been widely applied and validated, ensuring its
stability and reliability. Choosing a proven architecture like this helps mitigate risks during
development and deployment and ensures system stability and consistency.

Table 1. DPU parameter architectures.

DPU
Architectur DSP LUT Peak

Operand
Channel

Parallelism Pixel

B512 118 27,893 512 8 4
B800 166 30,468 800 10 4

B1024 230 34,471 1024 8 8
B1152 222 33,238 1152 12 4
B1600 326 38,716 1600 10 8
B2304 438 42,842 2304 12 8
B3136 566 47,667 3136 14 8
B4096 710 53,540 4096 16 8

4. Experiments and Evaluation

This section will describe the experimental details. By comparing and analyzing the
performance of different network models, we can evaluate the superiority of our design
scheme. At the same time, through the comparison of power consumption of different hard-
ware platforms, it is shown that our design scheme has significant advantages compared
with GPU and CPU in the application scenario of spaceborne remote sensing images.

4.1. Dataset Description

We use the optical remote sensing image dataset DIOR created by Li et al. of Northwest-
ern Polytechnical University to evaluate the performance of the algorithm model [52]. The

Appl. Sci. 2023, 13, 10111 15 of 24

DIOR dataset is a large-scale optical remote sensing image dataset, including 23,463 images
with a size of 800× 800 and a resolution ranging from 0.5 m to 30 m. There are 192,472 in-
stances in total, covering 20 object categories.The images in the DIOR dataset cover a span of
several years, capturing a wide range of imaging conditions, weather variations, and seasons.
This diversity ensures that the dataset provides a representative collection of remote sensing
data. In our experiments, 80% of the images in the DIOR dataset are selected as the training
set, along with 10% for the validation set and 10% for the test set. Figure 9 shows some
examples of images from the DIOR dataset. Sample images of golffield, vehicle, trainstation,
chimney, groundtrackfield, airplane, stadium, tenniscourt, storage tank, ship, windmill
and airport are shown in (a) to (l), respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9. DIOR dataset image example: (a) golffield; (b) vehicle; (c) trainstation; (d) chimney;
(e) groundtrackfield; (f) airplane; (g) stadium; (h) tenniscourt; (i) storage tank; (j) ship; (k) windmill;
(l) airport.

4.2. Experiment Environment

The deep learning framework of this paper adopts Pytorch1.8, based on the operating
system of Ubuntu18.04; the Python version is 3.8, the integrated development environment
is PyCharm professional version, and the Vitis AI version is Vitis AI 2.5. Two NVIDIA
A100s are used to train the network model and pruning. The hardware platform CPU
is AMD R7-4800H, the GPU is NVIDIA RTX 2060 (6G), and the FPGA is Xilinx KV260.
During the training and pruning process, the batch size is set to 32, the input image size is
416 × 416, the initial learning rate is 0.001, the optimizer is SGD, and the cosine annealing
strategy is used to dynamically adjust the learning rate.

4.3. Evaluation Indicators

In this paper, mean of average precision (mAP) is used to evaluate the target detection
effect; the parameter quantity and FPS are used to evaluate the detection speed; the class
deployment platform is extremely important, so the power consumption index is used to

Appl. Sci. 2023, 13, 10111 16 of 24

evaluate the processing performance of the hardware deployment platform. The relevant
formulas are as follows:

FPS =
x
T

(17)

Precision =
TP

FP + TP
(18)

recall =
TP

FN + TP
(19)

AP =
∫ 1

0
P(x)dx (20)

mAP =
N

∑
k=1

APk
N

(21)

In Equation (17), x represents the number of detected pictures, T is the time consumed
to detect x pictures, FPS represents the number of pictures detected per unit time: the higher
the FPS, the faster the detection speed, the higher the real time. In Equations (18) and (19),
FP is the detected false sample, which is the sample detected in the target detection task
where the target class is inconsistent with the real class; TP is a true sample, indicating that
the detected target class is the same as the real class, and FN is a false negative sample,
indicating a sample that actually exists but has not been detected. Equation (21) mAP refers
to the average of the average accuracy (AP), and all classes detected by the model can
be drawn from the accuracy recall to form a curve, and the area enclosed by this curve
and the coordinate axis is AP, which is represented by Equation (20). N represents the
detection categories.

Xilinx provides the Maxim PowerTool GUI tool and Uart software (AMD Xilinx,
San Jose, CA, USA, version 2.32.03) for developers to perform power testing of FPGas.
According to the actual situation, this paper uses the Maxim PowerTool USB cable with
chip and the corresponding GUI software to test the real-time power of FPGA. Although
the Maxim PowerTool can display real-time current and voltage levels, it cannot save
historical data. We programmed a program in Python language to read out memory values
in real time and detect average power by reading power values in continuous time. The
calculation formula for the power metric is a fundamental equation used to quantify the
rate of energy transfer or consumption in a system. It is expressed as Equation (22), where
T is the total time of consumption, and p(t) represents the function of power as a function
of time.

P =

∫ T
0 p(t)dt

T
(22)

4.4. Ablation Experiment

In order to verify the effect of algorithm model optimization, the feature extraction
network, convolution module, channel pruning, and quantization models in the exper-
iment were ablated experiments, and the experimental results are shown in Figure 10.
In Figure 10, A represents the original YOLOv4 network model with 64.04 M parameters
and an mAP of 84.47%. B represents the model using the MobileNetv3 feature extraction
network without deep separable convolution modules, with a parameter size of 39.99 M
and an mAP of 83.69%. C represents the model using the MobileNetv3 feature extraction
network with deep separable convolution modules, with a parameter size of 11.47 M and
an mAP of 81.54%. D represents the model after data enhancement using GridMask and
Mosaic algorithms, with 11.47 M parameters and an mAP of 82.24%. E represents the model
after applying channel-level pruning, with 9.42 M parameters and an mAP of 83.03%. F

Appl. Sci. 2023, 13, 10111 17 of 24

represents the model after Vitis AI quantization, with 5.69 M parameters and an mAP of
82.61%.

From the data in the figure, it is evident that after replacing the feature extraction
network and incorporating deep separable convolution operations, the model accuracy
decreased by 2.93%, while the number of model parameters was significantly reduced
by 52.57 M. This is because lightweight feature extraction networks and deep separable
convolution networks, compared to the original network structure, sacrifice some fea-
ture representation capabilities, resulting in lower accuracy. However, this reduction in
accuracy comes with significant reductions in the number of model parameters, which
leads to improved efficiency when dealing with limited computing resources. Follow-
ing the data augmentation operation, there was a 0.7% improvement in the accuracy
of the algorithm, indicating that data augmentation has a positive effect on enhancing
model accuracy. Channel pruning reduces the number of parameters in the model by
identifying and removing redundant channels in the network. After pruning, the unused
channels no longer contribute to the forward and backpropagation processes, resulting
in reduced computational and storage requirements. By applying channel pruning and
fine tuning, an additional reduction of 2.05 M parameters is achieved, making the model
more lightweight. Moreover, through the fine-tuning and retraining process, the model
is further optimized and adapted, leading to improved accuracy and an additional 0.79%
performance boost. Channel trimming and fine-tuning effectively compress the model
size, reduce parameters, and enhance accuracy through retraining and optimization. This
strategy is highly effective for optimizing models, striking a balance between reducing
complexity and resource usage while maintaining high performance. Finally, after model
quantization, the parameter size of the model decreased by 39.6%, while the accuracy
decreased by 0.42%. In conclusion, the model improvement scheme presented in this
paper reduces the size of the model parameters to 5.69 M at the expense of 1.86% mAP,
which is a reduction of 91.11% compared to the original YOLOv4 model. The impact
of each improvement scheme is evident, as they synergistically complement each other
and ultimately deliver notable results in terms of model parameter count and detection
accuracy metrics.

4.5. Comparative Experiments

Table 2 compares the data of the lightweight model proposed by us after pruning with
the current mainstream target detection models Faster-RCNN, SSD, Centernet, YOLOv3,
and YOLOv4. From the data in the Table 2, we can see that the mAP of the YOLOv4-
MobileNetv3 model is 83.03%, 14.28% higher than Faster-RCNN, 4.85% higher than SSD,
4.05% higher than Centernet, 2.93% higher than YOLOv3, and 1.44% lower than YOLOv4.
The parameter size is 9.42 M, which is 93.13% less than Faster-RCNN, 63.98% less than
SSD, 71.17% less than Centernet, 84.72% less than YOLOv3, and 85.29% less than YOLOv4.
Compared to Faster-RCNN, SSD, Centernet, and YOLOv3, our improved model achieves
the best mAP with minimal parameters. The accuracy of the pruned and fine-tuned
YOLOv4-MobileNetv3 model remains lower compared to the original YOLOv4 network.
This disparity can be attributed to the inadequate feature expression capability resulting
from the utilization of a lightweight feature extraction network. Consequently, the model
struggles to capture abundant information and target features in the input image, leading
to a decrease in the detection accuracy. In contrast, we made a compromise by sacrific-
ing 1.44% of the mAP in order to reduce the model parameters to only 0.15 times the
size of the original YOLOv4 network. While this reduction in accuracy is within accept-
able limits, our main focus lies in achieving optimal performance on the FPGA platform.
This strategic decision holds significant importance for our specific application require-
ments in terms of computational efficiency and resource utilization.

Appl. Sci. 2023, 13, 10111 18 of 24

Figure 10. Ablation experiment: parameters and mAP changes. (A) YOLOv4 original network
model; (B) model using MobileNetv3 feature extraction network without depth-wise separable
convolution modules; (C) model using MobileNetv3 feature extraction network with depth-wise
separable convolution modules; (D) model after data augmentation; (E) model after channel pruning;
(F) model after quantization.

Table 2. Comparison of mainstream model data.

Network
Model Faster-RCNN SSD Centernet YOLOv4 YOLOv3 Ours

Backbone VGG16 SSD Resnet50 CSPDarkNet53 Darknet53 MobileNetv3
airplane 0.78 0.91 0.91 0.95 0.87 0.94
airport 0.87 0.88 0.92 0.93 0.86 0.95

baseballfield 0.89 0.94 0.95 0.97 0.94 0.96
basketballcourt 0.83 0.85 0.83 0.86 0.87 0.83

bridge 0.40 0.45 0.48 0.57 0.50 0.50
chimney 0.78 0.84 0.83 0.83 0.78 0.84

dam 0.91 0.80 0.84 0.87 0.84 0.82
Expressway-
toll-station 0.59 0.68 0.71 0.87 0.80 0.77

Expressway-
Service-area 0.89 0.92 0.90 0.94 0.88 0.95

golffield 0.83 0.88 0.81 0.82 0.85 0.85
groundtrackfield 0.82 0.87 0.86 0.89 0.79 0.88

harbor 0.63 0.67 0.62 0.71 0.65 0.71
ship 0.27 0.76 0.84 0.93 0.93 0.91

stadium 0.95 0.96 0.88 0.96 0.71 0.94
storagetank 0.45 0.65 0.75 0.86 0.82 0.81
tenniscourt 0.87 0.94 0.93 0.95 0.93 0.95
trainstation 0.58 0.63 0.70 0.71 0.75 0.71

vehicle 0.21 0.42 0.50 0.63 0.65 0.54
windmill 0.65 0.88 0.85 0.91 0.94 0.90
overpass 0.67 0.69 0.66 0.73 0.72 0.68
mAP (%) 68.75 78.18 78.98 84.47 80.10 83.03

Parameters 137.08 M 26.15 M 32.67 M 64.04 M 61.63 M 9.42 M

The comparison of the partial image detection effect of the pruned YOLOv4-MobileNetv3
algorithm framework proposed in this paper and the mainstream target detection algorithm
on the dataset DIOR is shown in Figure 11.

Appl. Sci. 2023, 13, 10111 19 of 24

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11. Comparison of mainstream model detection effect. (a) Faster-RCNN; (b) SSD; (c) Centernet;
(d) YOLOv3; (e) YOLOv4; (f) ours.

Appl. Sci. 2023, 13, 10111 20 of 24

4.6. Hardware Acceleration Platform Comparison

In order to verify the superiority of the proposed deployment scheme, the mainstream
deep learning general-purpose processor CPU and GPU were selected for experimental
comparison of inference performance. The CPU selected is the AMD R7-4800H and the
GPU is NVIDIA RTX 2060 (6G), and the table shows the performance test data comparison
of FPGA, GPU, and CPU. As can be seen from the data in Table 3, the FPGA deploy-
ment scheme proposed by us reduces power consumption by 81.91% and increases FPS
by 317.88% compared with CPU AMD R7-4800H. Compared to the GPU NVIDIA RTX
2060, power consumption is reduced by 91.41% and FPS is increased by 8.50%. Our de-
sign solution has a detection speed much higher than the normal human eye persistence
time of 24 frames per second, which meets the real-time requirements of object detection,
and the power consumption is only 7.2 W, which can meet the low power consumption
requirements of airborne and spaceborne aircraft.

Table 3. Hardware platform comparison.

Hardware
Platform Device Frequency

(MHz) mAP (%) Power (W) FPS

CPU AMD
R7-4800H 2900 83.03 39.8 11.52

GPU NVIDIA RTX
2060 1365 83.03 88.39 44.37

FPGA XilinxKV260 200 82.61 7.2 48.14

The improved model deployed to Xilinx KV 260 after quantization has an mAP
of 82.61%, which is 0.42% lower than that of the model before quantization, which is
due to the slight accuracy degradation of floating-point numbers due to quantization.
During the quantization process of Vitis AI, precision loss occurs due to the conversion
of original floating-point parameters into fixed-point representation. In floating-point
representation, parameters can have higher precision and can represent numbers with
multiple decimal places, while fixed-point representation can only represent numbers
with a fixed number of decimal places or integers. In the quantization process, floating-
point parameters are rounded or truncated into fixed-point parameters to accommodate
limited computational resources of hardware platforms. This can cause information loss
and rounding errors, as the fine details and decimal places of the original model are
constrained to fewer bits. Precision loss in the quantization process can potentially impact
the performance and accuracy of the model. As the parameters become coarser, the
model may fail to capture subtle features and complex relationships present in the original
model. As shown in Figure 12, it is evident that despite the accuracy loss resulting from
the quantization process, overall, there is minimal impact on the target detection effect.
This implies that the quantization process does not hinder the practical application of the
model in real-world projects.

Appl. Sci. 2023, 13, 10111 21 of 24

(a) (b)

Figure 12. Before and after quantization, different effects were compared. (a) Before quantization;
(b) after quantization.

4.7. Comparison of Different Studies

Table 4 provides a comparison between our proposed approach and previous methods.
It is noteworthy that our solution has achieved the best results in terms of FPS and power
consumption, which can be attributed to the integration of a series of lightweight tech-
niques. By employing a lightweight feature extraction network that combines depth-wise
separable convolutions and utilizing two crucial model compression methods, pruning and
quantization, we have ultimately enabled our model to exhibit exceptional detection speed
performance. Additionally, when comparing Kv260 with ZCU104, Kv260 demonstrates a
power advantage.

Table 4. Comparison of different studies.

Method
FPGA

Evaluation
Board

CNN FPS Power (W)

[53] ZCU104 YOLOv4 27.97 15.82
[54] ZCU104 YOLOv4 17 20

Ours KV260 YOLOv4 48.14 7.2

5. Conclusions

This paper proposes an FPGA-based image processing solution for remote sensing
images on the aerospace platform, which is based on a lightweight network and network
pruning technique applied to YOLOv4-Mobilenetv3. The main improvements of this solu-
tion include the use of the lightweight feature extraction network MobileNetv3, aiming to
reduce the model parameters and improve the detection speed. To further reduce the model
parameters and improve computational efficiency, deep separable convolutions are utilized.
Additionally, channel pruning techniques are combined to prune redundant parameters,
further reducing the model parameters and redundant calculations, thereby improving
computational efficiency. In response to the decrease in accuracy after pruning, we fine-
tune the model to enhance its accuracy, even surpassing the accuracy before pruning. To
adapt to the complex backgrounds of remote sensing images, we apply data augmentation

Appl. Sci. 2023, 13, 10111 22 of 24

techniques such as Mosaic and GridMask on the DIOR dataset to enhance the model’s
robustness and adaptability to various complex backgrounds. For the UltraScale + MPSoC
platform used, we utilize the matching quantization tool Vitis AI Quantizer to perform
post-training quantization (PTQ) on the pruned YOLOv4-Mobilenetv3 network model, and
compile it using Vitis AI compiler, finally deploying it on the Xilinx KV260.

The comparative experimental results on the DIOR dataset demonstrate that our
improved network model outperforms mainstream object detection models in terms of
mAP and parameter quantity, with mAP slightly lower than the original YOLOv4 model.
To validate the superiority of our FPGA acceleration solution, we select the mainstream deep
learning hardware deployment platforms, CPU and GPU, for performance comparison.
Experimental results show that our FPGA deployment solution has significant advantages
in terms of power consumption and FPS. Compared with CPU AMD R7 4800H, FPS
improves by 317.88% and power consumption decreases by 81.91%; compared with GPU
NVIDIA RTX 2060 (6G), power consumption decreases by 91.85%, and FPS increases
by 8.50%. In the scenarios of unmanned aerial and aerospace remote sensing image
processing, limited by power consumption, weight, and volume, our design solution meets
the requirements of low power consumption and high real-time performance.

The high-performance, low-power image processing hardware acceleration solution
proposed in this paper provides some ideas for deploying CNN models on satellite plat-
forms and unmanned aerial platforms. There are still areas for improvement in our experi-
mental approach, as this paper mainly focuses on the post-processing of remote sensing
images and only provides a data augmentation scheme for pre-processing. However, in
practical engineering, there are usually issues such as noise, distortion, or uneven lighting
in the original images captured by satellites. Therefore, pre-processing operations are re-
quired before object detection and recognition. Pre-processing steps may include denoising,
geometric correction, radiometric calibration, etc., to improve image quality and accuracy.
Furthermore, satellite images often have large scales and high resolutions, requiring opera-
tions such as cropping, scaling, or segmentation to adapt to specific application scenarios
or analysis needs. In future research, we plan to focus on pre-processing and optimize
the mAP metric for post-processing object detection tasks, as well as further improve the
detection accuracy of the algorithm model through knowledge distillation.

Author Contributions: Conceptualization, Y.Z. and Y.L.; methodology, Y.L. and Y.Z.; software,
Y.L.; validation, Y.L.; investigation, C.L. and Y.Z.; writing—original draft preparation, Y.Z. and
Y.L.; writing—review and editing, C.L., Y.L. and Y.Z.; visualization, Y.L.; supervision, Y.Z. and C.L.;
funding acquisition, C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Science Foundation of Heilongjiang Province
(LH2023F003) for financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data required to reproduce these findings cannot be shared at
this time as the data also form part of an ongoing study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, J.; Xia, M.; Wang, D.; Lin, H. Double Branch Parallel Network for Segmentation of Buildings and Waters in Remote Sensing

Images. Remote Sens. 2023, 15, 1536. [CrossRef]
2. Cook, K.L.; Andermann, C.; Gimbert, F.; Adhikari, B.R.; Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the

Himalaya. Science 2018, 362, 53–57. [CrossRef] [PubMed]
3. Voudouri, K.A.; Ntona, M.M.; Kazakis, N. Snowfall Variation in Eastern Mediterranean Catchments. Remote Sens. 2023, 15, 1596.

[CrossRef]
4. Zhu, M.; Xu, Y.; Ma, S.; Li, S.; Ma, H.; Han, Y. Effective airplane detection in remote sensing images based on multilayer feature

fusion and improved nonmaximal suppression algorithm. Remote Sens. 2019, 11, 1062. [CrossRef]

http://doi.org/10.3390/rs15061536
http://dx.doi.org/10.1126/science.aat4981
http://www.ncbi.nlm.nih.gov/pubmed/30287655
http://dx.doi.org/10.3390/rs15061596
http://dx.doi.org/10.3390/rs11091062

Appl. Sci. 2023, 13, 10111 23 of 24

5. Hong, T.; Liang, H.; Yang, Q.; Fang, L.; Kadoch, M.; Cheriet, M. A real-time tracking algorithm for multi-target UAV based on
deep learning. Remote Sens. 2022, 15, 2. [CrossRef]

6. Wei, W.; Polap, D.; Li, X.; Woźniak, M.; Liu, J. Study on remote sensing image vegetation classification method based on decision
tree classifier. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21
November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2292–2297.

7. Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016,
117, 11–28.

8. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings,
Part I 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37.

9. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

10. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances
in Neural Information Processing Systems 28 (NIPS 2015); NeurIPS: San Diego, CA, USA, 2015.

11. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference On Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

12. Duan, K.; Bai, S.; Xie, L.; Qi, H.C.; Huang, Q.; Tian, Q. Keypoint Triplets for Object Detection. In Proceedings of the IEEE
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 27–32.

13. Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9627–9636.

14. Arnold, S.S.; Nuzzaci, R.; Gordon-Ross, A. Energy budgeting for CubeSats with an integrated FPGA. In Proceedings of the 2012
IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–14.

15. Yao, Y.; Jiang, Z.; Zhang, H.; Zhou, Y. On-board ship detection in micro-nano satellite based on deep learning and COTS
component. Remote Sens. 2019, 11, 762. [CrossRef]

16. Amara, A.; Amiel, F.; Ea, T. FPGA vs. ASIC for low power applications. Microelectron. J. 2006, 37, 669–677. [CrossRef]
17. Chen, J.; Zhang, J.; Jin, Y.; Yu, H.; Liang, B.; Yang, D.G. Real-time processing of spaceborne SAR data with nonlinear trajectory

based on variable PRF. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [CrossRef]
18. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. In Advances in Neural Information

Processing Systems 29 (NIPS 2016); NeurIPS: San Diego, CA, USA, 2016.
19. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.
20. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

21. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.

22. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

23. Gholami, A.; Kwon, K.; Wu, B.; Tai, Z.; Yue, X.; Jin, P.; Zhao, S.; Keutzer, K. Squeezenext: Hardware-aware neural network design.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22
June 2018; pp. 1638–1647.

24. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

25. Ma, N.; Zhang, X.; Huang, J.; Sun, J. Weightnet: Revisiting the design space of weight networks. In Proceedings of the European
Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 776–792.

26. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

27. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

28. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
29. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 2018, arXiv:1803.03635.
30. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
31. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv 2015, arXiv:1510.00149.
32. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744.
33. Molchanov, P.; Mallya, A.; Tyree, S.; Frosio, I.; Kautz, J. Importance estimation for neural network pruning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11264–11272.

http://dx.doi.org/10.3390/rs15010002
http://dx.doi.org/10.3390/rs11070762
http://dx.doi.org/10.1016/j.mejo.2005.11.003
http://dx.doi.org/10.1109/TGRS.2020.3034752

Appl. Sci. 2023, 13, 10111 24 of 24

34. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the Speed of neuRal Networks on CPUs. 2011. Available online: https:
//research.google.com/pubs/pub37631.html?source=post_page (accessed on 4 September 2023)

35. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 525–542.

36. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

37. Wang, L.; Dong, X.; Wang, Y.; Liu, L.; An, W.; Guo, Y. Learnable lookup table for neural network quantization. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 12423–12433.

38. Li, L.; Zhang, S.; Wu, J. Efficient object detection framework and hardware architecture for remote sensing images. Remote Sens.
2019, 11, 2376. [CrossRef]

39. Caba, J.; Díaz, M.; Barba, J.; Guerra, R.; de la Torre, J.A.; López, S. Fpga-based on-board hyperspectral imaging compression:
Benchmarking performance and energy efficiency against gpu implementations. Remote Sens. 2020, 12, 3741. [CrossRef]

40. Fan, H.; Liu, S.; Ferianc, M.; Ng, H.C.; Que, Z.; Liu, S.; Niu, X.; Luk, W. A real-time object detection accelerator with compressed
SSDLite on FPGA. In Proceedings of the 2018 International Conference on Field-Programmable Technology (FPT), Naha, Japan,
10–14 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 14–21.

41. Zhang, N.; Wei, X.; Chen, H.; Liu, W. FPGA implementation for CNN-based optical remote sensing object detection. Electronics
2021, 10, 282. [CrossRef]

42. Yan, T.; Zhang, N.; Li, J.; Liu, W.; Chen, H. Automatic Deployment of Convolutional Neural Networks on FPGA for Spaceborne
Remote Sensing Application. Remote Sens. 2022, 14, 3130. [CrossRef]

43. Tan, S.; Fang, Z.; Liu, Y.; Wu, Z.; Du, H.; Xu, R.; Liu, Y. An SSD-MobileNet Acceleration Strategy for FPGAs Based on Network
Compression and Subgraph Fusion. Forests 2022, 14, 53. [CrossRef]

44. Wang, J.; Gu, S. Fpga implementation of object detection accelerator based on vitis-ai. In Proceedings of the 2021 11th International
Conference on Information Science and Technology (ICIST), Chengdu, China, 21–23 May 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 571–577.

45. Chen, W.H.; Hsu, H.J.; Lin, Y.C. Implementation of a Real-time Uneven Pavement Detection System on FPGA Platforms. In
Proceedings of the 2022 IEEE International Conference on Consumer Electronics-Taiwan, Taipei, Taiwan, 6–8 July 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 587–588.

46. Chu, Y.; Li, P.; Bai, Y.; Hu, Z.; Chen, Y.; Lu, J. Group channel pruning and spatial attention distilling for object detection. Appl.
Intell. 2022, 52, 16246–16264. [CrossRef]

47. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
48. Chen, P.; Liu, S.; Zhao, H.; Jia, J. Gridmask data augmentation. arXiv 2020, arXiv:2001.04086.
49. Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate

detection of apple flowers in natural environments. Comput. Electron. Agric. 2020, 178, 105742. [CrossRef]
50. Fan, S.; Liang, X.; Huang, W.; Zhang, V.J.; Pang, Q.; He, X.; Li, L.; Zhang, C. Real-time defects detection for apple sorting using

NIR cameras with pruning-based YOLOV4 network. Comput. Electron. Agric. 2022, 193, 106715. [CrossRef]
51. Liu, H.; Fan, K.; Ouyang, Q.; Li, N. Real-time small drones detection based on pruned yolov4. Sensors 2021, 21, 3374. [CrossRef]
52. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.

ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]
53. Li, C.; Xu, R.; Lv, Y.; Zhao, Y.; Jing, W. Edge Real-Time Object Detection and DPU-Based Hardware Implementation for Optical

Remote Sensing Images. Remote Sens. 2023, 15, 3975. [CrossRef]
54. Lyu, S.; Zhao, Y.; Li, R.; Li, Z.; Fan, R.; Li, Q. Embedded sensing system for recognizing citrus flowers using cascaded fusion

YOLOv4-CF+ FPGA. Sensors 2022, 22, 1255. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://research.google.com/pubs/pub37631.html?source=post_page
https://research.google.com/pubs/pub37631.html?source=post_page
http://dx.doi.org/10.3390/rs11202376
http://dx.doi.org/10.3390/rs12223741
http://dx.doi.org/10.3390/electronics10030282
http://dx.doi.org/10.3390/rs14133130
http://dx.doi.org/10.3390/f14010053
http://dx.doi.org/10.1007/s10489-022-03293-x
http://dx.doi.org/10.1016/j.compag.2020.105742
http://dx.doi.org/10.1016/j.compag.2022.106715
http://dx.doi.org/10.3390/s21103374
http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023
http://dx.doi.org/10.3390/rs15163975
http://dx.doi.org/10.3390/s22031255

	Introduction
	Related Work
	Lightweight Network
	Model Pruning and Quantization
	FPGA Acceleration of CNN
	Difference from Existing Works

	Methodology
	GridMask-Mosaic Data Augmentation
	YOLOv4-MobileNetv3 Framework
	YOLOv4-MobileNetv3 Model Channel Pruning
	Vitis AI Deploys CNN
	YOLOv4-MobileNetv3 Model Quantization
	YOLOv4-MobileNetv3 Model Compilation and Deployment
	DPU Core Configuration

	Experiments and Evaluation
	 Dataset Description
	Experiment Environment
	Evaluation Indicators
	Ablation Experiment
	Comparative Experiments
	Hardware Acceleration Platform Comparison
	Comparison of Different Studies

	Conclusions
	References

