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Abstract: As multiprocessor (or multicore) real-time systems become popular, there has been much
research on multiprocessor real-time scheduling algorithms. This work evaluates EDZL (Earliest
Deadline until Zero Laxity), a scheduling algorithm for real-time multiprocessor systems. First, we
compare the performance of EDZL schedulability tests. We measure and compare the ratio of task
sets admitted by each test. We also investigate the dominance between EDZL schedulability tests
and discover that the union of the demand-based test and the utilization-based test is an effective
combination. Second, we compare the schedulability of EDZL and EDF(k). We prove that the union
of the EDZL schedulability tests dominates the EDF(k) schedulability test, i.e., the union of the EDZL
schedulability tests can admit all task sets admitted by the EDF(k) schedulability test. We also compare
the schedulability of EDZL and EDF(k) through scheduling simulation by measuring the ratio of
successfully scheduled task sets. EDZL can successfully schedule 7.0% more task sets than EDF(k).

Keywords: multiprocessor; real-time; schedulability; EDZL; EDF(k); dominance

1. Introduction

As multiprocessor systems running real-time applications become popular, there has
been much research on algorithms that can correctly schedule real-time tasks with timing
constraints as well as significantly utilize multiple processors (or multicores) [1–6]. Some
of them are optimal, i.e., they can fully utilize multiple processors, but they suffer from
scheduling overhead such as task splitting and frequent preemption. EDZL (Earliest Dead-
line until Zero Laxity) [7,8] is a practical real-time scheduling algorithm for multiprocessor
systems. It is not optimal but it can achieve a high processor utilization with restricted
scheduling overhead. Many researchers have extended or applied the EDZL algorithm to
various applications. Alhussian and Zakaria [9] proposed a variant of EDZL, the LEZL
(Largest Execution until Zero Laxity) scheduling algorithm. Choi et al. [10] proposed the
EVDZL (Earliest Virtual Deadline Zero Laxity) algorithm that applies EDZL to mobile
GPU scheduling. There are other research works that apply EDZL scheduling algorithm
to virtual cloud environments, mixed-criticality systems or large-scale real-time cloud
systems [11–14]. In reference [15], the EDZL algorithm was integrated with a task-level
re-execution-based fault tolerance technique.

To employ a real-time scheduling algorithm in real systems, a schedulability test for
the algorithm is undoubtedly required. A schedulability test is a method that examines
in advance whether a task set will be correctly scheduled by the scheduling algorithm or
not. We can guarantee the satisfaction of the timing constraints (deadlines) of real-time
tasks to implement a safe real-time system only if a given task set is admitted by one of
the schedulability tests for the scheduling algorithm. If a task set that does not pass any
schedulability test was executed, it might violate its timing constraints, i.e., miss a deadline.
A deadline miss in hard real-time systems may cause a system failure or catastrophe.
We do not perform a task set on a hard real-time system if the task set does not pass any

Appl. Sci. 2023, 13, 10131. https://doi.org/10.3390/app131810131 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810131
https://doi.org/10.3390/app131810131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6100-103X
https://orcid.org/0000-0001-7392-6742
https://doi.org/10.3390/app131810131
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810131?type=check_update&version=1


Appl. Sci. 2023, 13, 10131 2 of 16

schedulability test. Note that there can be more than one schedulability test for a scheduling
algorithm. Many researchers try to develop a tighter schedulability test because a tighter
schedulability test can accommodate more tasks and admit more task sets.

There have been several studies on the schedulability test for the EDZL algorithm.
Piao et al. [16] proposed the first EDZL schedulability test, which is based on a schedulable
utilization bound. Piao’s test is very simple and too pessimistic. It cannot guarantee the
successful execution of task sets whose total utilization is higher than (m + 1)/2 where m
is the number of processors. Wei et al. [17] presented a tighter test that can be applied to
two processor systems. Baker et al. [18] proposed a more elaborate, slack-based test. By
computing the slack of tasks iteratively, it provides a much tighter condition than Piao’s
test. Baker’s slack-based test outperforms Piao’s test in terms of the number of admitted
task sets. However, sometimes the slack-based test does not admit task sets with low total
utilization that are admitted even by Piao’s test. Lee and Shin [19] proposed a simple,
but effective, utilization-based test. The utilization test has some advantages over the
slack-based test. First, its implementation is simple and the computation complexity is
lower than the slack-based test. Second, it outperforms the slack-based test in terms of the
number of admitted task sets. Third, it dominates Piao’s test, as we will prove in Section 4.1.
Additionally, the authors showed that the utilization-based test and the slack-based test
do not dominate each other. Later, Lee and Shin also proposed a demand-based test [20].
They developed a demand bound function for job-level dynamic priority scheduling and
proposed a complicated but very tight EDZL schedulability test. The demand-based test
outperforms other EDZL schedulability tests in terms of the number of admitted task sets.
They also showed that the demand-based test is not dominated by other tests.

The above research evaluated the EDZL schedulability tests from a quantitative per-
spective. The EDZL schedulability tests are compared in terms of the number of admitted
task sets. But, these tests are not fully evaluated from a qualitative perspective. Whether the
demand-based test dominates other tests is not revealed. The dominance between Piao’s
test and other tests is not disclosed, either. On the other hand, the EDZL schedulability
tests have not been compared with other scheduling algorithms’ schedulability tests, which
are also practical and have comparable performance.

This paper evaluates the schedulability of the EDZL algorithm. First, we compare
the performance of the EDZL schedulability tests from a quantitative and qualitative
perspective. We generate all possible task sets in a restricted range and analyze them
with the above-mentioned schedulability tests. We measure and compare the ratio of task
sets admitted by each test. As a result, the demand-based schedulability test outperforms
other tests, similarly to the experimental results in reference [20]. We also investigate the
dominance between the EDZL schedulability tests. We prove that the utilization-based
test dominates Piao’s test. And we discover that the slack-based test, the utilization-
based test and the demand-based test do not dominate each other. The experimental
results implies that the union of the demand-based test and the utilization-based test is an
effective combination. Second, we compare the schedulability of EDZL with EDF(k) [21],
which is another practical multiprocessor real-time scheduling algorithm. We find out that
the utilization-based EDZL schedulability test is equivalent to the EDF(k) schedulability
test. This implies that the union of the EDZL schedulability tests dominates the EDF(k)

schedulability test, i.e., the EDZL schedulability test can admit all task sets admitted by the
EDF(k) schedulability test. We also compare the schedulability of EDZL and EDF(k) through
scheduling simulation. We measure and compare the ratio of successfully scheduled task
sets. EDZL can successfully schedule 7.0% more instances than EDF(k).

The contributions of this work are as follows.

• The dominance between the EDZL schedulability tests is unveiled. The utilization-
based test dominates Piao’s test. The slack-based, utilization-based, and demand-
based tests do not dominate each other.

• This work proves that the utilization-based EDZL schedulability test is equivalent to
the EDF(k) schedulability test. The two tests dominate each other.
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• A EDZL schedulability test that dominates the EDF(k) schedulability test can be easily
constructed by unioning the EDZL schedulability tests. The union of the EDZL
schedulability tests admits more task sets than the EDF(k) schedulability test.

• The performance of EDZL and EDF(k) scheduling was compared in terms of the
number of successfully scheduled task sets. We found out that EDZL can accommodate
more task sets than EDF(k).

This paper is organized as follows. Section 2 provides the background knowledge
about the EDZL and EDF(k) schedulability tests. Section 3 compares the performance of
the EDZL schedulability tests. Section 4 compares the performance of EDZL and EDF(k)

scheduling. Finally, Section 5 concludes our work.

2. Background
2.1. System Model

We consider the preemptive scheduling of periodic task sets τ = {τ1, τ2, . . . , τn} with
unrestricted task migration on m identical processors (or cores). Task τi is a periodic task
denoted by τi = (ci, pi), where ci is an execution time and pi is a period. Task τi periodically
releases a job τi,j at time (j− 1)pi and the job requires the execution of, at most, ci by its
deadline di,j(= jpi) for j = 1, 2, . . . The utilization of τi is defined as ui = ci/pi. The total
utilization of τ is U(τ) = ∑ ui. The tasks are assumed to be indexed in the order of non-
increasing utilization, i.e., ui ≥ ui+1. A task set τ(i) is defined as a subset of τ, consisting
of (n − i + 1) tasks of lower utilization, that is, τ(i) = {τi, τi+1, . . . , τn}. The amount of
remaining execution of job τi,j at time t is ri,j(t). Laxity is the amount of time for which a
job can idle safely without missing its deadline. We denote the laxity of τi,j at time t by
lxi,j(t) = di,j − t− ri,j(t). The notations are summarized in Table 1.

Table 1. Notations.

Notation Description

m the number of processors
n the number of tasks
τ periodic task set
τi the ith task
τi,j the jth job of τi
ci the execution time of τi
pi the period of τi

di,j the deadline of τi,j
ui the utilization of τi

U(τ) the total utilization of task set τ

τ(i) τ(i) = {τi, τi+1, . . . , τn}
ri,j(t) the remaining execution time of τi,j at time t
lxi,j(t) the laxity of τi,j at time t

We assume preemptive scheduling, i.e., any job can be preempted by a higher priority
job at any time. We also assume that task migration is allowed, i.e., a preempted job can
be resumed later on any available processor and the cost is negligible. A job cannot be
executed on more than one processor at the same time and each processor cannot execute
more than one job at the same time.

2.2. Real-Time Scheduling on Multiprocessors

Real-time scheduling approaches on multiprocessors can be categorized, in terms of
task migration, as partitioned and global. In the partitioned approach, tasks are divided
into partitions and each partition is associated with a processor. Tasks cannot migrate
between partitions (processors), i.e., a task is assigned to a processor statically and all jobs
released by the task should execute on the processor. Each processor schedules a partition
with one of uniprocessor scheduling algorithms such as RM (Rate Monotonic) [22], EDF
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(Earliest Deadline First) [22], and DM (Deadline Monotonic) [23]. The merit of partitioned
scheduling is that well-studied uniprocessor scheduling analysis can be applied for each
processor. However, it is difficult to partition tasks optimally and achieve a high processor
utilization [24]. In the global approach, tasks are fully migratable. All jobs can start or
resume execution on any available processor. The merit of the global approach is that
tasks are automatically load-balanced and no task partitioning is required. Uniprocessor
scheduling algorithms can be adopted in the global scheduling approach [21,25,26].

EDF has strong points that it can be implemented efficiently [27] and the numbers of
preemption and migration can be bounded [28]. Most of all, EDF is optimal on unipro-
cessor systems. However, EDF is not optimal on multiprocessors. Simply employing an
optimal uniprocessor scheduling algorithm may not achieve high processor utilization in
multiprocessor systems. EDF may fail to successfully schedule task sets with low total
utilization on multiprocessors, suffering from Dhall’s effect [29]. A high-utilization task
with a long deadline (its laxity must be small) is apt to be interrupted by short deadline
tasks and miss its deadline (due to its small laxity).

One of the ways to overcome Dhall’s effect is assigning high priority to high-utilization
tasks to give them more chance to execute. EDF-variant algorithms such as
EDF-US[m/(2m − 1)], fpEDF, and EDF(k) were developed to adopt this policy. EDF-
US[m/(2m − 1)] [30] assigns the highest priority to tasks with utilization greater than
m/(2m − 1) and assigns a normal priority to the remaining tasks based on EDF. EDF-
US[m/(2m− 1)] can successfully schedule any task set whose total utilization is less than
or equal to m2/(2m− 1). fpEDF [31] gives the highest priority to, at most, (m− 1) largest-
utilization tasks with a utilization greater than 1/2. The remaining tasks are also given a
normal priority based on EDF. fpEDF can successfully schedule any task set whose total
utilization is less than or equal to (m + 1)/2. EDF(k) gives the highest priority to (k− 1)
largest-utilization tasks and the remaining tasks are given a normal priority based on
EDF. The schedulability of EDF(k) is discussed in Section 2.4. Since EDF(k) dominates
EDF-US[m/(2m− 1)] and fpEDF, as we will show in Section 2.4, it is sufficient to consider
the schedulability of EDF(k).

Another approach against Dhall’s effect is raising the priority of urgent jobs dynami-
cally. Laxity can be a metric for urgency. Small laxity indicates that there is little time to idle
or wait for execution. If the laxity of a job is zero, the job should be executed immediately.
Otherwise, it would miss its deadline. A ZL (Zero Laxity) policy raises the priority of a job
if its laxity becomes zero, so that it can be executed immediately. ZL policy can improve
the performance of fixed priority scheduling algorithms dramatically. ZL policy has been
analyzed and adapted to many real-time scheduling schemes [12,32–36]. EDZL [7] is a
global scheduling algorithm for multiprocessor real-time systems that firstly employs ZL
policy. In essence, EDZL gives priority to a job based on EDF. If a job’s laxity becomes
zero, ZL policy changes the priority of the job to the highest one. Note that the laxity is a
non-increasing function. Once a job is given the highest priority, it retains the priority until
it completes execution. The schedulability of EDZL is discussed in detail in Section 2.3.

The first optimal scheduling algorithm in the global approach is Pfair [1]. Pfair splits
every job into sub-jobs and assigns a pseudo release time and deadline for the sub-jobs
such that every job can progress at the same proportion. Pfair can successfully schedule
any task set whose total utilization is less than or equal to m. The drawbacks of Pfair is
the very high scheduling overhead. The number of context switches (or preemptions)
and migrations may be very high. To mitigate these drawbacks, other optimal algorithms
have been developed, like ERfair [37], EKG [2], LLREF [3], DP-Wrap [38], U-EDF [39], and
RUN [40]. Some of them employ a semi-partitioned approach where some tasks are allowed
to migrate but some are not. However, these algorithms require complex computation
for scheduling decisions and still incur more preemptions and migrations than EDZL
and EDF(k).

In this work, we compare the schedulability of EDZL and EDF(k). EDZL and EDF(k)

are not optimal, but we choose these algorithms because they are practical in the sense
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that the scheduler implementation cost is low, the scheduling overhead is bounded, and
they can achieve high processor utilization. They do not require task partitioning, job
splitting, frequent priority change or complex scheduling decisions. The implementation
of the schedulers is relatively simple. In addition, since the priority is given at job release
or the zero-laxity point (in case of EDZL), the number of preemptions in a time interval is
bounded by the number of jobs or two times the number of jobs (in case of EDZL) released
in the interval. The number of migrations is bounded by the number of preemptions.

2.3. EDZL Schedulability Test

EDZL employs a ZL policy. EDZL gives priority to a job based on EDF. If a job’s
laxity becomes zero, ZL policy changes the priority of the job to the highest one. There
are several studies on the EDZL schedulability test. In reference [8], the authors showed
that EDZL dominates EDF. This implies that any sufficient schedulability test for EDF
scheduling can be used for EDZL scheduling. Based on this, Piao et al. [16] proposed a
schedulable utilization bound-based schedulability test. They proved that any task set
satisfying U(τ) ≤ (m + 1)/2 is schedulable by EDZL. This is the first EDZL schedulability
test. Later, Wei et al. [17] presented a tighter test for m = 2.

Baker et al. [18] proposed a slack-based test. By computing the slack of tasks iteratively,
it checks whether (n−m) tasks have a positive slack lower bound, i.e., whether no more
than m tasks may have zero laxity at the same time. Algorithm 1 is the pseudo-code for the
iterative slack-based EDZL schedulability test, where

n∗i (s
lb
i ) =

⌊
max(0, pk − slb

i )

pi

⌋
(1)

and
εi(slb

i ) = min(ei, max(0, pk − slb
i )− n∗i (s

lb
i )pi). (2)

Baker’s slack-based test outperforms Piao’s test substantially in terms of the number of
admitted task sets. But they do not dominate each other. That is, there exists a task set that
can be admitted by Piao’s test but not by the slack-based test, and vice versa. In addition,
the slack-based test shows a higher time complexity than Piao’s test.

Algorithm 1 Iterative slack-based EDZL schedulability test [18]

1 : slb ← (0, . . . , 0)
2 : repeat
3 : converged← True
4 : in f easible← 0
5 : for k ∈ {1, . . . , n} do
6 : newSlack← pk − ek − 1

m ∑i 6=k min(n∗i (s
lb
i ) · ei + εi(slb

i ), pk − ek)

7 : if slb
k < newSlack then

8 : slb
k ← newSlack

9 : converged← False
10: endif
11: if slb

k ≤ 0 then
12: in f easible← in f easible + 1
13: endif
14: done
15: until converged or in f easible ≤ m
16: return in f easible ≤ m

Lee and Shin [19] proposed a utilization-based test (Theorem 1). It leverages the EDF
schedulability test proposed in reference [21] and the fact that EDZL dominates EDF [8].
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The merit of this test is simplicity. Since Equation (3) includes only task utilization values,
the test performs in a lower time complexity than the slack-based test and the demand-
based test. Moreover, the authors showed that the utilization-based test can admit much
more task sets than Baker’s slack-based test. It is known that the utilization-based test and
the slack-based test do not dominate each other [19]. However, the dominance between the
utilization-based test and Piao’s test has not been disclosed.

Theorem 1 (Theorem 2 in reference [19]). On m identical processors, task set τ will be correctly
scheduled by EDZL if there exists m′ = 1, 2, . . . , m such that

∑
τi∈T1

ui ≤ m′ − (m′ − 1) ·max
τj∈T1

uj (3)

where
T1 = {τi ∈ T | τi /∈ m−m′ tasks with the largest ui}.

Later, Lee and Shin derived a demand-bound function for EDZL and developed a
demand-based test [20]. They also presented the demand-based test for LLF (Least Laxity
First) scheduling [41]. These are the first demand-based tests for job-level dynamic priority
scheduling. They demonstrated that the demand-based test for EDZL outperforms the
slack-based test and the utilization-based test through simulation. However, the dominance
between them was not fully discovered. The authors showed that the demand-based test is
not dominated by other tests. However, whether the demand-based test dominates other
tests is not disclosed. Theorem 2 shows the test, where the demand bound function of τi in
an interval of length l is defined as follows.

DBFEDZL(τi, l) =
(⌊

l − pi
pi

⌋
+ 1
)
· ei + max

(
0, l −

(⌊
l − pi

pi

⌋
+ 1
)
· pi − (pi − ei)

)
(4)

and

DBF′EDZL(τi, l) =
⌊

1
pi

⌋
· ei + min(ei, l mod pi). (5)

Theorem 2 (Theorem 2 in reference [20]). A task set τ is schedulable under EDZL on an m-core
platform if at least |τ| −m tasks (τk ∈ τ) satisfy the following condition for all lk ≥ 0:

∑
τi∈τ

ÎEDZL(τi, lk) + ∑
m−1 largest τi∈τ

{ Î′EDZL(τi, lk)− ÎEDZL(τi, lk)} < m · (lk + Dk − Ck) (6)

where

ÎEDZL(τi, l) =

{
min(DBFEDZL(τi, l + pk), l + pk − ek) i f τi 6= τk

min(DBFEDZL(τi, l + pk)− ek, l) i f τi = τk

and

Î′EDZL(τi, l) =

{
min(DBF′EDZL(τi, l + pk), l + pk − ek) i f τi 6= τk

min(DBF′EDZL(τi, l + pk)− ek, l) i f τi = τk

2.4. EDF(k) Schedulability Test

EDF(k) gives the highest priority to the jobs of (k− 1) largest-utilization tasks. And the
jobs of the remaining tasks are given a priority according to EDF policy. This algorithm is
simple but effective. We can show that EDF(k) dominates EDF-US[m/(2m− 1)] and fpEDF.
EDF(k) can generates EDF-US[m/(2m − 1)] schedule or fpEDF schedule by controlling
k. For a given task set, EDF(k) can generate the same schedule as EDF-US[m/(2m− 1)]
by setting k such that uk−1 > m/(2m− 1) and uk ≤ m/(2m− 1). Similarly, EDF(k) can
generate the same schedule as fpEDF by setting k such that uk−1 > 1/2 and k ≤ m− 1.
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Therefore, any task set schedulable by EDF-US[m/(2m− 1)] or fpEDF is also schedulable
by EDF(k). Lemmas 1 and 2 follow.

Lemma 1. EDF(k) dominates EDF-US[m/(2m− 1)].

Lemma 2. EDF(k) dominates fpEDF.

In reference [21], the authors proposed a scheme that calculates a minimum number
of required processors to successfully schedule a given task set (Theorem 3). Based on this,
we can give a schedulability test for EDF(k), as shown in Corollary 1.

Theorem 3 (Theorem 8 in [21]). On m identical processors, task set τ will be correctly scheduled
by EDF(k) where

m = (k− 1) +

⌈
U(τ(k+1))

1− uk

⌉
(7)

Corollary 1. On m identical processors, task set τ will be correctly scheduled by EDF(k) if there
exists k = 1, 2, . . . , m such that

m ≥ (k− 1) +

⌈
U(τ(k+1))

1− uk

⌉
(8)

2.5. Dominance

Dominance is one of the ways to compare scheduling algorithms in terms of schedula-
ble task sets. For scheduling algorithms A and B, let TA and TB be the sets of all task sets
that are successfully scheduled by A and B, respectively. A is said to dominate B if TA ⊇ TB,
that is, A can successfully schedule all task sets that are schedulable by B. Park et al. [8]
showed that EDZL strictly dominates EDF. They proved that EDZL can correctly schedule
any task set that is schedulable by EDF and showed there is at least one task set schedulable
by EDZL but not schedulable by EDF.

On the other hand, dominance can be used to compare schedulability tests. For schedu-
lability tests P and Q, let TP and TQ be the sets of all task sets admitted by P and Q,
respectively. P is said to dominate Q if TP ⊇ TQ, that is, P can admit all task sets that are ad-
mitted by Q. We study the dominance between the EDZL schedulability tests. It is known
that the slack-based test and the utilization-based test do not dominate each other [19].
We investigate the dominance between the demand-based test and the other tests in
Section 3.2. We also discover the dominance between the EDZL schedulability test and
EDF(k) schedulability tests in Section 4.1.

3. Comparing EDZL Schedulability Tests

A schedulability test is a method to verify the schedulability of a task set prior to
actual scheduling. If a schedulability test is too pessimistic, it can admit a small number of
task sets and the processors may not be utilized enough. Hence, a schedulability test needs
to admit as many task sets as possible.

We evaluate and compare three EDZL schedulability tests—the slack-based test, the
utilization-based test, and the demand-based test—in terms of the number of task sets
admitted by each test. For evaluation, we generate all possible task sets in a restricted
range of task parameters. The parameters are the number of tasks in a task set, the period
of each task, and the execution time of each task in the domain of integers. The number of
tasks in a task set is varied from 3 to 6, i.e., n = 3, 4, 5, 6. The period of each task is varied
from 2 to 13, i.e., pi = 2, 3, . . . , 13. And the execution time is varied from 1 to (period − 1),
i.e., ci = 1, 2, . . . , pi − 1. The total number of task sets generated in this range is 406,478,384.

Each task set was tested with the three EDZL schedulability tests, varying the number
of processors from 2 to (n− 1). We excluded test instances (test instance: the combination
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of task set and the number of processors) whose task set utilization exceeds the number of
processors. The total number of test instances is 1,000,752,406.

3.1. Admission Ratio

The task set utilization of test instances falls on (0, m], where m is the number of pro-
cessors. We divide this range into m× 100 intervals of length 0.01. For each interval, all test
instances whose task set utilization is within the interval are grouped. Let numgrp be the
number of test instances belonging to group grp. For each group, we count the number of
test instances admitted by each test, denoted by admitgrp,test where test = slack, util, demand.
Then, we calculate admission ratio = admitgrp,test / numgrp for each test.

Figures 1–4 show the admission ratio of each EDZL schedulability tests when
m = 2, 3, 4, 5, respectively. Low-utilization task sets are admitted by all the three tests. Most
task sets with utilization less than 0.6×m are admitted by all tests. This value is close to
the Piao’s schedulable utilization bound, (m + 1)/2. However, as the task set utilization
increases, the number of admitted task sets decreases and so does the ratio. When the task
set utilization approaches m, the ratio decreases sharply. In all cases, the demand-based
test admits high-utilization task sets better than others. The ratio of the demand-based test
begins to decrease at a utilization much higher than other tests. The demand-based test
outperforms other tests.
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3.2. Dominance between EDZL Schedulability Tests

Figure 5 shows the number of test instances admitted by each test and their inter-
sections. The number of test instances admitted by the demand-based test is 884,159,737
(=181,804,304 + 93,269,942 + 1,280,464 + 607,805,027). The number of test instances admit-
ted by the utilization-based test is 701,454,278 (=379,191 + 93,269,942 + 118 + 607,805,027).
The number of test instances admitted by the slack-based test is 609,085,609 (=1,280,464 +
607,805,027 + 118).

Slack-based test

Demand-based test
Utilization-based test

181,804,304 379,191
93,269,942

1,280,464 118

607,805,027

Figure 5. Number of test instances admitted by each test and their intersections.
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The figure implies that the three EDZL schedulability tests do not dominate each
other. The number of test instances admitted only by the demand-based test is 181,804,304.
An example is τA = {(1, 2), (2, 3), (3, 4)} on two processors. This test instance is admitted
by the demand-based test but not by the utilization-based test nor by the slack-based
test. The number of test instances admitted only by the utilization-based test is 379,191.
An example is τB = {(1, 3), (1, 6), (6, 7), (5, 10)} on two processors. This test instance
is admitted by the utilization-based test, but not by the demand-based test nor by the
slack-based test.

An interesting result is that there is no test instance admitted only by the slack-based
test. We explored the experiment results carefully and found out that the demand-based
test does not dominate the slack-based test, i.e., there are test instances admitted by the
slack-based test but not by the demand-based test (e.g., {(1, 3), (1, 4), (1, 4), (3, 12), (3, 13)}
on two processors). And the utilization-based test does not dominate the slack-based test,
either, i.e., there are test instances admitted by the slack-based test but not by the utilization-
based test (e.g., {(1, 2), (2, 4), (1, 7), (3, 8)} on two processors). However, any test instance
admitted by the slack-based test can be also admitted by the demand-based test or the
utilization-based test in our experiments. Of course, this does not imply that the union
of the demand-based test and the utilization-based test (we denote this by Demand + Util)
dominates the slack-based test. But the experimental results imply that Demand + Util is
effective for the EDZL schedulability test.

As mentioned in Section 3.1, most task sets whose total utilization is below Piao’s
schedulable utilization bound are admitted by the three schedulability tests. However,
some task sets are admitted by Piao’s test but are not admitted by the slack-based test.
An example is task set τ = {(3,5), (1,6), (4,8), (1,10), (1,11)} on two processors. Its total
utilization is 1.46. This test instance is admitted by Piao’s test but not admitted by the
slack-based test. There are many test instances that are admitted by the slack-based test but
not admitted by Piao’s test. The slack-based test and Piao’s test do not dominate each other.

Piao’s schedulable utilization bound is the same as fpEDF’s. As mentioned in Section 2.2,
fpEDF can correctly schedule any task set τ if U(τ) ≤ (m + 1)/2. This implies that any
task set admitted by Piao’s test is also schedulable by fpEDF. According to Lemma 2.4, the
task set is admitted by the EDF(k) schedulability. Since the EDF(k) schedulability test and
the utilization-based EDZL schedulability test are equivalent (Theorem 5), the task set can
be also admitted by the utilization-based test. Therefore, Theorem 4 follows.

Theorem 4. The utilization-based schedulability test dominates Piao’s schedulability test.

3.3. Tightness

We introduce a metric for evaluating the performance of the schedulability tests.
We define tightness as the ratio of the number of admitted test instances to the number
of schedulable test instances. An ideal schedulability test for a scheduling algorithm
should admit all task sets that are schedulable by the algorithm. The tightness of an ideal
schedulability test would be 1.0. For a given set of test instances, a schedulability test that
can admit more test instances will have a higher tightness. We can use tightness to compare
the performance of schedulability tests.

The tightness is a function of the set of test instances. If a different set of test instances
is given, the set of schedulable test instances will be different, and thus the tightness of
the same schedulability test will be different. Hence, we can employ tightness to compare
the performance of schedulability tests for the same set of test instances. Furthermore,
the tightness cannot be used to compare the schedulability test of different scheduling
algorithms because the sets of schedulable test instances are different for the different
scheduling algorithms. Note that a higher tightness does not imply dominance.

To obtain the number of schedulable test instances, we implemented a custom simula-
tor for EDZL scheduling and performed simulations with the dataset. The simulator was
implemented using C language. Given a task set, the simulator computes a hyper-period
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of the task set. At every time from 0 to the hyper-period (in the domain of integers), the
simulator (1) checks the job release time of every task and generates jobs, (2) gives priority
to jobs based on deadline and laxity, (3) selects jobs to execute, (4) decreases the remaining
execution time of selected jobs, and (5) checks job completion or deadline miss. Then, it
outputs the simulation result. For each test instance in the dataset, EDZL scheduling was
simulated and we identified whether each instance was successfully scheduled without
missing any deadline during a hyper-period. As a result, the total number of schedulable
test instances is 990,451,970.

Figure 6 shows the tightness of each EDZL schedulability test. The tightness of the
demand-based test is much higher than other tests, as expected. The demand-based test
can admit 45.15% more test instances than the slack-based test and 26.05% more test
instances than the utilization-based test. And the union of the demand-based test and
the utilization-based test (Demand + Util) admits 884,539,046 test instances, yielding a
tightness of 0.8931.

Figure 6. Tightness for each EDZL schedulability test. Demand + Util represents the union of
demand-based test and utilization-based test.

4. Comparing EDZL and EDF(k)

This section compares the schedulability of EDZL and EDF(k). EDZL and EDF(k)

are not optimal, but they are practical with respect to implementation cost, scheduling
overhead, and high processor utilization. This section investigates the dominance between
their schedulability tests and compares the scheduling performance through simulations.

4.1. Dominance between EDZL and EDF(k) Schedulability Test

We look into the dominance between the schedulability tests for EDZL and EDF(k).
We found out that the result of the schedulability test for EDF(k) is always the same as that
of the utilization-based test for EDZL in our experiments. Motivated by this, Theorem 5
proves that the utilization-based test for the EDZL (Theorem 1) and EDF(k) schedulability
test (Corollary 1) are equivalent.

Theorem 5. The utilization-based EDZL schedulability test and the EDF(k) schedulability test
are equivalent.

Proof. We rewrite Equation (3) using the definition of τ(i) and the assumption that
ui ≥ ui+1 as follows.

U(τ(m−m′+1)) ≤ m′ − (m′ − 1) · um−m′+1 (9)
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Let k = m−m′ + 1. Then,

U(τ(k)) ≤ m− k + 1− (m− k) · uk

uk + U(τ(k+1)) ≤ m− k + 1− (m− k) · uk

U(τ(k+1)) ≤ (m− k + 1)(1− uk)

m ≥ (k− 1) +
U(τ(k+1))

1− uk
(10)

Since both m and k are integers, the above equation can be rewritten as follows.

m ≥ (k− 1) +

⌈
U(τ(k+1))

1− uk

⌉
(11)

If τ can be admitted by the utilization-based EDZL schedulability test, there exists
m′ satisfying Equation (9). Then, Equation (11) holds for k = m− m′ + 1., i.e., τ can be
admitted by EDF(k) schedulability. Similarly, if τ can be admitted by EDF(k) schedulability,
there exists k such that Equation (11) holds. Then, for m′ = m− k + 1 Equation (9) holds,
i.e., τ can be admitted by the utilization-based EDZL schedulability test. Therefore, the
utilization-based EDZL schedulability test and the EDF(k) schedulability test are equivalent
and dominate each other.

Theorem 5 implies that the set of task sets admitted by the utilization-based EDZL
test is the same as the set of task sets that are admitted by the EDF(k) schedulability
test. This also implies that Demand + Util can admit all task sets admitted by the EDF(k)

schedulability test. And, as explained in Section 3.2, there exist task sets that the demand-
based test can admit but the utilization-based test cannot. Therefore, Demand + Util strictly
dominates the EDF(k) schedulability test.

4.2. Success Ratio

This section compares the performance of EDZL and EDF(k) scheduling in terms of the
number of successfully scheduled test instances. In soft real-time systems, a deadline miss
does not cause system failure but merely degrades the system’s operation. In such systems,
a test instance that does not pass the schedulability test might be executed. In this experi-
ment, all test instances are simulated without a schedulability test. For this experiment, we
extended the custom simulator (explained in Section 3.3) to perform EDF(k) scheduling.
And the simulation was performed with the same dataset used in Section 3. Then, we
compared the results with the EDZL scheduling simulation results.

To begin with, we compare the performance of the EDZL and EDF(k) algorithms
from a quantitative perspective. Similar to the evaluation in Section 3.1, we count the
number of test instances successfully scheduled by EDZL and EDF(k), respectively, for
each task utilization interval. Then, we calculate their ratio, which we define as success
ratio. Figures 7–10 show the success ratio when m = 2, 3, 4, 5, respectively. The figures
demonstrate that EDZL can successfully schedule more high-utilization task sets than
EDF(k). For example, when m = 4, EDF(k) begins to decrease at a utilization of about 3.2,
EDZL begins to decrease at a utilization of about 3.8.

As mentioned in Section 3, the number of all test instances is 1,000,752,406 and EDZL
successfully scheduled 990,451,970 instances out of these. In our EDF(k) scheduling simula-
tions, EDF(k) successfully scheduled 919,989,568 instances. EDZL can successfully schedule
7.0% more instances than EDF(k). We also discover the dominance between the EDZL and
EDF(k) algorithms. We investigate the simulation results of both algorithms and we found
out that the two algorithms do not dominate each other. Task set {(5, 8), (1, 2), (3, 6), (3, 8)}
can be successfully scheduled by EDF(k) on two processors, i.e., all deadlines are met for a
hyper-period in the simulation. However, EDZL fails to successfully schedule this task set;
in its EDZL scheduling simulation, a deadline miss occurs at time 24. Thus, EDZL does not
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dominate EDF(k). On the other hand, task set {(2, 3), (3, 5), (1, 3), (2, 6)} can be successfully
scheduled by EDZL on two processors, but not by EDF(k). EDF(k) does not dominate EDZL.
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Figure 7. Success ratio when m = 2.
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5. Conclusions

This work evaluates the schedulability of the EDZL algorithm. First, we compare the
performance of EDZL schedulability tests. With respect to the number of admitted test
instances, the demand-based test outperforms the utilization-based test and the slack-based
test. In our experiments, Demand + Util can admit all test instances that are admitted by
the slack-based test. Demand + Util admits 89.31% of EDZL-schedulable test instances.

Second, we compare EDZL and EDF(k). In respect to the schedulability test, this
paper shows that the utilization-based EDZL schedulability test is equivalent to the EDF(k)

schedulability test. Hence, Demand + Util strictly dominates the EDF(k) schedulability test.
Additionally, this paper compares EDZL and EDF(k) scheduling in terms of schedulable test
instances. EDZL and EDF(k) do not dominate each other. However, EDZL can accommodate
more task sets than EDF(k). In our experiments, EDZL successfully schedules 7.0% more
test instances than EDF(k).

In future works, we plan to prove that Demand + Util dominates the slack-based
EDZL schedulability test. By disclosing the dominance between schedulability tests, we can
determine the feasibility of task sets efficiently. Furthermore, our work assumes implicit
deadline systems. We plan to develop EDZL schedulability tests under constrained or
arbitrary deadline systems.
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