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Abstract: Formation leak-off pressure, which sets the upper limit of the safe drilling fluid density
window, is crucial for preventing wellbore accidents and ensuring safe and efficient drilling operations.
The paper thoroughly examines models of drilling physics alongside artificial intelligence techniques.
The study introduces a dual-driven method for predicting reservoir pore pressure by integrating long
short-term memory (LSTM) and backpropagation (BP) neural networks, where the core component
is the LSTM-BP neural network model. The input data for the LSTM-BP model include wellbore
diameter, formation density, sonic time, natural gamma, mud content, and pore pressure. The study
demonstrates the practical application of the method using two vertical wells in Block M, employing
the M-1 well for training and the M-2 well for validation. Two distinct input layer configurations are
devised for the LSTM-BP model to evaluate the influence of formation density on prediction accuracy.
Notably, Scheme 2 omits formation density as a variable in contrast to Scheme 1. The study’s results
indicate that, for input layer configurations corresponding to Scenario 1 and Scenario 2, the LSTM-BP
model exhibits relative error ranges of (−2.467%, 2.510%) and (−6.141%, 5.201%) on the test set,
respectively. In Scenario 1, the model achieves mean squared error (MSE), mean absolute error
(MAE), and R-squared (R2) values of 0.000229935, 0.011198329, and 0.92178272, respectively, on the
test set. Conversely, for Scenario 2, the model demonstrates a substantial escalation of 992.393% and
240.674% in MSE and MAE, respectively, compared to Scenario 1; however, R2 diminishes by 66.920%.
Utilizing the trained LSTM-BP model, predictions for formation lost pressure in Well M-2 reveal linear
correlation coefficients of 0.8173 and 0.6451 corresponding to Scenario 1 and Scenario 2, respectively.
These findings imply that the predictions from the Scenario 1 model demonstrate stronger alignment
with results derived from formulaic calculations. These observations remain consistent for both the
BP neural network algorithm and the random forest algorithm. The aforementioned research results
not only highlight the elevated predictive precision of the LSTM-BP model for intelligent prediction
of formation lost pressure, a product of this study, thereby furnishing valuable data points to enhance
the security of drilling operations in Block M, but also underscore the necessity of deliberating both
physical relevance and data correlation during the selection of input layer variables.

Keywords: leakage pressure; long short-term memory backpropagation (LSTM-BP) neural network;
lost circulation; deep learning; correlation analysis
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1. Introduction

Drilling operations entail the occurrence of drilling fluid leakage into the forma-
tion through cracks (referred to as leakage channels) in the wellbore. This occurrence
is commonly known as wellbore leakage. Wellbore leakage has an estimated global an-
nual occurrence rate of approximately 25%, resulting in costs exceeding USD 4 billion for
mitigation [1]. Wellbore leakage has emerged as a prevalent issue in drilling operations [2].

Wellbore leakage is a highly complex phenomenon influenced by multiple factors,
such as formation properties, drilling fluid properties, drilling construction processes, and
underground pressure variations [3]. Formation properties, such as rock permeability,
porosity, and fractures, play a significant role in influencing the formation leakage pressure.
Drilling fluid properties, particularly density and viscosity, have a direct impact on the
incidence of wellbore leakage. Stress changes in the wellbore, induced by the rotation and
fluctuating pressure of the drill bit during the drilling process, can lead to wellbore leakage.
Wellbore leakage is a frequent and intricate subterranean incident that frequently occurs
abruptly and necessitates a complex subsequent remediation process. Wellbore leakage
results in the wastage of manpower and resources, along with substantial increases in
drilling time and costs. In severe instances, wellbore leakage can result in blowouts, surges,
or even necessitate wellbore abandonment [4].

Precise prediction of formation leakage pressure plays a crucial role in mitigating
wellbore leakage [5]. Formation leakage pressure denotes the maximum pressure threshold
that the wellbore can sustain under wellbore leakage conditions and serves as the upper
limit for designing a safe drilling fluid density range. Investigating formation leakage
pressure holds immense significance in ensuring drilling operation safety, optimizing
drilling fluid performance, reducing costs, safeguarding reservoir integrity, enhancing
drilling construction efficiency, and informing wellbore structural design.

With the deepening of oil and gas exploration and development, research on leakage
pressure has steadily progressed. In 1990, N. Morita introduced the theory of leakage
pressure and conducted an analysis of its influencing factors [6]. In 2004, Alexandre
Lavrov pioneered the development of a leakage pressure model suitable for fractured
formations [7]. In 2010, Majidi et al. developed a drilling fluid leakage model for naturally
fractured formations using the Herschel–Bulkley rheological model [8]. They emphasized
the importance of controlling the drilling fluid’s rheology to minimize losses. Presently,
numerous scholars have extensively researched various disciplines, such as geomechanics,
wellbore stability, and fluid mechanics. Research methodologies encompass numerical sim-
ulation, laboratory experiments, and field observations. In recent decades, researchers have
developed numerous mathematical models and empirical formulas to predict formation
leakage pressure based on extensive experimental investigations and theoretical analyses.
However, the applicability of these methods is limited due to the multitude of causes
and complex mechanisms of wellbore leakage, resulting in the absence of a universally
applicable theoretical calculation model for leakage pressure [9]. Presently, the methods
used to predict formation leakage pressure primarily involve experimental analysis [5],
numerical simulation [10], theoretical formulas [11], empirical formulas [9], and statistical
analysis [5].

Currently, the predominant approach for determining formation leakage pressure is
primarily based on understanding the leakage mechanism. It involves analyzing leakage
scenarios in the target formation using statistical data and relevant empirical formulas
derived from drilled wells [12]. However, in reality, wellbore leakage is influenced by
numerous causes and intricate mechanisms, and the actual conditions vary among dif-
ferent geological formations. Consequently, it is challenging to formulate a universally
applicable calculation formula, as theoretical formulas rely on specific assumptions that
might not completely align with the actual drilling conditions. Consequently, the calculated
results offer limited guidance for onsite operations and pose challenges when attempting
to generalize and apply them [13]. Conventional empirical formulas face challenges in
accurately determining empirical coefficients, and the selection of empirical parameters is
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highly subjective. Conversely, statistical models demand substantial preliminary statistical
work and might not fulfill the practical requirements for leakage prevention, particularly
in newly developed blocks with limited relevant data and absence of reference methods.
Presently, a pressing need exists for a relatively universal calculation method for accurately
predicting formation leakage pressure. Such a method should enhance prediction accuracy,
improve computational efficiency, and reduce operational costs.

In recent years, due to the ongoing advancements in artificial intelligence technology,
the extensive research and application of artificial intelligence have become prevalent
across various industries [14,15]. It offers notable advantages in addressing intricate
nonlinear problems. Within the petroleum sector, the utilization of machine learning
techniques for the advancement of both conventional and unconventional oil and gas fields
is progressively gaining traction [16]. An increasing number of scholars are embarking
on investigations into the application of artificial intelligence methods, such as machine
learning and deep learning, for in-depth analyses of mechanisms and patterns related
to well leakage [17]. For instance, Sabah et al. [18] collected data from 61 wells in the
Marun oilfield in Iran to predict wellbore leakage. The dataset comprised 19 parameters,
including well depth, drilling pressure, and drill bit rotation speed, resulting in a total
of 1900 data points. They employed algorithms like artificial neural networks (ANNs),
support vector machines (SVMs), and decision trees to develop a model for predicting
wellbore leakage. The model’s performance was assessed using evaluation metrics like root
mean square error (RMSE) and coefficient of determination (R2). Geng et al. [19] identified
the four most highly correlated parameters, namely, variance, attenuation, sweetness,
and RMS amplitude, from a set of 15 seismic attribute parameters. They presented a
predrilling method for assessing wellbore leakage risk using machine learning techniques
and three-dimensional seismic data. Pang et al. [20] identified 16 out of 22 comprehensive
logging parameters that were most pertinent to drilling fluid leakage. They utilized the
mixture density network to evaluate and forecast drilling fluid leakage. Li et al. employed
three machine learning algorithms, specifically artificial neural networks (BPNN), support
vector machines (SVMs), and random forests, to predict wellbore leakage [21]. They
utilized 12 parameters, including well depth, drilling fluid density, and pore pressure,
as input for the models. The investigation determined that the random forest algorithm
achieved the highest performance. These examples underscore the growing adoption of
machine learning and artificial intelligence methods in studying and predicting wellbore
leakage, promising enhanced accuracy and efficiency in the analysis and prevention of
such incidents.

In the context of leak-off speed prediction, Jahanbakhshi et al. [22] utilized artificial
neural networks (ANNs) to develop two models for predicting leak-off speed in natural
fractured formations. In the first model (Scheme 1), the input layer parameters comprised
conventional drilling parameters, including well depth, porosity, and formation permeabil-
ity. In the second model (Scheme 2), additional geomechanical parameters, such as Young’s
modulus, were incorporated in addition to those in Scheme 1. The results demonstrated that
Scheme 2 exhibited lower errors, signifying its superior performance. Hou et al. utilized
the South China Sea region as a case study and developed a leak-off type prediction model
based on the division of leak-off speed [23]. The model employed artificial neural networks
(ANNs) and big data techniques, utilizing formation properties, drilling parameters, and
drilling fluid parameters as input variables. The model achieved a prediction accuracy rate
of 92% in assessing wellbore leakage risk.

In the domain of wellbore leakage monitoring and early warning, Unrau et al. devised
a detection model for early wellbore leakage warning using real-time drilling data from
132 wells [24]. Multiple machine learning algorithms were employed to establish the model,
which achieved a false alarm rate of only once every 5 h for wellbore leakage. Andia et al.
developed a software solution named RSFMc for early wellbore leakage warning [25]. The
software integrates real-time drilling data with diverse artificial intelligence algorithms and
offers visual representation of multiple data aspects, including formation pore pressure,
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fracture pressure, and bottom hole pressure profiles. Additionally, it enables real-time
monitoring of wellbore leakage. These examples illustrate the utilization of machine
learning and artificial intelligence algorithms in the development of early warning systems
for wellbore leakage. These systems capitalize on real-time drilling data to deliver precise
and timely alerts, thereby improving the safety and efficiency of drilling operations.

Presently, there is a substantial body of research focusing on the utilization of artificial
intelligence techniques in conjunction with seismic, logging, and drilling data to forecast
formation permeability and leak-off speed, and enable wellbore leakage monitoring and
early warning. However, there is a dearth of articles that directly employ artificial intelli-
gence methods for the prediction of formation leakage pressure. To address this research
gap, the present study introduces a method that combines physics-based models and
data-driven approaches to predict formation leakage pressure. The detailed workflow is
illustrated in Figure 1.
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Figure 1. Establishment process of LSTM-BP leakage pressure intelligent prediction model.

Drawing upon geomechanical theory and expert knowledge, six logging data param-
eters (CAL, DT, GR, VSH, Pp, and DEN) are chosen as input parameters for the model.
Recognizing the presence of sequence dependency in logging data and the effectiveness
of long short-term memory (LSTM) networks in managing long sequences, an LSTM-BP
neural network model is developed. Spearman correlation analysis is employed to examine
the correlation between the six input parameters and formation leakage pressure. Two
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distinct input layer schemes are devised, and for each scheme, separate modeling, train-
ing, analysis, and evaluation are performed. By integrating geological and engineering
knowledge into the machine learning model, the objective is to constrain the model’s
predictions and enhance the reliability of formation leakage pressure forecasts, ensuring
alignment with geological and engineering principles. This research plays a vital role in
streamlining the prediction process of formation leakage pressure, enhancing prediction
accuracy, expanding the applicability and feasibility of prediction methods, and advancing
intelligent drilling engineering.

2. Theory and Methods
2.1. LSTM Algorithm Theory

LSTM (long short-term memory) is an enhanced algorithm derived from the RNN
(recurrent neural network) [26]. It offers notable advantages in solving long sequence
memory problems, facilitating better gradient propagation, and mitigating the problems of
gradient vanishing or exploding. Consequently, these advantages position it as a pivotal
technology in domains like natural language processing and speech recognition [27]. In
comparison to traditional RNN, LSTM exhibits several noteworthy advantages:

(1) Long-term dependencies: Traditional RNNs encounter challenges in managing long
sequence dependencies, whereas LSTM can preserve long-term dependencies by
regulating the flow of information.

(2) Avoiding gradient vanishing or exploding: Traditional RNNs are susceptible to
the issues of gradient vanishing or exploding, whereas LSTM incorporates gate
mechanisms to regulate the flow of information, effectively mitigating these problems.

(3) Enhanced memory capacity: LSTM can selectively retain or discard past information
through the control of the forget gate and input gate, thereby exhibiting improved
memory capabilities.

(4) Learning patterns in long sequences: LSTM can acquire patterns in long sequences by
regulating the flow of information, facilitating superior processing of long sequence data.

In conclusion, LSTM surpasses traditional RNN in its handling of long-term depen-
dencies, ability to avoid gradient vanishing or exploding, improved memory capacity, and
proficiency in learning patterns within long sequences.

For a comprehensive depiction of the fundamental network structure of LSTM, please
consult Figure 2. Its fundamental concept is rooted in extensive research on cell states and
“logic gates”. The cell state serves as the conduit for information transmission, facilitating
the transfer of information across the sequence chain and functioning as the network’s
“memory”. In theory, the cell state can persistently convey pertinent information throughout
sequence processing, allowing information from earlier time steps to be propagated to
subsequent time steps, thereby surpassing the constraints of short-term memory. In terms
of information control, LSTM accomplishes this through a structure known as “gate logic”.
During the training process, the “logic gates” selectively retain or discard information based
on their respective weights. The gate logic primarily encompasses the forget gate, input
gate, and output gate, each fulfilling distinct functions [28,29]. The forget gate regulates the
retention or omission of the preceding layer’s concealed cell state. The input gate evaluates
the current input data to ascertain its relevance for updating the cell state. The output gate
determines the value of the subsequent hidden state, encompassing the preceding input
information [30]. The specific calculation formula is presented as Equation (1).

ft = sigmoid
(

Wf · [ht−1, xt] + b f

)
it = sigmoid(Wi · [ht−1, xt] + bi)
ot = sigmoid(Wo · [ht−1, xt] + bo)

C̃t = tan h(WC · [ht−1, xt] + bc)

Ct = ft · Ct−1 + it · C̃t
ht = ot · tan h(Ct)

(1)
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In the equation:
ft, it, and ot represent the output vectors corresponding to the forget gate, input gate,

and output gate, respectively;
W f , Wi, Wo are weight matrices corresponding to each gate;
b f , bi, bo are the offset vectors with each gate;
Sigmoid and tanh are activation functions;
WC and bc are weight matrix and bias vector corresponding to the cell state;
ht−1 and xt are the concatenated results of the previous time step output vector h(t−1)

and the current time step input vector xt;
Ct and Ct−1 are the cell state vectors at time step t and t − 1, respectively;
C̃t represents the candidate memory cell matrix;
ht is the output vector of the cell block at time step t.
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2.2. Backpropagation Neural Network Algorithm

The backpropagation (BP) neural network algorithm, commonly referred to as the
error backpropagation algorithm, was introduced by American scientist Rumelhart in
1986 [31]. Presently, it stands as one of the most widely employed and effective algorithms,
finding extensive applications in fields such as signal processing, pattern recognition, and
intelligent control. The BP neural network comprises multiple layers, including the input
layer, output layer, and hidden layer. Connections exist only between layers, with no
connections within the same layer, thus forming a fully connected structure. The structure
of the BP neural network is depicted in Figure 3. The dataset X = {x1, x2,. . ., xn} is derived
by extracting features from a substantial amount of known data, while the corresponding
predicted output values for each data point are denoted by Y = {y1, y2,. . ., yn}. In the
learning process of the neural network, a nonlinear layer, referred to as the hidden layer, is
formed. During the training process, the generated errors are iteratively propagated from
the hidden layer to the input layer, facilitating the adjustment of unit weights, a process
commonly referred to as backpropagation.
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3. Selection, Processing, and Correlation Analysis of Training Samples
3.1. Overview of Data Sources

The research data for this study are obtained from two vertical wells, Well M-1 and
Well M-2, located in Block M. Well M-2 is situated approximately 6.7 km southwest of
Well M-1. Figure 4 illustrates a lithostratigraphic comparison between the two wells.
Sequentially, the M block drills through formations A, B, C, and D. Formation C pertains to
the principal oil and gas development stratum within this block, primarily characterized
by gray and sandy mudstone, intercalated with multiple thin coal seams. The M block
exhibits a complex internal structural configuration, featuring well-developed, deep-seated
faults. Faulting has led to the fragmentation of the reservoir into isolated blocks. The
internal fault structure displays pronounced heterogeneity, characterized by localized stress
concentration and varying stress fields. The substantial drilling depth within this block
results in a complex vertical lithological profile. The shallow sections comprise readily
hydratable mudstone, whereas the middle and deeper sections consist of hard, brittle mud
shale. These formations are susceptible to wellbore collapse, leading to intricate challenges
such as sticking. The occurrence of faults, coal–rock interlayers, or fractured formations
during drilling increases the likelihood of leakage. Consequently, these sections become
zones of high drilling risk. Statistical data from prior drilled wells indicate that among
the 35 wells within the M block, 13 wells encountered leaks, constituting 37.14% of the
total. Additionally, the presence of abnormally high formation pressures in the middle and
deeper sections constrains the safety window for drilling operations. Designing drilling
fluid density using conventional formulaic approaches poses challenges.
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3.2. Selection of Input Layer Data

For this study, Well M-1 is chosen as the training well to supply sample data for model
learning, while Well M-2 serves as the validation well to predict and assess the accuracy
and generalization of the trained model. The quality of the sample data has a direct impact
on the accuracy of the prediction results. This study establishes an intelligent prediction
model for pressure loss by selecting specific logging data from Well X-1, guided by the
fundamental principles of formation pressure loss and existing research findings. The
input layer data of the prediction model comprise well diameter (CAL), formation density
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(DEN), sonic travel time (DT), natural gamma (GR), shale content (VSH), and equivalent
pore pressure density (Pp). This selection is grounded in the capability of logging data
to directly capture essential information about the formations, along with its attributes
of continuity, accuracy, and cost-effectiveness, which render it a crucial foundation for
subsequent developmental endeavors.

The logging data selected as input parameters are visualized using a violin plot, as
depicted in Figure 5. Within the violin plot, the median is represented by a central dot,
the boxplot illustrates the data spanning from the lower quartile to the upper quartile,
the black lines indicate data points within 1.5 times the interquartile range, and the outer
shape depicts the kernel density estimate. Figure 5 reveals that the distribution of each
input parameter does not conform to a standard normal distribution. Hence, subsequent
correlation analysis should utilize Spearman correlation analysis. Additionally, the absence
or scarcity of outliers in the data suggests the rational construction of the dataset.
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3.3. Data Preprocessing

Preprocessing is essential prior to formally establishing the model due to the presence
of substantial noise in the raw logging data, especially noticeable in outliers at the beginning
and end, as well as some missing values. This process includes replacing or eliminating the
outliers to enhance the quality of the training samples. For this study, the output layer data
employed in model training (i.e., the formation pressure loss equivalent density of Well
M-1) is computed by domain experts using a formula (refer to Equation (2)) and fine-tuned
through calibration considering field conditions and years of experience. Consequently, it
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demonstrates a high level of accuracy and can be regarded as the actual formation pressure
loss. For more details, please consult Figure 6.

Pl = a∗Psmin (2)

In the equation, Pl denotes the formation pressure loss, measured in MPa. The
variable “a” is a dimensionless empirical coefficient that pertains to the region, while
“Psmin” corresponds to the minimum horizontal principal stress, expressed in MPa.

The primary focus of this research is on the B Formation, C Formation, and D Forma-
tion in Block M. Following data preprocessing, Well M-1 covers a depth interval of 2127 to
4652 m, whereas Well M-2 spans from 2510 to 4770 m. In both instances, data were gathered
at 5 m intervals to assemble the dataset, amounting to 506 rows for Well M-1 and 453 rows
for Well M-2.
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3.4. Data Correlation Analysis and the Setting of Two Models

The previous literature commonly utilizes correlation analysis, particularly Pearson
correlation analysis, to select input layer data. Such correlation analyses generally rely
on a straightforward mapping relationship between a particular type of data and the
output layer data to assess the degree of correlation; however, these analyses do not take
into account the underlying mechanism of the data. Hence, in this study, we initially
examine the correlation between the selected input layer data and the output layer data,
considering a single mapping relationship. Moreover, given that logging data frequently
display non-normal distributions (as confirmed in Figure 3), Spearman correlation analysis
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is employed, as it is appropriate for non-normally distributed data [32]. The degree of
correlation is determined by assessing the magnitude of the correlation coefficient. For
additional information, please consult Figure 7.
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This study computed the p-values for the chosen input layer variables and the forma-
tion’s leak-off pressure. All computed p-values were below 0.0001, signifying significant
distinctions between the designated feature variables and the leak-off pressure. Conse-
quently, additional scrutiny of the feature variables is imperative to select suitable input
layer variables for the model. The analysis of Figure 7 reveals the correlation patterns
between the input layer parameters and the formation pressure loss equivalent density
(Pv), as follows: In terms of positive or negative correlation, the formation density (DEN)
and equivalent pore pressure density (Pp) exhibit a positive correlation with the formation
pressure loss equivalent density (Pv). Conversely, well diameter (CAL), sonic travel time
(DT), natural gamma (GR), and shale content (VSH) display a negative correlation with the
formation pressure loss equivalent density (Pv).

When examining the absolute values of the correlation coefficients, the formation
density (DEN) exhibits the weakest correlation with a coefficient of only 0.065. Well
diameter (CAL) demonstrates the strongest correlation with the formation pressure loss
equivalent density (Pv), followed by shale content (VSH), with both parameters displaying
comparable correlation coefficients. Natural gamma (GR) and equivalent pore pressure
density (Pp) exhibit slightly lower correlation coefficients, yet their absolute values remain
relatively similar.

Based on the aforementioned analysis, when considering the individual correla-
tion [33] between each input layer parameter and the formation pressure loss equivalent
density (Pv), well diameter (CAL), natural gamma (GR), shale content (VSH), and equiv-
alent pore pressure density (Pp) demonstrate a moderate correlation, while sonic travel
time (DT) displays a weak correlation, and formation density (DEN) exhibits no correlation.
However, from a rock mechanics perspective, there exists a certain degree of association
between formation density and pressure loss. Therefore, during the subsequent model
construction, two different approaches will be considered:

Scheme 1 involves retaining the formation density (DEN) data as an input layer
parameter, including CAL, DT, GR, VSH, Pp, and DEN.

Scheme 2 entails removing the formation density (DEN) data as an input layer param-
eter, consisting of CAL, DT, GR, VSH, and Pp.
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A comparative analysis will be conducted between the two approaches during the
subsequent training process to evaluate their respective performances.

To mitigate the problem of gradient vanishing or exploding, it is imperative to nor-
malize all sample data, thereby reducing dimensionality and mitigating the impact of
varying parameter scales on model performance. Taking into account that drilling is a
depth-dependent sequential process and based on the analysis in Figure 5, it is evident that
the distribution of the training sample data deviates from a normal distribution. Conse-
quently, the min–max normalization method is employed in this study to normalize the
input and output layer data. The normalization equation is defined as Equation (3):

X̃i =
Xi −min(Xi)

max(Xi)−min(Xi)
(3)

where X̃i is the normalized result of the i-th variable using the min–max normalization
method, and the normalized range is [0, 1]. Xi is the original value of the i-th variable,
min(Xi) is the minimum value of the i-th variable, and max(Xi) is the maximum value of
the i-th variable.

4. Construction, Evaluation, and Application of Intelligent Prediction Models for
Formation Pressure Loss
4.1. Model Parameter and Evaluation Metric Settings

The LSTM-BP model in this study is constructed by integrating the LSTM and BP
models. For the LSTM-BP model, the input sample sequence length is defined as 3, indi-
cating that it is trained to predict the formation pressure loss at a specific point using the
data from the preceding 15 m. Further details regarding the model’s parameter settings are
provided in Table 1. The evaluation metrics employed include MSE (mean squared error),
MAE (mean absolute error), and R2 (coefficient of determination). The relevant formulas
for computing these metrics are presented in Equations (4)–(6).

MSE =
1
S

S

∑
i=1

(yi − ŷi)
2 (4)

MAE =
1
S

S

∑
i=1
|ŷi − yi| (5)

R2 = 1− ∑i (ŷi − yi)
2

∑i (ŷi − yi)
2 (6)

where:
S is the total number of samples;
yi represents the actual formation pressure loss equivalent density in units of g/cm3;
ŷi represents the predicted formation pressure loss equivalent density in units of g/cm3.
These evaluation metrics are commonly used to assess the accuracy and performance

of prediction models. MSE measures the average squared difference between the predicted
and true values, with lower values indicating better performance. MAE measures the
average absolute difference between the predicted and true values, and lower values
indicate better accuracy. R2 measures the proportion of the variance in the true values that
can be explained by the predicted values, with a higher value indicating a better fit of the
model to the data.
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Table 1. LSTM-BP model parameter table.

NO Parameters Value

1 Model layers 3
2 Number of neurons per layer 30
3 Activation function LeakyRelu
4 Loss function MSE

5 Maximum number of
iterations (epoch) 300

6 Batch size 50

7 Data partitioning Randomly select 75% of the data as the training set
and 25% of the data as the test set.

4.2. Construction, Evaluation, Comparison, and Application of the Two Approaches

Figure 8 illustrates the schematic diagram of the LSTM-BP model constructed in this
study for intelligent prediction of formation pressure loss. The model construction process,
as depicted in Figure 1, encompasses data selection, data preprocessing, data normalization,
dataset partitioning, determination of evaluation metrics, design of the two approaches, and
model evaluation and selection. The formation pressure loss intelligent prediction models
are sequentially constructed based on Approach 1 and Approach 2. Figure 9 displays the
performance of the two models in terms of evaluation metrics during the training process,
while Figure 10 presents the comparison between the predicted and true values on the test
set. Table 2 presents the final evaluation metrics of the two approaches on the test set.

Table 2. Comparison of the predictive performance of two models for Well M-1 on the test set.

Name Input
Variables MSE Difference

(%) MAE Difference
(%) R2 Difference

(%)

Option 1
CAL, DT, GR,
VSH, Pp, and

DEN
0.000229935

992.393
0.011198329

240.674
0.92178272

66.920

Option 2 CAL, DT, GR,
VSH, and Pp 0.0025118 0.038149745 0.552230669
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Figures 9 and 10 illustrate significant differences in the changes of the three evaluation
metrics during the initial 200 iterations between the Approach 1 and Approach 2 models.
The performance of the Approach 2 model is noticeably inferior to that of the Approach
1 model across all three evaluation metrics. The Approach 1 model demonstrates greater
stability and stronger predictive capability. Nonetheless, both models converge to optimal
values for the evaluation metrics around 50 iterations. The evaluation metrics in Table 2
demonstrate that the Approach 1 model outperforms the Approach 2 model on the test
set, displaying lower values of MSE and MAE, and a higher value of R2. These results
suggest that the Approach 1 model exhibits superior predictive accuracy and a greater
ability to account for the variance in the true values. Therefore, for intelligent prediction of
formation pressure loss, we recommend utilizing the Approach 1 model due to its superior
performance in evaluation metrics and stability during the training process. Considering
Figures 9–11 across the entire set of 126 test data points, the Approach 1 model exhibits a
relative error range of −2.467% to 2.510%, whereas the Approach 2 model shows a broader
range of −6.141% to 5.201%. These results imply that the Approach 2 model has a wider
range of prediction errors and demonstrates greater fluctuations in relative errors compared
to the Approach 1 model.
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Moreover, based on the findings presented in Table 2, it is evident that the LSTM
intelligent prediction model for formation pressure loss, developed in this study, exhibits a
remarkable level of prediction accuracy, as all three evaluation metrics perform exception-
ally well. Furthermore, the Approach 1 model outperforms the Approach 2 model across
all three evaluation metrics. In contrast, the Approach 1 model achieves impressively low
values for MSE and MAE, specifically 0.000229935 and 0.011198329, respectively, whereas
the Approach 2 model experiences a significant escalation in MSE and MAE, soaring by
992.393% and 240.674%, respectively, compared to the Approach 1 model. Additionally, the
Approach 1 model attains an impressive R2 value of 0.92178272, whereas the Approach
2 model lags behind with a value of merely 0.552230669, resulting in a substantial differ-
ence of 66.920% between the two models and underscoring the superior accuracy of the
Approach 1 model.

The analysis above leads to the conclusion that the inclusion of formation density as
an input parameter, despite lacking a direct correlation with formation pressure loss from a
single data correlation perspective, is still relevant in terms of its physical significance and
does not compromise the prediction accuracy of the model. Conversely, it narrows down
the range of relative errors and diminishes the occurrence of extreme prediction values.



Appl. Sci. 2023, 13, 10147 15 of 22

Furthermore, the Approach 2 model exhibits a notably inferior performance compared to
the Approach 1 model across all three evaluation metrics.

In order to validate the generalization ability of the model and assess the practical ap-
plicability of the two approaches, the trained models were utilized to predict the formation
pressure loss in the neighboring M-2 well using the M-1 well data. Figure 12 and Table 3
present the predicted formation pressure loss equivalent density by the two approach
models. The two approach models demonstrate a strong consistency in the overall trend of
the predicted formation pressure loss equivalent density, as evident from Figure 12a and
Table 3. The differences between the upper and lower limits of the predicted formation
pressure loss equivalent density are minimal for the four stratigraphic intervals: the upper
and lower sections of the C Formation. Importantly, the predictions from the Approach
2 model exhibit relatively less variability when compared to the Approach 1 model. The
predictions from the Approach 2 model generally align with the predictions from the
Approach 1 model across a wide range of depths, including the B Formation, upper and
lower sections of the C Formation, and the D Formation. However, within the middle and
lower portions of the D Formation (roughly spanning a depth range of 4400 m to 4600 m),
the overall predictions made by the Approach 2 model are slightly elevated compared to
those of the Approach 1 model.
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Figure 12. Comparison diagram of equivalent density of leakage pressure predicted by two schemes
of the M-2 well model. (a) The layered profile of the predicted value of the formation leakage pressure
of the two schemes of the model in Well M-2 is plotted. (b) The vertical profile of the whole well
section of the predicted value of the formation leakage pressure of the M-2 well is plotted. (c) The
cross-plot of the calculation results of the formation leakage pressure formula method of Well M-2
and the prediction results of the LSTM-BP model.

Table 3. The equivalent density range of predicted leakage pressure in different layers of two schemes
of M-2 well model.

Formation
Well Depth

(m)

Predicted Value of Equivalent Density of Leakage Pressure (g/cm3)

Scheme 1 Scheme 2 Calculation Formula Method

Minimum Maximum Minimum Maximum Minimum Maximum

B 2510~3014 1.587 1.689 1.618 1.679 1.570 1.705
C1 3014~3569 1.584 1.700 1.612 1.675 1.582 1.718
C2 3569–3854 1.584 1.711 1.619 1.680 1.593 1.722
D 3854~4790 1.589 1.905 1.617 1.909 1.590 1.952
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The results demonstrate that both approach models effectively capture the overall
trend of the formation pressure loss equivalent density in the M-2 well, exhibiting consistent
predictions across most depth intervals. In comparison to the Approach 1 model, the
Approach 2 model exhibits relatively smoother predictions and performs similarly, apart
from a slight tendency to overestimate in the middle and lower sections of the D Formation.
Since the actual formation pressure loss values are unavailable for the M-2 well, and direct
validation of the models’ predictions is not possible, the calculated formation pressure
loss values obtained using Equation (2) were compared to the predictions generated by
the Approach 1 and Approach 2 models, serving as a point of reference for evaluation
purposes. Table 4 presents the drilling fluid density utilized throughout the drilling process
of the M-2 well. Importantly, there were no wellbore losses during the drilling of the M-2
well, and a formation leak-off test conducted at a depth of 3768 m confirmed the absence of
formation leakage. Consequently, the lack of actual formation pressure loss data prevents
the validation of the predictions made by the two approach models.

Table 4. The actual drilling fluid density used in Well M-2.

Top Depth
(m)

Bottom Depth
(m)

Drilling Fluid
Density (g/cm3) Formation

2325 3765 1.18 B and C1
3765 4172 1.25 C1, C2, and D
4172 4658 1.3 D
4658 4790 1.45 D

Figure 12b illustrates that the results obtained from the formula calculation exhibit
more pronounced overall fluctuations in comparison to the predictions generated by the
Approach 1 and Approach 2 models. Figure 12c displays the linear correlation coefficients
of 0.8173 and 0.6451, indicating the degree of alignment between the results obtained from
the formula calculation and the predictions of the Approach 1 and Approach 2 models,
respectively. These results suggest that the predictions of the Approach 1 model exhibit a
stronger alignment with the results obtained from the formula calculation.

While direct validation of the predictions remains challenging due to the absence
of actual formation pressure loss data, the comparison between the formula calculation
and the predictions generated by the models indicates that the Approach 1 model exhibits
stronger concurrence with the calculated results. This finding instills a degree of confidence
in the predictive capability of the Approach 1 model for estimating formation pressure loss
in the M-2 well.

Figure 12b reveals that both the three predicted formation pressure loss results for the
M-2 well and the formation pressure loss in the M-1 well display elevated values within
the middle and lower sections of the D Formation, signifying the occurrence of substantial
formation pressure loss in this interval. Nonetheless, a notable discrepancy exists in terms
of the precise location of the maximum formation pressure loss.

In the M-1 well, the formation pressure loss reaches its peak at a depth of 4427 m, with
a recorded value of 1.896 g/cm3. In contrast, the M-2 well exhibits a maximum predicted
formation pressure loss value of 1.905 g/cm3 at a depth of 4485 m in the Approach 1 model,
and 1.909 g/cm3 at the same depth in the Approach 2 model. Consequently, the maximum
predicted formation pressure loss in the M-2 well is situated at a greater depth compared
to the location of the maximum formation pressure loss in the M-1 well.

Figures 4 and 13 and Table 3 provide evidence that the M-1 and M-2 wells are in
close proximity to each other and share comparable lithology. Furthermore, the input
layer data for both wells demonstrate significant similarities, despite the presence of a
distinct separation between their respective formations. Notably, the starting depths of
the B Formation, C Formation, and D Formation in the M-1 well are 2256 m, 2985 m, and
3714 m, respectively. In contrast, the M-2 well exhibits greater depths, particularly in the D
Formation, where it is approximately 140 m deeper than the M-1 well, with corresponding
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depths of 2312 m, 3014 m, and 3854 m. As a result, the formation pressure loss in the M-2
well is anticipated to share similarities with that in the M-1 well across different formations.
While the predicted formation pressure loss values in the M-1 well can serve as a point of
reference, the varying depth ranges of the formations imply an overall deeper distribution
of formation pressure loss in the M-2 well in comparison to the M-1 well. This observation
aligns with the findings depicted in Figure 12b.
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The above analysis affirms the viability of utilizing the LSTM-BP model, developed
within this study, for predicting the formation pressure loss in the M-2 well. Additionally,
the Approach 1 model exhibits superior predictive performance compared to the Approach
2 model.

The aforementioned analysis reveals that the LSTM-BP-based intelligent prediction
model developed in this study exhibits high accuracy and robust generalization ability,
thereby holding substantial practical value for real-world production practices. Further-
more, this study deviates from the conventional approach of solely selecting input variables
based on individual data correlations. Instead, it integrates the physical significance of
formation density as one of the input variables, despite lacking a direct singular correlation
with formation loss pressure. Nonetheless, this incorporation contributes to enhanced pre-
diction accuracy and generalization capability of the model. This implies the significance
of considering both the individual data correlation at the data level and the physical sig-
nificance when selecting input variables, thereby enabling the identification of an optimal
combination for the input variables.

These findings offer valuable insights for the design and optimization of prediction
models for formation loss pressure. These findings suggest the importance of incorporating
additional physical factors associated with formation loss pressure as input variables
during the construction of prediction models, thereby enhancing their predictive capacity.
Simultaneously, it is essential to surpass the constraints of analyzing single data correlations
and adopt a comprehensive approach that encompasses the data’s characteristics and
physical significance. This enables the selection of input variables that are more precise
and dependable. By adopting this integrated approach that takes into account both data
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correlation and physical significance, the establishment and application of prediction
models for formation loss pressure can be more effectively guided. Consequently, this
approach facilitates the provision of more precise predictions and decision support for
oilfield drilling operations.

To further validate the generalizability of the conclusions drawn in the preceding
text, this study employed two additional algorithms, namely, BP and random forest, to
model and validate the data using Scheme 1 and Scheme 2, respectively. The outcomes are
presented in Table 5. The findings revealed that, irrespective of random forest or BP, the
Scheme 1 model outperformed the Scheme 2 model across all three evaluation metrics. In
the case of the random forest algorithm, Scheme 1 demonstrated a decrease of 8.172% and
15.825% in MAE and MSE, respectively, compared to Scheme 2, along with an increase of
3.266% in R2. In the case of the BP algorithm, Scheme 1 achieved a decrease of 2.324% and
15.636% in MAE and MSE, respectively, compared to Scheme 2, along with an increase of
16.454% in R2. Moreover, through a comparison of Tables 2 and 5, it becomes evident that
the LSTM-BP model developed in this study outperforms both the random forest model
and the BP model.

Table 5. The performance of random forest and BP algorithms on the test set under the conditions of
the two scheme models in the M-1 well.

ML Models Name
Evaluation Index

MAE Difference
(%) MSE Difference

(%) R2 Difference
(%)

Random
forest

Scheme 1 0.012151
8.172

0.000435
15.825

0.833446
3.266Scheme 2 0.013233 0.000504 0.807089

BP
Scheme 1 0.027050

2.324
0.00151

15.636
0.405156

16.454Scheme 2 0.027678 0.001746 0.347911

5. Conclusions

(1) In this study, an LSTM-BP intelligent prediction model was developed to estimate
formation leak-off pressure, and both Scheme 1 and Scheme 2 were employed for
evaluation. The results demonstrated a significant disparity in the performance of
the three evaluation metrics between the Scheme 1 and Scheme 2 models throughout
the training process. Notably, the Scheme 1 model exhibited commendable perfor-
mance on both the training and testing sets, whereas the Scheme 2 model displayed
inadequate performance. The Scheme 1 model achieved a remarkable reduction of
992.393% and 240.674% in MSE and MAE on the testing set, respectively, in compari-
son to the Scheme 2 model. Furthermore, it achieved a notable increase of 66.920% in
R2. The Scheme 1 model demonstrated a relative error range of (−2.467%, 2.510%)
and (−6.141%, 5.201%) on the testing set, confirming the high prediction accuracy
of the LSTM-BP model developed in this study. Moreover, incorporating formation
density as an input variable, despite lacking a direct singular correlation with leak-off
pressure, did not diminish the predictive accuracy of the model. In fact, it contributed
to a narrower range of relative errors.

(2) The LSTM-BP models, trained using Scheme 1 and Scheme 2, were employed to
predict the formation leak-off pressure in the adjacent M-2 well. The outcomes demon-
strated that the predicted values from both model schemes displayed comparable
overall trends. Nevertheless, the majority of predicted outcomes from the Scheme 2
model fell within the prediction range of the Scheme 1 model, implying that the
Scheme 1 model exhibited greater volatility in its predictions. Additionally, it was
observed that the predicted outcomes of the Scheme 1 model closely aligned with
the results derived from the formula method, whereas the Scheme 2 model exhibited
noticeably inferior performance compared to the Scheme 1 model.
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(3) The models were trained using the BP and random forest algorithms based on
Scheme 1 and Scheme 2. The findings revealed that, irrespective of BP or random
forest, the Scheme 1 models outperformed the Scheme 2 models on the testing set.
These results suggest the generalizability of the conclusions drawn in this study to
other algorithms. Additionally, it was noted that both the BP and random forest
models exhibited inferior performance compared to the LSTM-BP model developed
in this study, highlighting the superiority of the LSTM-BP model.

(4) The prevention of wellbore losses poses a challenging problem in the field of oil and
gas exploration and development. Wellbore losses involve intricate mechanisms,
and controlling them requires consideration of multiple factors. Precisely predicting
formation leak-off pressure plays a crucial role in effective control measures. The devel-
opment of the LSTM-BP intelligent prediction model for formation leak-off pressure,
which incorporates physical data and is driven by dual factors, represents a valuable
contribution to the study of formation leak-off pressure and serves to advance the
progress of intelligent drilling technology. Nevertheless, this study possesses certain
deficiencies and constraints. For instance, the model’s input layer solely incorporates
well logging data. Subsequently, the inclusion of rock mechanical parameters like
Young’s modulus and Poisson’s ratio, along with engineering logs such as drilling
speed and pump pressure, into the input layer variables could be contemplated.
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Nomenclature

CAL Borehole diameter (in)
DEN Formation density logging (g/cm3)
DT Delta t (µs/ft)
GR Gamma logging (API)
VSH Mud content (dimensionless quantity)
Pp The equivalent density of pore pressure (g/cm3)
Pv The equivalent density of leakage pressure (g/cm3)
A A Formation
B B Formation
C C Formation
C1 Strata of the upper section of C Formation
C2 Strata of the lower section of C Formation
D D Formation
Scheme 1 The first set of input layer variable scheme for the model, including six variables:

CAL, DT, GR, VSH, Pp, and DEN
Scheme 2 The second set of input layer variable scheme for the model, including five variables:

CAL, DT, GR, VSH, and Pp
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