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Abstract: The renewal and updating of the cadastre of real estate is a long and tedious task for
land administration, especially for rural buildings that lack unified design and planning. In order
to retain the required accuracy of all points in the register, huge extensive manual editing is often
required. In this work, a precise cadastral survey approach is proposed using Unmanned Aerial
Vehicle (UAV) imagery-based stereo point clouds. To ensure the accuracy and uniqueness of building
outer walls, the non-maximum suppression of wall points that can separate noise and avoid repeated
extraction is proposed. Meanwhile, the multiple cue weighted RANSAC, considering both point-to-
line distance and normal consistency, is proposed to reduce the influence of building attachments
and avoid spurious edges. For a better description of wall topology, the wall line segment topology
graph (WLTG), which can guide the connection of adjacent lines and support the searching of closed
boundaries through the minimum graph loop analysis, is also built. Experimental results show that
the proposed method can effectively detect the building vector contours with high precision and
correct topology, and the detection completeness and correctness of the edge corners can reach 84.9%
and 93.2% when the mean square error is below 10cm.

Keywords: cadastral survey; building wall topology; RANSAC; line detection; topology graph
analysis

1. Introduction

The cadastral survey is a long and tedious task that comprises both legal and technical
aspects [1,2]. The aim is to accurately measure the location, size, and boundary of various
land types, and satisfy the needs of the land management or other national economy
departments. Especially for rural buildings, keeping the cadastral databases precise and
up-to-date is the basic guarantee to ensure the users’ land rights and interests, and reduce
the disputes when dealing with illegal construction or house-pulling and paying by gov-
ernment. This requires transparency and searchable information in the whole workflow,
from data collection to processing, storage, and publication. In recent years, considering
that rural buildings often lack unified design and planning, UAV stereo imagery-based
approaches are widely used to record and survey cadastral dates [3,4]. However, due to the
complexity of the rural building environments and the high accuracy requirements, huge
extensive manual editing is often required, which is both expensive and time-consuming [5].
Even when only considering the 2D vector diagrams for the buildings and courtyard space,
current automatic approaches still confront huge challenges [6].

Traditional image-based approaches first extract the building pixels via high-resolution
image classification or segmentation, and then track the building outline instances [7,8].
The key is to fully exploit the salient features like geometric, spectral, or textural, and
combine them with the a priori regularized constraints. However, due to the complexity of
building types and the interference of various background elements, these methods usually
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require targeted parameter settings when dealing with different datasets, which is difficult
to adjust and difficult to meet the needs of practical applications. Most of the mainstream
image segmentation methods can be used for the extraction of buildings, such as region
growing by seed points, or using various classification and clustering methods including
Mean-shift and K-means [9]. Their main difficulty lies in the limited detection accuracy
when dealing with scenes having complex background environments, which are prone
to mis-detection and omission [10], especially when the direct transition among roads,
elevated areas, and buildings are not obvious.

With the continuous development of deep convolutional neural networks, a large
number of learning-based methods have also been proposed in recent years. Classical
networks turn to adopt an encoder–decoder structure, i.e., the SegNet [11] and UNet [12].
The encoder part continuously performs the convolutional and pooling operations to
extract image features, and the decoder part up-samples the image to the original size. The
limitations are the loss of spatial details during feature extraction images, the boundary
quality, and the accuracy of the final segmentation result. To enhance the adaptation
of segmentation algorithms to building scales, the coarse-to-fine boundary refinement
network (CBR-Net) [13,14] and the multi-path hybrid attention network (MHA-Net) [15]
are also proposed. Moreover, there are some contour description networks that directly
extract the polygon boundaries, including the Curve-GCN [16], Polymapper [17], and
Polyworld [18]. A significant limitation of these methods is that, according to the regulation
of building estate measurement and register, the building range should be measured based
on the space enclosed by the outer walls, but not that of the rooftop. The same situation is
also confronted by the methods using point clouds from the building rooftop, i.e., [19,20].
Since rural buildings often have significant protruding roof eaves, unenclosed balconies,
and concave doorways, the precision of the results detected from the building’s roof remain
problematic [21]. What is more, the detection results often lack building topology, which
means the adjacent or connected roofs are often not separated, requiring extensive editing
to achieve the basic requirements.

Since a precise cadastral survey requires direct observation of the building’s outer
wall and a clear description of the special specifications such as the independent col-
umn, single column porch, and carport, oblique or ground view, dense oblique point
clouds are becoming gradually more popular in the field of the cadastral survey, in recent
years [22–24]. These point clouds can provide all-round and multi-angle observation of the
target building outer walls and special specifications, while bringing huge challenges to
current automatic approaches:

(1) The precise and complete fitting of the wall surface remains problematic [5,25].
Because of the limited viewpoints and occlusion, the wall segments are often
incomplete, especially in dense built-up areas. Additionally, due to the existence of
windows and other building attachments, as well as the interruptions of shadow
and vegetation, the wall points by stereo matching may not be strict vertical planes,
leading to spurious or incomplete results.

(2) Error-proneness of wall segment topology [26]. The intersection of adjacent walls
and the searching of closed wall polygons require a clear description of wall–wall
topology. Imperfect wall extraction results will result in incorrect connections,
which require further interaction for industrial solutions. Furthermore, the regular-
ization of the boundaries also requires a global description of wall topology.

In this work, a robust cadastral survey approach is proposed based on dense point
clouds. Two attempts are applied to ensure the accuracy and uniqueness of the wall
locations: the non-maximum suppression of the projection points on the walls to avoid
duplicate extraction results; and, meanwhile, multiple cue weighted RANSAC, considering
both point-to-line distance and normal consistency, to reduce the influence of noise and
building attachments. As for the wall topology construction, a graph structure is built
to store and analyze the connection relationship and parallel/vertical constraints among
adjacent wall segments. Minimal closure analysis is used upon the graph structure and,
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meanwhile, the overall domain direction estimation and boundary optimization adjustment
ensure the overall regularization. Finally, the point cloud distribution within the closed
polygon can effectively distinguish structures such as houses and attached courtyard walls
to obtain the semantic vector scene.

In summary, the contribution of the proposed methods is twofold: (1) the non-
maximum suppression of the projection points and multiple cue weighted RANSAC
to ensure the accuracy and uniqueness of the wall locations, and (2) the analysis of the wall
line segment topology graph for the connecting and adjustment of the wall segment. The
remainder of the paper is structured as follows: Section 2 presents the proposed methods
in detail, followed by the assessment and discussion in Section 3. Section 4 concludes
this paper.

2. Methods

As shown in Figure 1, our method starts with the dense point clouds from multiple-
view UAV imagery and works directly towards the location of wall segments and the
construction of wall topology. In Section 2.1, the detection of wall segments is realized
by fitting the 2D line features from wall points after projecting them to the horizontal
surface. Local non-maximum suppression and global adjustments are adopted to ensure
the orientation and location of the wall lines. As for the construction of wall topology, a
graph structure is built to store and analyze the relationship among adjacent wall lines,
as described in Section 2.2. With the graph structures, adjacent wall lines are intersected
and closed rooms are separated. Finally, the building semantics are assigned for the
household models.

2.2.1. Wall segments topology graph 

construction

2.2.2. Graph-based wall connection 

and correction

2.2.3 Closed-loop analysis on 

topology graph 

Building semantic assignment and 

household models generation

2.1 Detection of wall segments 2.2 Wall contour topology construction

2.1.1. Wall points clustering and 

projection

2.1.2. Local non-maximum 

suppression

2.1.3. Multiple-cue RANSAC based 

wall -segments extraction

Wall line-segments 

Dense point clouds

Data preparation

2.1.4 Domain orientation estimation 

and wall line adjustments 

Multiple view UAV imagery + POS

SFM & MVS

Roof points
Tensor 

voting

Figure 1. The overall workflow of proposed approach.
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2.1. Detection of Wall Segments

In this work, the two-dimensional contours of buildings are detected based on the
point clouds of the wall surface. Thus, we first cluster the wall points and project them
to the 2D horizontal surface, followed by the fitting and adjustment procedures for the
wall segments. The workflow of wall segment detection and adjustments is provided in
Figure 2.

(a) input point clouds (b) wall points clustering and non-maximum suppression

(c)  line-segments detection(d) post-processing(e)  output

12

3 4

5

6

7
8

Figure 2. The workflow of wall segment detection and adjustments. (a) the input point clouds of
rural buildings, (b) the projected wall points after density-based clustering and the enlarged region
to be processed via non-maximum suppression, (c) the line segments detected by the multiple cues
RANSAC algorithm, (d) the global adjustments of edge lines in post processing and (e) the output
edge lines.

2.1.1. Wall Points Clustering

An initial set of wall points are detected based on the idea that the normal direction of
wall points tends to be horizontal. Suppose ~nP(nx, ny, nz) are the unit normal vectors of
point P and n2

x + n2
y + n2

z = 1, the first condition for the wall points is nz < arcsin(Thnv),
where Thnv is set as 5◦ in the tests. The Density-Based Spatial Clustering (DBSCAN)
algorithm [27] is adopted to remove the small noise components. Once the points are
separated, we project them to the 2D horizontal surface by simply omitting the z values of
the points’ coordinates, and the point normal vectors are also projected and normalized in
the same way.

2.1.2. Non-Maximum Suppression

The idea of non-maximum suppression is similar to the famous Canny edge detector
in the field of image processing [28]. We suppose the point density of the target wall has
the local maximum value after projecting to the 2D horizontal surface, and the points along
the normal direction need to be suppressed. The aim of such processing is to decrease
the influence of windows or other building attachments and avoid spurious or repeatedly
detected results. Since non-maximum suppression is often adopted in local areas and
requires the estimation of an extremum point and suppression orientation, a raster-based
approach is proposed and the main steps are described below:
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(1) Rasterization

The main task of this section is to divide the wall points into predefined grids and
form a density image, in which the image grays represent the number of points within
the grid. The image boundary is determined based on the minimal and maximal X/Y
coordinate values, and the grid size is set as twice the average point density. For each pixel
p in the density image, three elements are estimated, marked as p(pos, nv, weight), where
pos is the gravity center of all of the projected 2D points within the grid, nv is the median
value of these points’ direction angles (−π/2 to π/2) based on the point normal vectors,
and weight is simply the point number.

(2) Non-Maximum Suppression

In the classic Canny algorithm, the suppression approach is realized based on the idea
that the best edge pixels have the maximum gray gradient compared to their neighbors.
Thus, the method deletes those non-maximum pixels and ensures that the width of the
edges is just one pixel. In our work, the wall points have the maximum point density
compared to their neighbors, and we can use a similar operation to remove points from
windows and other wall attachments. The main issue here is to decide the suppression
orientation and range. For the building wall, it is obvious that the orientation should be
consistent with the wall’s normal vectors. Under such consideration, the nv described in
the above section is used, and we search for a region of 10 pixels. Moreover, we did not
remove all of the non-maximum grids, but maintained those pixels that have a density
greater than eighty percent of the maximum value.

2.1.3. Multiple Cue Weighted RANSAC

This section extracts 2D line segments for the building walls using the weighted
RANSAC algorithm [29]. The principle of the method on point clouds can be found in
our earlier research [30]. We did not directly use the project points as the basic voting
term but used the grid pixels instead, which can greatly increase the efficiency while not
significantly influencing the precision. For each grid pixel p(pos, nv, weight), three elements
are considered when deciding its contribution to the 2D RANSAC hypothetical models:

w(d, θ, K) = K exp(
−d2

σ2
d
− −θ2

σ2
θ

) (1)

where d is the 2D distance between pos and the hypothetical line, θ is the intersection angle
between nv and the line normal, and K is the weight value (grid points number). The σd
and σθ are the priori medium errors of raw point clouds, which are fixed values. According
to the work of [31], they can be set as:

σd =
Thdis
1.96

(2)

σθ =
Thnv

1.96
(3)

where Thdis and Thnv are the thresholds to decide the line inliers, and after a certain number
of iterations, the linear model with the largest sum of the weights of the interior points is
selected as the optimal line model L̂:

L̂ = arg max
L

{
∑

pi∈U
wi(d, θ, K)

}
(4)

where U is the set of selected grid pixels, which are the same for all scored parameters.
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2.1.4. Post-Processing

The main task of the post-processing step is to refine the segmentation results, in-
cluding the removal of spurious lines, connecting adjacent collinear ones, and the overall
adjustment of the line to building domain orientation. The orientation can be estimated by
the median value of all lines’ direction angles, similar to the estimation of grid orientation
in Section 2.1.2. We then consider the consistency between each line and the estimated
orientation and adjust them to the target direction if the angle difference is lower than
Thnv. After the adjustment, adjacent parallel lines with a distance lower than Thdis are
combined. Moreover, spurious lines that have anomalous orientation and low point density
are removed directly.

2.2. Graph-Based Wall Topology Analysis

For cadastral surveys, complete closed boundaries of buildings or courtyards are
needed to meet the requirements for area and ownership measurement, so it is necessary to
construct the topological relations between the line segments, then intersect line segments,
and finally obtain vectorized polygons. Meanwhile, we need to distinguish the house from
the general courtyard wall. In this work, a graph structure is adopted for the wall topology
and closed-loop analysis, and the workflow is described in Figure 3.

(a)wall line-segments (b)TIN-based adjacency (c) initial WLTG

(d) line-segments connection(f) final results (e) modified WLTG and loops

Figure 3. The workflow of graph-based wall topology analysis. (a) the input line segments, (b) the
extraction of wall-wall topology via TIN-based adjacency, (c) the initial wall line topology graph
generated by local analysis among adjacent walls, (d) the connection of line segments based on the
topology relationship, (e) the modified wall line topology graph after the analysis of wall topology
and (f) the final results for edge boundaries.

2.2.1. Line Segment Topology Graph

The graph structure is a widely used way to represent the target objects and their
mutual adjacency relationships. In the field of LOD-2 building reconstruction, the roof
topology graph (RTG) is often adopted to represent the plane–plane topology [32]. Analysis
of the graph structure can help distinguish roof features and primitive types by searching
for loops or typical sub-graphs inside [33,34]. In this work, similar to the RTG, a wall line
segment topology graph (WLTG) is constructed, with the obtained wall line segments as
graph vertices and the adjacency relationships between the line segments as graph edges.
The existence of graph edges can be decided based on the point–point connection between
the inliers of line segments. As shown in Figure 3b, the Triangulation Network (TIN) is
built based on the CGAL library, and we search the TIN edges that connect points from
different line segments. Since only the wall points are considered in the TIN structure, the
TIN edges that are longer than a given threshold Thlen (0.5 m in the test) are omitted to
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avoid the TIN edges that pass through the whole house. We connect the line segments that
meet the requirements of TIN connections in the graph structure as an initial WLTG. Edge
labels can also be added to the graph edges, similar to the work in [32], which indicates
further information about the connection when trying to connect adjacent lines or conduct
the topology analysis.

2.2.2. Graph-Based Wall Connecting and Correction

The main task of this section is to determine the location of intersected corner points
and connect the adjacent wall line segments to the closed polygonal house boundary under
the guidance of a WLTG. The problem is that, similar to the RTG-based methods, topology
errors are inevitable in a WLTG. Short line segments may be lost, and spurious connections
will appear when two non-intersecting walls are too close. Moreover, as shown in Figure 3e,
sometimes the intersected points may not be the endpoint of the line segments, but in the
middle part. Therefore, additional processing is required to distinguish the connecting type
and correct the errors. We further categorize the initial connections between walls into four
types, and the definition and corresponding operation are described below:

(a) Spurious edge, where the average point density is below the pre-given threshold
Thnum. We simply delete the corresponding graph edge.

(b) L type edge, where if two line segments are vertical and both need to be extended
to the corner point or the length of exceeding part does not exceed a Thlen. The two
line segments are directly intersected at the corner.

(c) T type edge, where two line segments are vertical but do not form an L type
edge. The bottom edge is extended to the intersected corner, while the top one is
decomposed at the corner point and similar operations are adopted on the WLTG.

(d) Z type edge, where two line segments are parallel. We add the missed short vertical
edges, and, meanwhile, added one graph vertex and two graph edges to the WLTG.

The average point density in (a) is defined as below:

density =
Numpts

2× len× Thdis
(5)

where Numpts is the number of line inlier points, len is the length of the line segments, and
Thdis is the distance threshold in RANSAC-based line detection.

2.2.3. Graph-Based Closed-Loop Analysis

Just like the minimum closed-loop in the RTG that often indicates the roof corners, the
closed-loops in the WLTG will represent closed building boundary courtyard walls. As
shown in Figure 3c, the closed loop {1, 2, 3, 4} formed by the vertices represents the bound-
ary of the compound, and the closed loop formed by the vertices {1, 5, 6, 7, 8} represents
the boundary of the house. The calculation of the minimum closed loop is rather simple:
repeatedly delete a graph edge and then use the Dijkstra algorithm to find the shortest
path between the two endpoint points of the edge. The closed loops are then extracted by
connecting the path with edge endpoints.

For the task of the cadastral survey, further distinguishing of the courtyard walls from
the buildings is required. Additionally, according to the latest regulation of building estate
measurement and register, unenclosed balconies and concave doorways are calculated by
half-areas, thus needing specially extracted. We distinguish them based on the point clouds
of the building roof. Rough segmentation results for the building roof can be generated
by the height above DEM (set as 2 m) and the point cloud roughness estimated by the
tensor voting algorithm [35], since building roofs are considered to be much higher than the
ground and have a significant plate tensor. Since the building polygon will be filled up by
the roof points, the percentage of grids having roof points within the boundary are taken as
the standard to distinguish courtyard walls from the buildings, and a simple 80% threshold
is enough for most cases. And, those areas having roof points while existing outside the
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boundary will be further checked according to regulation standards. The areas and types
of boundaries can then be calculated and marked for further usage in the cadastral survey.

3. Experiments and Evaluation

This section evaluates the proposed methods experimentally. An introduction to the
datasets, parameters, and evaluation metrics is first provided in Section 3.1, followed by
the overall results in Section 3.2. Local details and analysis on the precision and efficiency
are provided in Section 3.3.

3.1. Dataset, Parameters and Metrics

In this work, the point cloud obtained by tilt photography in an area of Xi’An is
selected as the experimental data, as shown in Figure 4a. The spatial resolution of the
original tilt aerial camera film is about 1.5 cm, and the density of the generated point cloud
is randomly re-sampled to about 400/m2, and an average point distance of 5 cm. The area
of the test region is about 17,500 m2, and manual vector maps are produced as reference
data, as shown in Figure 4b. The properties of the dataset and statistical information of
the reference can be found in Table 1. The parameters used in the proposed approaches
are described in Table 2. The grid size and projection density should be adaptive with the
average point distance. The thresholds Thdis and Thnv reflect the precision and smooth of
the point clouds. The rest of the parameters are used to separate the bounding boundary
from the courtyard.

(a) (b)
Figure 4. Overall view of the input point cloud and reference vector map. (a) Input color point clouds.
(b) Manual reference vector map.

Table 1. The properties of the dataset and reference.

Location Point Density Area Size
Ground Truth

Corners Edges Polygons

Xi’An 400 pts/m2 17,500 m2 371 350 63

Table 2. The parameters used in the experiments.

Grid Size Density
RANSAC Roof Extraction

Th_dis Th_nv DEM Hei Planarity Perc

Para 0.1 m 50 0.2 m 10◦ 2 m 0.9 80%
Grid Size: used in the rasterization procedure in Section 2.1.2, Density is described in Section 2.2.2 to extract
spurious walls. Th_dis and Th_nv are the two thresholds to decide line inliers in the RANSAC algorithm. The
rest of the parameters are used to separate the building boundaries from the courtyard walls in Section 2.2.3.

The evaluation metrics include three parts: the precision of the wall corner location
via the Roof Mean Square Errors, as well as the completeness (comp), correctness (Corr),
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and quality (Qua) indexes regarding the wall corners, lines, and polygons [36]. All of the
considered elements are described below:

RMSE =

√
∑n∈U dis(ptre f , ptres)2

n

Comp =
‖TP‖

‖TP‖+ ‖FN‖

Corr =
‖TP‖

‖TP‖+ ‖FP‖

Qua =
‖TP‖

‖TP‖+ ‖FN‖+ ‖FP‖

(6)

where U is the set of wall corners, and dis(ptre f , ptres) is the 2D Euclidean distance between
the reference corner points and the detected results. ‖TP‖ (True Positive) is the number of
objects which exist in both the reference and results, ‖FP‖ (False Positive) is the number of
objects not found in the reference, and ‖FN‖ (False Positive) is the number of objects not
found in the results.

3.2. Overall Results

An overall view of the regularized wall boundaries detected from dense points is
shown in Figure 5. The areas include individual courtyards like (a) to (c), and connected
courtyards like (d) to (f). It can be seen that the building outline obtained by the proposed
algorithm is very complete, and it can effectively avoid the interference of eaves and
corridors on the accuracy of building boundaries. Additionally, both building outline and
courtyards are included. The qualitative results are also provided in Table 3. It can be seen
that the average RMSE of the proposed method can be about 8.4 cm and the correctness
index of corners, edges, and polygons are above 92%.

d

a

b

c

e

f

Figure 5. Overall view of the regularized boundaries detected from dense points. Red lines: boundary
edges from wall points, and blue lines: extracted doorway boundaries.
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Table 3. Overall qualitative results of the proposed method. a to f are the selected areas given in
Figure 5.

Area
Corners Edges Polygons

RMSE Coor Comp Qua Coor Comp Qua Coor Comp Qua

a 0.066 100.0 90.0 90.0 89.5 81.0 74.0 100 100 100
b 0.065 90.0 85.7 78.2 90.0 85.7 78.2 100 100 100
c 0.085 95.0 82.6 79.2 94.7 81.8 78.2 100 100 100
d 0.069 93.9 89.6 84.7 93.2 87.2 82.0 100 88.9 88.9
e 0.093 91.7 84.0 78.1 90.4 84.4 77.5 90.0 75.0 69.2
f 0.086 94.1 83.5 79.3 93.5 86.3 81.4 88.9 80.0 72.7

average 0.084 93.2 84.9 79.9 92.0 85.1 79.2 92.9 82.5 77.6

3.3. Compare and Local Details

In this section, the proposed methods are compared with classical RANSAC and the
polygon boundaries outlined directly from the rooftop point clouds. The qualitative results
are provided in Figure 6. For boundaries directly from the building roof, since housing
structures such as eaves and doorways are prevalent in rural buildings, the precision of
wall corners is very low; mostly larger than 0.2 m. Meanwhile, the recessed objects are no
longer considered, resulting in low edge completeness and quality indexes. That is the
reason that results from single top-view images are no longer used in recent applications.
We also compare our methods with traditional RANSAC. It can be seen that our results
are closer to the manual outputs, with much lower RMSE and higher corner and edge
indexes. This is due to the fact that spurious or multiple edges are avoided and the edge
locations are more precise. This verifies the effectiveness of our weighted RANSAC and
non-maximum suppression.

0.00 
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0.25 

0.30 

0.35 

a b c d e f

RMSE (m)

Ours
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(a)

0.0

25.0

50.0

75.0

100.0
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(b)

Figure 6. Cont.
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0.0

25.0

50.0

75.0

100.0

a b c d e f

Quality index for edge lines (%)

Ours
Roof-based
RANSAC

(c)

0.0

25.0

50.0

75.0

100.0

a b c d e f

Quality index for polygons (%)

Ours
Roof-based
RANSAC

(d)

Figure 6. Comparison of the proposed methods with traditional RANSAC and the polygon bound-
aries outlined directly from the roof top point clouds. (a,b) are the RMSE and quality index for wall
corners defined in Equation (6), (c,d) are the quality indexes for edges and polygons.

The local details are compared in Figure 7, where the classical RANSAC and roof-
based approaches are compared. It can be seen that our results are more consistent with the
manual ground truth than the compared methods. Most building boundaries are closed,
and the eaves and doorways are well distinguished and extracted. For locations A, B, and
C, both compared methods have difficulties to obtain the complete and precise results. Our
method can balance the advantages of both wall and roof information well, thus producing
outputs close to the ground truth. For D and E in Figure 7, we notice a large roof eave, and
it can be seen that roof-based methods will produce a large spurious region, leading to poor
wall corner precision. As for G, H, and I, many spurious line segments will be extracted,
leading to error line segment topology relationships. In conclusion, our methods generate
better corner precision and edge completeness, and, meanwhile, can distinguish different
boundary types well.

                                       

(1)

(2)

(3)
（a）Raw point clouds （b）Ground truth （c）Our results （d）RANSAC （e）Roof-based

A

BD

CE

F

G

H

I

Figure 7. Comparison of local details. From left to right are input point clouds, ground truth, our
results, and results of classical RANSAC and direct output from roof point clouds. For areas A, B,
and C, incomplete results will be caused by porches for compared methods; for D and E, roof-based
approaches are more likely to produce enlarged boundaries; for G, H, and I, spurious lines are
extracted for traditional RANSAC-based methods.
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3.4. Limitation and Discussion

In this work, dense oblique point clouds are used to acquire a direct observation of the
building’s outer wall. This ensures the precision of extracted boundaries that are consistent
with normative requirements. However, due to the limited viewing angles, occlusion, and
noise, the wall points in the raw point clouds may be incomplete. Moreover, the definition
of the cadastral survey, in theory, includes not only the extraction of building and courtyard
boundaries but also the separation of substructures like independent columns and single-
column porches. Half-areas of those substructures will be also calculated in the final
statistical results, which are difficult to separate due to the limited size and various types.
We only have some trails on the porches that are consistent with the rooftop, and many
more types need to be considered. As a result, some further interactions and additions are
still required in real applications. In Figure 8, some examples of the limitations are given
and we summarize the situations in the following aspects:

(1) The non-closed walls caused by shared or occluded walls. As shown in location
2 of Figure 8, since our method detects the vector boundaries mainly based on
the wall points and building roof from UAV-based point clouds, it will fail when
buildings are adjacent or even connected, where no wall points are available. In
such situations, the boundaries will be merged, which may require further manual
additions in real applications to separate them.

(2) For the gates and ancillary structures of the compound wall, i.e., in location 3 of
Figure 8, since only one wall plane passes through the boundaries and polygons
are detracted, our methods simply produce linear detection results, and the small
polygons and the wall width are not considered. Further operations are still needed
to meet the industry requirements of the cadastral survey.

(3) Due to the influence of noise, the occlusion of vegetation, and various other factors,
spurious edges may still appear and require further checking. In location 1 of
Figure 8, it can be seen that a large amount of debris is usually piled up along the
yard walls of rural houses; this may cause occlusion or spurious edges and require
further checks in the process of actual production application.

1

32

Figure 8. Limitation of the proposed methods. The left area is selected from area f and the right area
is from area a. Location 1: the wall is occluded by the debris; location 2: buildings are connected
and no wall exists; and location 3: only one wall plane passes through the boundaries and polygons
are detracted.

4. Conclusions

To address the high cost, slow update, and low accuracy of the extraction results by
automated methods in the current cadastral survey, this paper proposes a fast acquisition
method of 2D vector contours of buildings and counteryards based on UAV imagery-based
point cloud data. The multiple cue RANSAC algorithm with non-maximal suppressing is
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proposed to fit the non-maximum suppressed wall points to obtain a high-accuracy building
boundary, and the wall line segment topology graph is constructed to describe and identify
the topology relationship among the wall lines, eventually producing closed boundaries.
It is proved that this method can effectively detect the 2D vector contours of buildings
with high accuracy and correct topology. For the area with good point cloud quality, the
detection correctness and completeness for building corner points can reach 93.2% and
84.9%, with a median error of about 10 cm. Independent house and compound contours can
be identified by topological map minimum ring detection, which helps the cadastral survey
to count the floor area and compound area, respectively. The proposed methods have
shown their potential for efficiency and precision in the real cadastral survey applications
in the Xi’an province, China. Precise boundary polygons with simple semantic descriptions
are provided and can greatly decrease the necessary interactions in production applications.

Further work will focus on improving boundary integrity and robustness to occlusions
or false edges. First, building examples can be generated from roofs to better guide the
separation of neighboring buildings. Second, these methods have the potential to be
extended to other building types beyond rural buildings. Third, it can also be used for
other scenarios related to linear features, including interior rooms.
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