Application of Satellite-Derived Summer Bloom Indicators for Estonian Coastal Waters of the Baltic Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sets
2.3. Clustering
2.4. Bloom Indices
2.4.1. Phytoplankton Intensity Index (PII)
2.4.2. Cyanobacterial Surface Accumulation (CSA) Index
2.4.3. Cyanobacterial Bloom Indicator (CyaBI)
2.5. Environmental Status Thresholds
3. Results
3.1. Input Parameters for Estimating Bloom Indicators
3.1.1. Chl-a and Turbidity
3.1.2. N2-Fixing Cyanobacterial Biomass
3.2. Indices for Phytoplankton Bloom Characterization
3.2.1. Phytoplankton Intensity Index (PII)
3.2.2. CSA Index
3.2.3. CyaBI with In Situ Cyanobacterial Biomass
3.2.4. CyaBI with Satellite-Derived Cyanobacterial Biomass
3.3. Current Environmental Status of Estonian Coastal Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- HELCOM. Thematic Assessment of Eutrophication 2011–2016. Baltic Sea Environment Proceedings No. 156. 2018. Available online: www.helcom.fi/baltic-sea-trends/holistic-assessments/state-of-the-baltic-sea-2018/reports-and-materials/ (accessed on 7 May 2023).
- Andersen, J.H.; Axe, P.; Backer, H.; Carstensen, J.; Claussen, U.; Fleming-Lehtinen, V.; Järvinen, M.; Kaartokallio, H.; Knuuttila, S.; Korpinen, S.; et al. Getting the measure of eutrophication in the Baltic Sea: Towards improved assessment principles and methods. Biogeochemistry 2011, 106, 137–156. [Google Scholar] [CrossRef]
- Suikkanen, S.; Pulina, S.; Engström-Öst, J.; Lehtiniemi, M.; Lehtinen, S.; Brutemark, A. Climate Change and Eutrophication Induced Shifts in Northern Summer Plankton Communities. PLoS ONE 2013, 8, e66475. [Google Scholar] [CrossRef]
- HELCOM. Thematic Assessment of Eutrophication 2011–2016. Baltic Sea Environment Proceedings No. 155. 2018. Available online: http://www.helcom.fi/baltic-sea-trends/holistic-assessments/state-of-the-baltic-sea-2018/ (accessed on 8 May 2023).
- Löptien, U.; Dietze, H. Retracing cyanobacteria blooms in the Baltic Sea. Sci. Rep. 2022, 12, 10873. [Google Scholar] [CrossRef]
- Karlson, B.; Arneborg, L.; Johansson, J.; Linders, J.; Liu, Y.; Olofsson, M. A suggested climate service for cyanobacteria blooms in the Baltic Sea–Comparing three monitoring methods. Harmful Algae 2022, 118, 102291. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Kahru, M.; Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 2014, 11, 3619–3633. [Google Scholar] [CrossRef]
- Taranu, Z.E.; Gregory-Eaves, I.; Leavitt, P.R.; Bunting, L.; Buchaca, T.; Catalan, J.; Domaizon, I.; Guilizzoni, P.; Lami, A.; McGowan, S.; et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol. Lett. 2015, 18, 375–384. [Google Scholar] [CrossRef]
- Anderson, D.M. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean. Coast. Manag. 2009, 52, 342–347. [Google Scholar] [CrossRef]
- Carmichael, W.W. Health effects of toxin-producing cyanobacteria: ‘The CyanoHABs’. Hum. Ecol. Risk Assess. 2001, 7, 1393–1407. [Google Scholar] [CrossRef]
- Grattan, L.M.; Holobaugh, S.; Morris, J.G. Harmful algal blooms and public health. Harmful Algae 2016, 57, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Chorus, I.; Welker, M. Toxic Cyanobacteria in Water. In A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Engelhaupt, E.; Westman, P.; Andrén, T.; Rolff, C.; Elmgren, R. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced? Am. Soc. Limnol. Oceanogr. 2000, 45, 716–726. [Google Scholar] [CrossRef]
- Munkes, B.; Löptien, U.; Dietze, H. Cyanobacteria blooms in the Baltic Sea: A review of models and facts. Biogeosciences 2021, 18, 2347–2378. [Google Scholar] [CrossRef]
- Reinart, A.; Kutser, T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens. Environ. 2006, 102, 74–85. [Google Scholar] [CrossRef]
- Anttila, S.; Attila, J.; Junttila, S.; Alasalmi, H. A novel earth observation based ecological indicator for cyanobacterial blooms. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 145–155. [Google Scholar] [CrossRef]
- Bresciani, M.; Giardino, C.; Rosaria, L.; Matta, E. Earth observation for monitoring and mapping of cyanobacteria blooms. Case studies on five Italian lakes. J. Limnol. 2017, 76, 127–139. [Google Scholar] [CrossRef]
- Reynolds, N.; Schaeffer, B.A.; Guertault, L.; Nelson, N.G. Satellite and in situ cyanobacteria monitoring: Understanding the impact of monitoring frequency on management decisions. J. Hydrol. 2023, 619, 129278. [Google Scholar] [CrossRef]
- Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 2004, 49, 2179–2189. [Google Scholar] [CrossRef]
- Cook, K.V.; Beyer, J.E.; Xiao, X.; Hambright, K.D. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes. Water Res. 2023, 242, 120076. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Davis, T.W.; Wynne, T.T.; Graham, J.L.; Loftin, K.A.; Johengen, T.H.; Gossiaux, D.; Palladino, D.; Burtner, A. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 2016, 54, 160–173. [Google Scholar] [CrossRef]
- Handler, A.M.; Compton, J.E.; Hill, R.A.; Leibowitz, S.G.; Schaeffer, B.A. Identifying lakes at risk of toxic cyanobacterial blooms using satellite imagery and field surveys across the United States. Sci. Total Environ. 2023, 869, 161784. [Google Scholar] [CrossRef]
- European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal L 327, 22 December 2000, pp. 1–72. For Consolidated Version 2000L0060. 2014, pp. 1–93. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32000L0060 (accessed on 15 July 2023).
- UN DESA. The Sustainable Development Goals Report 2022. UN DESA. 2022. Available online: https://unstats.un.org/sdgs/report/2022/ (accessed on 15 June 2023).
- European Union. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). Official Journal L 164, 25 June 2008. 2008, pp. 19–40. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0056 (accessed on 15 July 2023).
- Buelo, C.D.; Carpenter, S.R.; Pace, M.L. A modeling analysis of spatial statistical indicators of thresholds for algal blooms. Limnol. Oceanogr. Lett. 2018, 3, 384–392. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Andersen, J.H.; Borja, A.; Bricker, S.B.; Camp, J.; Cardoso da Silva, M.; Garces, E.; Heiskanen, A.-S.; Humborg, C.; Ignatiades, L.; et al. Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci. 2011, 93, 117–131. [Google Scholar] [CrossRef]
- HELCOM. Indicator Manual. Version 2020-1. Baltic Sea Environment Proceedings n°175. 2020. Available online: www.helcom.fi (accessed on 7 May 2023).
- Fleming, V.; Kaitala, S. Phytoplankton spring bloom intensity index for the Baltic Sea estimated for the years 1992 to 2004. Hydrobiologia 2006, 554, 57–65. [Google Scholar] [CrossRef]
- Kahru, M.; Elmgren, R.; Kaiser, J.; Wasmund, N.; Savchuk, O. Cyanobacterial blooms in the Baltic Sea: Correlations with environmental factors. Harmful Algae 2020, 92, 101739. [Google Scholar] [CrossRef] [PubMed]
- Kahru, M.; Savchuk, O.P.; Elmgren, R. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: Interannual and spatial variability. Mar. Ecol. Prog. Ser. 2007, 343, 15–23. [Google Scholar] [CrossRef]
- Cazzaniga, I.; Zibordi, G.; Mélin, F. Spectral features of ocean colour radiometric products in the presence of cyanobacteria blooms in the Baltic Sea. Remote Sens. Environ. 2023, 287, 113464. [Google Scholar] [CrossRef]
- Legleiter, C.J.; King, T.V.; Carpenter, K.D.; Hall, N.C.; Mumford, A.C.; Slonecker, T.; Graham, J.L.; Stengel, V.G.; Simon, N.; Rosen, B.H. Spectral mixture analysis for surveillance of harmful algal blooms (SMASH): A field-, laboratory-, and satellite-based approach to identifying cyanobacteria genera from remotely sensed data. Remote Sens. Environ. 2022, 279, 113089. [Google Scholar] [CrossRef]
- Bunyon, C.L.; Fraser, B.T.; McQuaid, A.; Congalton, R.G. Using Imagery Collected by an Unmanned Aerial System to Monitor Cyanobacteria in New Hampshire, USA, Lakes. Remote Sens. 2023, 15, 2839. [Google Scholar] [CrossRef]
- Choi, B.; Lee, J.; Park, B.; Sungjong, L. A study of cyanobacterial bloom monitoring using unmanned aerial vehicles, spectral indices, and image processing techniques. Heliyon 2023, 9, e16343. [Google Scholar] [CrossRef]
- HELCOM. Cyanobacterial Bloom Index (CyaBI). 2018. Available online: https://helcom.fi/cyanobacterial-bloom-index-helcom-pre-core-indicator-2018-2/ (accessed on 27 November 2022).
- Ministry of the Environment. 16 April 2020. A Määrus nr 19, Pinnaveekogumite Nimekiri, Pinnaveekogumite ja Territoriaalmere Seisundiklasside Määramise Kord, Pinnaveekogumite Ökoloogiliste Seisundiklasside Kvaliteedinäitajate Väärtused ja Pinnaveekogumiga Hõlmamata Veekogude Kvaliteedinäitajate Väärtused, Lisa 2. Last Revised 24 April 2020. Available online: https://www.riigiteataja.ee/akt/121042020061 (accessed on 20 July 2023).
- Ministry of the Environment. 16 April 2020. A Määrus nr 19, Pinnaveekogumite Nimekiri, Pinnaveekogumite ja Territoriaalmere Seisundiklasside Määramise Kord, Pinnaveekogumite Ökoloogiliste Seisundiklasside Kvaliteedinäitajate Väärtused ja Pinnaveekogumiga Hõlmamata Veekogude Kvaliteedinäitajate Väärtused, Lisa 1. Last Revised 24 April 2020. Available online: https://www.riigiteataja.ee/akt/121042020061 (accessed on 20 July 2023).
- Uusõue, M.; Ligi, M.; Kutser, M.; Bourrin, F.; Uudeberg, K.; Kangro, K.; Paavel, B. Effects of different conditions on particle dynamics and properties in West-Estonian coastal areas. Oceanologia 2022, 64, 694–716. [Google Scholar] [CrossRef]
- HELCOM. Guidelines for Monitoring of Phytoplankton Species Composition, Abundance and Biomass. HELCOM. 2021. Available online: https://helcom.fi/wp-content/uploads/2020/01/HELCOM-Guidelines-for-monitoring-of-phytoplankton-species-composition-abundance-and-biomass.pdf (accessed on 19 July 2023).
- HELCOM. Guidelines for Monitoring of Chlorophyll a. HELCOM. Available online: https://helcom.fi/wp-content/uploads/2019/08/Guidelines-for-measuring-chlorophyll-a.pdf (accessed on 19 July 2023).
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric correction in presence of sun glint: Application to MERIS. Opt. Soc. Am. 2011, 19, 9783–9800. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. Living Planet Symp. 2016, 2016, 740. [Google Scholar]
- Schiller, H.; Doerffer, R. Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data. Int. J. Remote Sens. 1999, 20, 1735–1746. [Google Scholar] [CrossRef]
- EUMETSAT. Recommendations for Sentinel-3 OLCI Ocean Colour Product Validations in Comparison with In Situ Measurements-Matchup Protocols. 2022. Available online: http://www.eumetsat.int (accessed on 20 December 2022).
- Kyryliuk, D.; Kratzer, S. Evaluation of sentinel-3A OLCI products derived using the case-2 regional coastcolour processor over the Baltic Sea. Sensors 2019, 19, 3609. [Google Scholar] [CrossRef] [PubMed]
- Gower, J.; King, S.; Goncalves, P. Global monitoring of plankton blooms using MERIS MCI. Int. J. Remote Sens. 2008, 29, 6209–6216. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Femenias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Zeng, C.; Binding, C.E. Consistent multi-mission measures of inland water algal bloom spatial extent using meris, modis and olci. Remote Sens. 2021, 13, 3349. [Google Scholar] [CrossRef]
- Binding, C.E.; Greenberg, T.A.; Bukata, R.P. The MERIS Maximum Chlorophyll Index; its merits and limitations for inland water algal bloom monitoring. J. Great Lakes Res. 2013, 39, 100–107. [Google Scholar] [CrossRef]
- Nõges, P. Uuring Peipsi Järve Füüsikalis-Keemiliste ja Fütoplanktoni Kvaliteedinäitajate Klassipiiride Täpsustamiseks. Eesti Vabariigi Keskkonnaministeeriumi ja Eesti Maaülikooli Vahel 2 September 2020 Sõlmitud Töövõtuleping nr 4-1/20/131. 2020. Available online: https://dspace.emu.ee/xmlui/bitstream/handle/10492/7630/Peipsi%20vrd%20kriteeriumite%20aruanne.pdf?sequence=1&isAllowed=y (accessed on 1 March 2023).
- Mischke, U.; Carvalho, L.; McDonald, C.; Skjelbred, B.; Solheim, A.L.; Philips, G.; de Hoyos, C.; Borics, G.; Moe, J.; Pahissa, J. Deliverable D3.1-2: Report on Phytoplankton Bloom Metrics. 2009. Available online: https://nora.nerc.ac.uk/15913/1/N015913CR.pdf (accessed on 12 May 2023).
- Boyer, J.N.; Kelble, C.R.; Ortner, P.B.; Rudnick, D.T. Phytoplankton bloom status: Chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol. Indic. 2009, 9, S56–S67. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Nutrient Criteria Technical Guidance Manual: Estuarine and Coastal Marine Waters. 2001. Available online: https://www.epa.gov/sites/default/files/2018-10/documents/nutrient-criteria-manual-estuarine-coastal.pdf (accessed on 20 July 2023).
- Kratzer, S.; Plowey, M. Integrating mooring and ship-based data for improved validation of OLCI chlorophyll-a products in the Baltic Sea. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102212. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Mapping water quality parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. [Google Scholar] [CrossRef]
- Soomets, T.; Toming, K.; Paavel, B.; Kutser, T. Evaluation of remote sensing and modeled chlorophyll-a products of the Baltic Sea. J. Appl. Remote Sens. 2022, 16, 046516. [Google Scholar] [CrossRef]
- Karlson, A.M.L.; Duberg, J.; Motwani, N.H.; Hogfors, H.; Klawonn, I.; Ploug, H.; Sveden, J.B.; Garbaras, A.; Sundelin, B.; Hajdu, S.; et al. Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs. Ambio 2015, 44, 413–426. [Google Scholar] [CrossRef]
- Olofsson, M.; Klawonn, I.; Karlson, B. Nitrogen fixation estimates for the Baltic Sea indicate high rates for the previously overlooked Bothnian Sea. Ambio 2021, 50, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Alikas, K.; Kangro, K.; Reinart, A. Detecting cyanobacterial blooms in large North European lakes using the maximum chlorophyll index. Oceanologia 2010, 52, 237–257. [Google Scholar] [CrossRef]
- Nurmik, M.; Eljas, K. Merestrateegia Raamdirektiivi (2008/56/EÜ) Kohase Eesti Mereala Keskkonnaseisundi Hinnangu Indikaatorite Kogum. 2018. Available online: www.klab.ee (accessed on 10 July 2023).
- Klauson, A.; Lotman, A.; Jaanus, A.; Kuus, A.; Põllumäe, A.; Martin, G.; Ojaveer, H.; Taal, I.; Lips, I.; Jüssi, I.; et al. Eesti Mereala Keskkonnaseisund 2018. 2019. Available online: https://shorturl.at/oxA26 (accessed on 10 July 2023).
- Alikas, K.; Ansko, I.; Vabson, V.; Ansper, A.; Kangro, K.; Uudeberg, K.; Ligi, M. Consistency of radiometric satellite data over lakes and coastal waters with local field measurements. Remote Sens. 2020, 12, 616. [Google Scholar] [CrossRef]
- Windle, A.E.; Evers-King, H.; Loveday, B.R.; Ondrusek, M.; Silsbe, G.M. Evaluating Atmospheric Correction Algorithms Applied to OLCI Sentinel-3 Data of Chesapeake Bay Waters. Remote Sens. 2022, 14, 1881. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A Multispectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and comparison of water quality products in baltic lakes using sentinel-2 msi and sentinel-3 OLCI data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Metsamaa, L.; Vahtmä, E. Mapping coloured dissolved organic matter concentration in coastal waters. Int. J. Remote Sens. 2009, 30, 5843–5849. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Young, E. Global remote sensing of Trichodesmium. Int. J. Remote Sens. 2014, 35, 5459–5466. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Goncalves, P. New results from a global survey using MERIS MCI. Int. J. Remote Sens. 2008, 21, 6209–6216. [Google Scholar] [CrossRef]
- Alikas, K.; Kratzer, S. Improved retrieval of Secchi depth for optically-complex waters using remote sensing data. Ecol. Indic. 2017, 77, 218–227. [Google Scholar] [CrossRef]
- Konik, M.; Bradtke, K.; Stoń-Egiert, J.; Soja-Woźniak, M.; Śliwińska-Wilczewska, S.; Darecki, M. Cyanobacteria Index as a Tool for the Satellite Detection of Cyanobacteria Blooms in the Baltic Sea. Remote Sens. 2023, 15, 1601. [Google Scholar] [CrossRef]
- Clark, J.M.; Schaeffer, B.A.; Darling, J.A.; Urquhart, E.A.; Johnston, J.M.; Ignatius, A.R.; Hyer, M.H.; Loftin, K.A.; Werdell, J.; Stumpf, R.P. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources. Ecol. Indic. 2017, 80, 84–95. [Google Scholar] [CrossRef]
- Mishra, S.; Stumpf, R.P.; Schaeffer, B.A.; Werdell, P.J.; Loftin, K.A.; Meredith, A. Measurement of Cyanobacterial Bloom Magnitude using Satellite Remote Sensing. Sci. Rep. 2019, 9, 18310. [Google Scholar] [CrossRef]
- Uudeberg, K.; Aavaste, A.; Kõks, K.-L.; Ansper, A.; Uusõue, M.; Kangro, K.; Ansko, I.; Ligi, M.; Toming, K.; Reinart, A. Optical water type guided approach to estimate optical water quality parameters. Remote Sens. 2020, 12, 931. [Google Scholar] [CrossRef]
- Kowalczuk, P. Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J. Geophys. Res. Ocean. 1999, 104, 30047–30058. [Google Scholar] [CrossRef]
- Harvey, E.T.; Kratzer, S.; Andersson, A. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea. Ambit 2015, 44, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Paavel, B.; Arst, H.; Metsamaa, L.; Toming, K.; Reinart, A. Optical investigations of CDOM-rich coastal waters in Pärnu Bay. Est. J. Earth Sci. 2011, 60, 102–112. [Google Scholar] [CrossRef]
- Wasmund, N. Occurrence of cyanobacterial blooms in the baltic sea in relation to environmental conditions. Int. Rev. Gesamten Hydrobiol. 1997, 82, 169–184. [Google Scholar] [CrossRef]
- Wasmund, N.; Nausch, G.; Voss, M. Upwelling events may cause cyanobacteria blooms in the Baltic Sea. J. Mar. Syst. 2012, 90, 67–76. [Google Scholar] [CrossRef]
- Nausch, M.; Nausch, G.; Lass, H.U.; Morholz, V.; Nagel, K.; Siegel, H.; Wasmund, N. Phosphorus input by upwelling in the eastern Gotland Basin (Baltic Sea) in summer and its effects on filamentous cyanobacteria. Estuararine Coast. Shelf Sci. 2009, 83, 434–442. [Google Scholar] [CrossRef]
- Vahtera, E.; Laanemets, J.; Pavelson, J.; Huttunen, M.; Kononen, K. Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. J. Mar. Syst. 2005, 58, 67–82. [Google Scholar] [CrossRef]
- Estonian Environment Agency. MERESEIRE 2022 ARUANNE OSA 2. Rannikumere Seire; Unpublished Work; Estonian Environment Agency: Tallinn, Estonia, 2023. [Google Scholar]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Woźniak, M.; Bradtke, K.M.; Darecki, M.; Krȩzel, A. Empirical model for phycocyanin concentration estimation as an indicator of cyanobacterial bloom in the optically complex coastal waters of the baltic sea. Remote Sens. 2016, 8, 212. [Google Scholar] [CrossRef]
- Riddick, C.A.L.; Hunter, P.D.; Gomez, J.A.D.; Martinez-Vicente, V.; Presing, M.; Horvath, H.; Kovacs, A.W.; Vörös, L.; Zsigmond, E.; Tyler, A.N. Optimal cyanobacterial pigment retrieval from ocean colour sensors in a highly turbid, optically complex lake. Remote Sens. 2019, 11, 1613. [Google Scholar] [CrossRef]
- Ogashawara, I. Determination of phycocyanin from space—A bibliometric analysis. Remote Sens. 2020, 12, 567. [Google Scholar] [CrossRef]
- Spisla, C.; Taucher, J.; Bach, L.T.; Haunost, M.; Boxhammer, T.; King, A.L.; Jenkins, B.D.; Wallace, J.R.; Ludwig, A.; Meyer, J.; et al. Extreme Levels of Ocean Acidification Restructure the Plankton Community and Biogeochemistry of a Temperate Coastal Ecosystem: A Mesocosm Study. Front. Mar. Sci. 2021, 7, 611157. [Google Scholar] [CrossRef]
- Ullah, H.; Nagelkerken, I.; Goldenberg, S.U.; Fordham, D.A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 2018, 16, e2003446. [Google Scholar] [CrossRef] [PubMed]
Coastal Area | Chl-a (In Situ) mg m−3 | Frequency of In Situ Sampling | Average Salinity, psu | Predominant Depth Range, m | |
---|---|---|---|---|---|
Average Number of Sampling per Year | Minimum Years between Measurements | ||||
Narva-Kunda Bay | 5.7 (0.7–29.5) | 5.4 | 0 | 4–5 | 5–25 |
Eru-Käsmu Bay | 5.1 (1.8–32.1) | 4.0 | 1 | 4.5–5 | 20–50 |
Hara and Kolga bays | 3.8 (0.2–20.3) | 4.4 | 0 | 5–5.5 | 25–80 |
Muuga-Tallinna-Kakumäe Bay | 4.0 (0.2–18.0) | 11.6 | 0 | 5.5–6 | 20–50 |
Pakri bays | 4.5 (0.7–8.4) | 7 | 6 | 5.5–6.5 | 10–50 |
Hiiu Shallow | 3.5 (1.8–7.7) | 6 | 6 | 6–7 | 10–25 |
Haapsalu Bay | 3.5 (0.9–9.1) | 4.5 | 2 | 3–6 | 1–3 |
Matsalu Bay | 2.8 (1.5–6.3) | 4 | 6 | 3–6 | 1–3 |
Soela Strait | 2.7 (1.1–6.6) | 5 | 6 | 6.5–7 | 20–50 |
Kihelkonna Bay | 1.9 (0.8–4.9) | 5 | 6 | 6.5–7 | 10–25 |
Pärnu Bay | 7.7 (2.9–47.7) | 5.3 | 0 | 4–5 | 3–5 |
Kassari-Õunaku Bay | 1.8 (0.8–6.8) | 5.5 | 2 | 6–7 | 3–7 |
Moonsund Sea | 2.4 (0.3–5.8) | 3.3 | 2 | 5.5–6.5 | 5–10 |
Gulf of Riga (NW) | NA * | NA * | NA * | 5.5–6.5 | 10–25 |
Gulf of Riga (NE) | 8.7 (2.2–71.9) | 5.1 | 0 | 5–5.5 | 10–20 |
Gulf of Riga (central) | 3.1 (1.4–5.7) | 2.8 | 1 | 5–5.5 | 25–40 |
Flags Used with C2RCC | Flags Used with POLYMER |
---|---|
IDEPIX_CLOUD | bitmask = 0 |
IDEPIX_BRIGHT | bitmask = 1024 |
IDEPIX_CLOUD_SHADOW | |
IDEPIX_CLOUD_AMBIGUOUS | |
IDEPIX_CLOUD_SURE | |
IDEPIX_CLOUD_BUFFER | |
Cloud_risk | |
quality_flags.bright | |
quality_flags.straylight_risk | |
quality_flags.invalid | |
quality_flags.sun_glint_risk |
Group | Chl-a | Turbidity |
---|---|---|
0—no algae | <5 | <2.5 |
1—some algae | 5–11 | 2.5–4.5 |
2—abundant algae | 11–27 | 4.5–7.5 |
3—very abundant | >27 | >7.5 |
Coastal Area | CSA Index | CyaBI (In Situ) | CyaBI (Satellite) | Phytoplankton Intensity Index | ||||
---|---|---|---|---|---|---|---|---|
Threshold | 2022 | Threshold | 2022 | Threshold | 2022 | Threshold | 2022 | |
Eru-Käsmu Bay | 0.67 | 0.34 | 0.67 | 0.34 | 0.67 | 0.66 | 237 | 173 |
Haapsalu Bay | 0.73 | 0.33 | 0.73 | 0.33 | 0.78 | 0.17 | 633 | 1256 |
Hara and Kolga bays | 0.84 | 0.52 | 0.84 | 0.52 | 0.83 | 0.64 | 112 | 148 |
Hiiu Shallow | 0.82 | 0.13 | 0.82 | 0.13 | 0.75 | 0.56 | 28 | 15 |
Kassari-Õunaku Bay | 0.71 | 0.39 | 0.59 | 0.39 | 0.64 | 0.69 | 16 | 16 |
Kihelkonna Bay | 0.81 | 0.80 | 0.81 | 0.80 | 0.76 | 0.90 | 59 | 0 |
Gulf of Riga (center) | 0.47 | 0.16 | 0.71 | 0.61 | 0.73 | 0.51 | 142 | 135 |
Gulf of Riga (NE) | 0.61 | 0.42 | 0.75 | 0.71 | 0.78 | 0.69 | 304 | 312 |
Gulf of Riga (NW) | 0.55 | 0.68 | 0.55 | 0.68 | 0.49 | 0.84 | 105 | 0 |
Matsalu Bay | 0.79 | 0.03 | 0.79 | 0.03 | 0.80 | 0.43 | 813 | 1171 |
Muuga-Tallinna-Kakumäe Bay | 0.71 | 0.54 | 0.73 | 0.62 | 0.69 | 0.77 | 123 | 47 |
Narva-Kunda Bay | 0.66 | 0.28 | 0.60 | 0.64 | 0.57 | 0.47 | 237 | 155 |
Pakri bays | 0.67 | 0.21 | 0.67 | 0.21 | 0.77 | 0.60 | 71 | 42 |
Pärnu Bay | 0.60 | 0.04 | 0.79 | 0.51 | 0.64 | 0.05 | 670 | 794 |
Soela Strait | 0.85 | 0.27 | 0.85 | 0.27 | 0.79 | 0.36 | 0 * | 0 * |
Moonsund Sea | 0.86 | 0.00 | 0.86 | 0.00 | 0.71 | 0.50 | 46 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahn, I.-A.; Kangro, K.; Jaanus, A.; Alikas, K. Application of Satellite-Derived Summer Bloom Indicators for Estonian Coastal Waters of the Baltic Sea. Appl. Sci. 2023, 13, 10211. https://doi.org/10.3390/app131810211
Rahn I-A, Kangro K, Jaanus A, Alikas K. Application of Satellite-Derived Summer Bloom Indicators for Estonian Coastal Waters of the Baltic Sea. Applied Sciences. 2023; 13(18):10211. https://doi.org/10.3390/app131810211
Chicago/Turabian StyleRahn, Ian-Andreas, Kersti Kangro, Andres Jaanus, and Krista Alikas. 2023. "Application of Satellite-Derived Summer Bloom Indicators for Estonian Coastal Waters of the Baltic Sea" Applied Sciences 13, no. 18: 10211. https://doi.org/10.3390/app131810211
APA StyleRahn, I. -A., Kangro, K., Jaanus, A., & Alikas, K. (2023). Application of Satellite-Derived Summer Bloom Indicators for Estonian Coastal Waters of the Baltic Sea. Applied Sciences, 13(18), 10211. https://doi.org/10.3390/app131810211