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Abstract: The aim of this study was to test and develop the indicators for the remote sensing assess-
ment of cyanobacterial blooms as an input to the estimation of eutrophication and the environmental
status (ES) under the Marine Strategy Framework Directive (MSFD) in the optically varying Esto-
nian coastal regions (the Baltic Sea). Here, the assessment of cyanobacteria blooms considered the
chlorophyll-a (chl-a), turbidity, and biomass of N2-fixing cyanobacteria. The Sentinel-3 A/B Ocean
and Land Colour Instrument (OLCI) data and Case-2 Regional CoastColour (C2RCC) processor were
used for chl-a and turbidity detection. The ES was assessed using four methods: the Phytoplankton
Intensity Index (PII), the Cyanobacterial Surface Accumulations Index (CSA), and two variants of the
Cyanobacterial Bloom Indicator (CyaBI) either with in situ-measured cyanobacterial biomass or with
satellite-estimated cyanobacterial biomass. The threshold values for each coastal area ES assessment
are presented. During 2022, the NW Gulf of Riga reached good ES, but most of the 16 coastal areas
failed to achieve good ES according to one or multiple indices. Overall, the CyaBI gives the most
comprehensive assessment of cyanobacteria blooms, with the CyaBI (in situ) being the best suited for
naturally turbid areas. The CyaBI (satellite) could be more useful than in situ in large open areas,
where the coverage of in situ sampling is insufficient.

Keywords: Baltic Sea; OLCI; cyanobacteria bloom indices; marine strategy framework directive;
MSFD; environmental status

1. Introduction

The Baltic Sea is a semi-enclosed sea bordering nine countries: Denmark, Sweden,
Finland, Russia, Estonia, Latvia, Lithuania, Poland, and Germany. The sea provides eco-
nomic benefits from tourism to fishing [1]. Simultaneously, it is under heavy anthropogenic
pressure from nearby industries, cities, agriculture, and other inputs from various human
activities. An enrichment of nutrients results in an increase in the eutrophication of the
sea [2]. This, in turn, has cascading impacts on the local ecosystem from an increase in
primary production, and changes in the metabolism of organisms, to oxygen depletion,
which has led to changes in food webs and benthic and planktic communities [3,4]. The
increased nutrient load into the sea has led to an increase in phytoplankton biomass, includ-
ing cyanobacteria. Furthermore, cyanobacteria can cope with nitrogen limitation by fixing
atmospheric nitrogen, providing additional nutrient inputs to an already nutrient-rich
system [5]. It has been reported that spatial and temporal parameters of harmful algal
blooms (HABs) have shifted [6]. The blooms are beginning earlier and cover a larger area
than previously [7–9]. HABs in the Baltic Sea consist of both non-toxic and toxic cyanobac-
teria species and can be a nuisance to local aquatic ecosystems and maritime industry
and pose a threat to public health [10–12]. Contact with different toxin-producing species
of cyanobacteria can lead to skin irritation, liver damage, or paralysis [13]. In Estonian
coastal areas, estuarine species such as the Aphanizomenon flos-aquae and Nodularia species
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are prevalent and dominate during the summer HAB events [14], whereas bloom-forming
cyanobacteria, especially Nodularia spumigena, and Dolichospermum spp., all may produce
toxins [15].

Currently, in situ measurements taken sparsely and from singular measuring points
are used to give an indication of the environmental status (ES) of the entire coastal area.
This is problematic as the coastal areas differ from one another regarding currents, wind
speed, and prevailing direction, as well as the species present (e.g., presence of vacuoles
in some species), and as a result, HABs are not homogenous across the coast. Numerous
problems arise from in situ sampling of cyanobacterial biomass. Using research vessels
to gather water samples leads to unintended disturbances in the horizontal and vertical
distribution of cyanobacteria [16]. Satellite images could provide a solution to monitoring
large-scale cyanobacterial blooms [17,18]. Satellites allow for much larger areas to be
measured at much more frequent timescales (daily without cloud cover) [19]. This would
permit the identification of possible parameters responsible for changes in time and space.
However, the downside to using satellite data is that it can only give information about
the surface of the waterbody, whereas cyanobacteria are mixed in the water column and
extensive subsurface blooms can occur [20]. This is one of the reasons for match-up
inconsistencies, as in situ measurements follow different methodologies and, in some
instances, consider biomass in deeper layers of the water column, which satellite images
cannot pick up. Furthermore, depending on the satellite, the large spatial resolution of
Sentinel-3, for example, and even Sentinel-2 and Landsat, do not allow for monitoring the
spatial distribution at very fine scales. This can be an issue, as Kutser (2004) has shown,
as blooms can be patchy and differ at even 30 m scales in the Baltic Sea. One solution is
ground-based remote sensing, as evidenced by Cook et al. [21], but this is better suited
for smaller water bodies such as lakes and would not be fiscally viable for coastal areas.
Currently, another issue is the inability to detect specific toxins or toxin-producing species
via satellite images which hinders the usefulness of satellite data for the more accurate
monitoring of blooms [22,23]. Despite all of it, satellite remote sensing is a useful tool for
monitoring large-scale bloom events through time and space.

Monitoring the ES of coastal areas is required under the EU Water Framework Direc-
tive (WFD) [24]. Furthermore, monitoring and managing aquatic resources is necessary to
ensure the safety of marine environments and is one of the key parameters under the United
Nations’ Sustainable Development Goal 6 [25]. Under the Marine Strategy Framework
Directive (MSFD) (2008) of the European Commission, it is a priority for countries in the
EU to monitor the ES of their waterbodies and achieve a good environmental state. One
of the key parameters which must be monitored is eutrophication as it can lead to numer-
ous cascading environmental impacts, such as ecosystem deterioration, cyanobacterial
blooms, and anaerobic conditions of the benthic layers [26]. The Baltic Marine Environ-
ment Protection Commission, also known as the Helsinki Commission or HELCOM, is
the organization responsible for implementing the principles of the MSFD in the Baltic
Region and has coordinated the development of indicators for monitoring the ES of the
region. Each HELCOM indicator evaluates a specific aspect of the Baltic Sea. The HELCOM
indicators go through three stages: the candidate indicator, the pre-core indicator, and
the core indicator. An indicator is officially approved when it fulfils rigorous criteria, for
example, it has approved threshold values and data availability. An issue with using indi-
cators to describe environmental processes is that they are difficult to develop for complex
biological phenomena. The intricacies of bloom events and their associated relationship
within food webs, as well as the lack of spatially and temporally extensive data, make
assessing ES complicated [17,27,28]. Among other indicators for assessing ES, ranging
from acidification and beach litter to seal reproduction and trout abundance, is the pre-core
indicator Cyanobacterial Bloom Index (CyaBI) [4,29]. The CyaBI consists of two inputs:
the remote sensing (RS) data of bloom parameters and in situ cyanobacterial biomass [17].
Other indices, outside of HELCOM, have also been used in the Baltic Sea to assess bloom
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events: Cyanobacterial Surface Accumulation (CSA) [17] and the Phytoplankton Intensity
Index [30], among others [8,31,32].

Cyanobacterial methods for setting target levels and assessing the blooms typically
make use of chlorophyll-a concentrations (chl-a) [28]. Bloom assessment methods, such as
CSA, the CyaBI, and the Phytoplankton Intensity Index, have been shown to be applicable
to different open sea areas of the Baltic Sea [17,30]. Additionally, band differences for
the bands of the Ocean and Land Colour Instrument (OLCI) and bands of the Moderate
Resolution Imaging Spectroradiometer (MODIS) were shown to agree with the in situ data
in the Baltic Sea and could be used for the detection of cyanobacteria blooms [33]. Other
approaches, such as hyperspectral satellites [34] or unmanned aerial vehicles (UAVs) [35,36],
have also been used in other parts of the world. However, to our knowledge, no previous
research has applied these methods to the Estonian coast. The Estonian coastal waters are
optically complex and heavily influenced by colored dissolved organic matter (CDOM) and
total suspended matter (TSM) and are typically shallow, which have made it an optically
difficult area to study via satellites. When estimating a baseline for ES, it is important to
consider that the Baltic Sea has historically seen phytoplankton blooms even before human
intervention. As highlighted by HELCOM, a threshold ES should therefore not be set as
“no blooms present” but rather should ensure that blooms are not severe and do not cause
economic and ecological harm. Simultaneously, the assessment should be in accordance
with the sustainable use of sea resources by humans [37]. Previously, a time-series analysis
based on the satellite data of cyanobacterial blooms in the Baltic Sea has been conducted by,
e.g., Kahru and Elmgren [8], where the idea of a lack of a bloom-free period was solidified.

The main objective of this research was to test various indices used to monitor the ES
of Estonian coastal areas in regard to cyanobacteria biomass and to assess the applicability
of input parameters such as the chl-a, turbidity, and cyanobacteria biomass, derived from
Sentinel-3 OLCI data products. Through the use of indices, an assessment of the current
cyanobacterial biomass in the Baltic Sea during the summer bloom events from 2016 to
2022 using satellite data was made.

2. Materials and Methods
2.1. Study Area

The Estonian coastal sea is divided into 16 water bodies: Gulf of Riga (Northwest,
Northeast, center), Pärnu Bay, Hara and Kolga bays, Hiiu Shallow, Matsalu Bay, Haapsalu
Bay, Moonsund Sea, Eru-Käsmu Bay, Muuga-Tallinna-Kakumäe Bay, Kassari-Õunaku Bay,
Narva-Kunda Bay, Soela Strait, Pakri bays, and Kihelkonna Bay (Table 1 and
Figure 1) [38,39]. The varying environmental states of the different areas have led to
contrasting cyanobacterial bloom conditions.

Narva-Kunda Bay and Eru-Käsmu Bay are open areas in the southeastern Gulf of
Finland. Narva-Kunda Bay is heavily influenced by currents and waves. Rivers are the
main sources of pollution from heavy industry in the adjacent areas. Due to the lack of
human activity and freshwater inflow, Eru-Käsmu is much less polluted.

The Hara–Kolga, Muuga-Tallinna-Kakumäe, and Pakri bays are all semi-enclosed
shallow bays with deeper parts of the sea open to waves and currents. The influence of
fresher and nutrient-rich water from the open part of the Gulf of Finland can also occur.
The main sources of pollution in these areas are the city of Tallinn and maritime traffic.

Hiiu Shallow, Kihelkonna Bay, and Soela Strait can be described as being strongly
influenced by the Baltic Sea due to their openness. These areas are minimally impacted by
the adjacent land.

Haapsalu Bay is mostly shallow and semi-enclosed. The area is under the influence
of effluents from the coastal city of Haapsalu. Due to poor water exchange, nutrients also
accumulate in the inner part of the bay.
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Table 1. Names and environmental parameters of the study areas. Median summer chl-a is given,
minimum and maximum in brackets. Average salinity is given as the range of values between
different sampling stations in a coastal area (April–October).

Coastal Area
Chl-a (In Situ)

mg m−3

Frequency of In Situ Sampling
Average Salinity,

psu
Predominant

Depth Range, m
Average Number

of Sampling
per Year

Minimum Years
between

Measurements

Narva-Kunda Bay 5.7 (0.7–29.5) 5.4 0 4–5 5–25
Eru-Käsmu Bay 5.1 (1.8–32.1) 4.0 1 4.5–5 20–50

Hara and Kolga bays 3.8 (0.2–20.3) 4.4 0 5–5.5 25–80
Muuga-Tallinna-

Kakumäe Bay 4.0 (0.2–18.0) 11.6 0 5.5–6 20–50

Pakri bays 4.5 (0.7–8.4) 7 6 5.5–6.5 10–50
Hiiu Shallow 3.5 (1.8–7.7) 6 6 6–7 10–25
Haapsalu Bay 3.5 (0.9–9.1) 4.5 2 3–6 1–3
Matsalu Bay 2.8 (1.5–6.3) 4 6 3–6 1–3
Soela Strait 2.7 (1.1–6.6) 5 6 6.5–7 20–50

Kihelkonna Bay 1.9 (0.8–4.9) 5 6 6.5–7 10–25
Pärnu Bay 7.7 (2.9–47.7) 5.3 0 4–5 3–5

Kassari-Õunaku Bay 1.8 (0.8–6.8) 5.5 2 6–7 3–7
Moonsund Sea 2.4 (0.3–5.8) 3.3 2 5.5–6.5 5–10

Gulf of Riga (NW) NA * NA * NA * 5.5–6.5 10–25
Gulf of Riga (NE) 8.7 (2.2–71.9) 5.1 0 5–5.5 10–20

Gulf of Riga (central) 3.1 (1.4–5.7) 2.8 1 5–5.5 25–40

* Sampling started in 2022.
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Figure 1. Coastal areas of Estonia and in situ sampling locations are represented as white points.
(a) Eru-Käsmu Bay, (b) Haapsalu Bay, (c) Hara and Kolga bays, (d) Hiiu Shallow, (e) Kassari-Õunaku
Bay, (f) Kihelkonna Bay, (g) Gulf of Riga (central), (h) Gulf of Riga (NE), (i) Gulf of Riga (NW),
(j) Matsalu Bay, (k) Muuga-Tallinna-Kakumäe Bay, (l) Narva-Kunda Bay, (m) Pakri bays, (n) Pärnu
Bay, (o) Soela Strait, (p) Moonsund Sea. Base image: Google Hybrid.
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Matsalu Bay is a typical estuary where fresh water in the eastern part transitions to
brackish water (5–6 PSU) at the mouth of the bay.

Kassari-Õunaku Bay is open from the west, while the eastern side is separated from
the neighboring water bodies by an archipelago.

In the Moonsund Sea, active north–south currents affect the physicochemical proper-
ties of the water body.

The Gulf of Riga is influenced by the inflow from a huge drainage area, mostly entering
the southern and eastern parts, and by water exchange with the open Baltic Sea through
the Irbe Strait.

Pärnu Bay is shallow and strongly impacted by waves and currents causing bottom
sediments to move easily during storm events. Pärnu River is also a source of large amounts
of suspended solids and nutrients [40]. Additionally, the pollution load is also strongly
influenced by the city of Pärnu.

2.2. Data Sets

In situ data were gathered by the Estonian Marine Institute in the frame of the national
monitoring program. The measurements of the chl-a and cyanobacterial biomass were
performed according to the HELCOM guidelines (phytoplankton [41] and chl-a [42]) for
the period of 2016–2022. Chl-a was measured spectrophotometrically, using extraction
in 96% ethanol and calculation according to Arvola, 1981. The in situ sampling points in
the various coastal areas are given in Figure 1. The depth of the measurements ranged
from 0 m (on the surface) to 10 m under the surface. The temperature measurements were
obtained from the Estonian Environment Agency which were taken at various ports across
the coastline.

For satellite data, Sentinel-3A/B OLCI Level-1 full-resolution data were used. For
validation, the satellite data were gathered from April to September. At higher latitudes,
it is not possible to viably use satellite data due to the sun’s angle earlier in the year
which disperses incoming solar irradiance onto a larger area, decreasing the energy per
unit area. In situ data were used to validate the chl-a of the two processors C2RCC and
POLYMER. POLYMER is an atmospheric correction model based on spectral matching. It
uses a polynomial to model the spectral reflectance of the atmosphere, a water reflectance
model, and all available spectral bands in the visible spectral region [43]. C2RCC is
a neural-network-based atmospheric correction processor which provides the results of
water-leaving reflectance (ρw), inherent optical properties (IOPs), chl-a, and total suspended
matter (TSM) [44,45]. Here, the chl-a outputs (chl_conc product) of C2RCC were used.
The pixel flags are given in Table 2. The monthly temperatures were averaged and, along
with a salinity of 5 PSU, were used as input for the Case-2 Regional CoastColour processor
(C2RCC) v1.9.

Table 2. The flags used to exclude pixels for C2RCC and include pixels for POLYMER.

Flags Used with C2RCC Flags Used with POLYMER

IDEPIX_CLOUD bitmask = 0
IDEPIX_BRIGHT bitmask = 1024
IDEPIX_CLOUD_SHADOW
IDEPIX_CLOUD_AMBIGUOUS
IDEPIX_CLOUD_SURE
IDEPIX_CLOUD_BUFFER
Cloud_risk
quality_flags.bright
quality_flags.straylight_risk
quality_flags.invalid
quality_flags.sun_glint_risk
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Validation of the satellite data was performed according to the Sentinel-3 validation
recommendations [46]. A minimum number of valid pixels were chosen to be at least
50% for each 3 × 3 window. Although not in the recommendations of the S3VT, in order
to consider more data points, a maximum 12 h difference in time was chosen. The pixel
outliers were removed according to the mean and standard deviation (SD) of the results
following the filtration methods in the recommendations, and the values within a coefficient
of variation of 20% were used. The correlation was estimated based on the coefficient of
determination and Pearsons’s correlation coefficient.

2.3. Clustering

A clustering analysis was performed to assess possible similarities in the time series
of the chl-a and turbidity values of the 16 coastal areas. The analysis was based on the
K-means clustering of the time series. The time series consisted of continuous daily satellite-
derived chl-a and turbidity data from April to September of the year 2022. In order to
obtain a continuous time series, a 7-day average was used.

2.4. Bloom Indices

Summer blooms were characterized by 3 different indices. An overview of the used
indices and necessary inputs is given in Figure 2.
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2.4.1. Phytoplankton Intensity Index (PII)

The Phytoplankton Intensity Index was initially designed by Fleming and Kaitala [30]
to assess the spring bloom events in the Baltic Sea. The index is based on summing chl-a
(Figure 2) values exceeding a certain threshold. To overcome data gaps due to cloud cover, a
7-day running average of chl-a was calculated based on the mean chl-a of each coastal area
on a daily basis. A threshold concentration of 5 mg m−3 was used to assess the beginning
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of a bloom event. The intensity index was calculated by approximating a time-intensity
integral for time periods when the threshold value was exceeded.

PII = ∑n
i=1 hi (1)

where i is the day, n is the number of bloom days, and hi is the 7-day running average
of chl-a.

2.4.2. Cyanobacterial Surface Accumulation (CSA) Index

Cyanobacterial bloom indicator methods have been developed by and are thoroughly
described by Anttila et al. [17]. In order to obtain a CSA value, firstly, an algal barometer
(AB) value was calculated based on the weighted sum of the proportion of positive algae
bloom estimations. The algal bloom estimates were divided into 4 groups, with 1–3 being
considered as positive: 0—no algae, 1—some algae, 2—abundant algae, and 3—very
abundant algae,

AB =
1

ntot
(n#cl1 + n#cl2 × 2 + n#cl3 × 3) (2)

where ntot is the total number of pixels with algal values, and n#cl1–#cl3 are the number of
pixels in a specific class, respectively.

The grouping was made on the basis of the chl-a (threshold 5 mg m−3 was used
differently from Anttila et al. [14]) and turbidity (Table 3 and Figure 2). The turbidity was
calculated according to Kyryliuk et al. [47].

Table 3. Grouping conditions for estimating AB. Chl-a values are in mg m−3 and turbidity in FNU.

Group Chl-a Turbidity

0—no algae <5 <2.5
1—some algae 5–11 2.5–4.5

2—abundant algae 11–27 4.5–7.5
3—very abundant >27 >7.5

Secondly, an empirical cumulative distribution function (ECDF) was calculated based
on the AB values [17]. Three bloom parameters, the seasonal bloom volume, intensity, and
duration, were derived from the ECDF. The indicative parameters were then normalized
and averaged to obtain the CSA index.

Pnorm,y = (Py − Pmax)/(Pmin − Pmax) (3)

where Pnorm,y is the normalized value for one of the three parameters (volume, intensity,
and duration) in the year y, Py is the parameter value, and Pmax and Pmin are the maximum
and minimum values of the time series for the period 2016–2021. The CSA index forms one
part of the CyaBI index [37].

2.4.3. Cyanobacterial Bloom Indicator (CyaBI)

As an additional step for the indicator, the CSA index was supplemented with in situ
cyanobacterial biomass measurements in order to obtain the CyaBI index as described by
Anttila et al. [17]. The part of the cyanobacterial biomass being an input for the CyaBI was
calculated as the sum of three genera of the nitrogen-fixing and bloom-forming cyanobac-
teria: Aphanizomenon, Nodularia, and Dolichospermum [29]. The in situ biomass data were
obtained from the Estonian Marine Institute monitoring of Estonian coastal areas, whereas
the satellite-derived biomass was estimated from the Maximum Chlorophyll Index (MCI)
values. The MCI is a line-height algorithm originally developed for MERIS [48], but due to
spectral band continuity, it is also applicable to the OLCI [49]. Line-height algorithms are
generally useful for estimating cyanobacterial blooms in optically complex waters because
they are less hindered by issues of atmospheric corrections [50] as the MCI estimates chl-a
from Level 1 satellite data. The MCI is not sensitive in waters where the chl-a is low
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(<10 mg m−3) as reported by Binding et al. (2013) [51] but functions well in waters with
high chl-a. The CyaBI consists of the normalized value of the two parameters, in situ
cyanobacteria biomass and satellite-derived CSA. After normalization, an average of the
two parameters is taken as the value for the CyaBI.

2.5. Environmental Status Thresholds

To assess the current environmental status of the coastal areas, a threshold value needs
to be identified. A common approach to calculating a threshold is to take the 75th percentile
of the time-series values as an indicator of “good environmental status” [52–55]. Here, we
have used the same approach. For each coastal area, the threshold value for the year 2022
was taken as the 75th percentile of the years 2016–2021 values for each index and coastal
area. Although the official reporting period is 6 years, 2016–2022, we wanted to also give
an assessment of the most recent environmental status, so the year 2022 was chosen.

3. Results

Firstly, the input parameters required by different indices, such as the chl-a, turbidity,
and N2-fixing cyanobacteria biomass, are analyzed. The differences between the in situ and
satellite-derived data are highlighted. The results of the various indices are presented, and
comparisons are made. Finally, the ES of the 16 coastal water bodies in 2022 is presented.

3.1. Input Parameters for Estimating Bloom Indicators
3.1.1. Chl-a and Turbidity

Most of the in situ measurements showed chl-a in the range of 3.0–7.3 mg m−3 (interquartile
range IQR), whereas the satellite data showed a larger variation in the chl-a, 2.9–15.6 mg m−3

(Figure 3). The satellite-derived turbidity had a range of values from 0.3 to 5.4 FNU (Figure 3).
The Haapsalu, Matsalu, and Pärnu bays showed much higher chl-a and turbidity than the
other coastal areas. No apparent linear relationship between chl-a and turbidity was found in
most of the coastal areas (Appendix B, Figure A2). This is even more evident when looking
at the chl-a and turbidity throughout the phytoplankton spring and summer bloom period of
April–September. Looking at the chl-a time series, differences between the three bays from each
other and from the other areas can be observed (clusters 1, 2, and 3 in Figure 4). The peak in
chl-a was observed in June in Matsalu Bay (cluster 3) but toward the end of August in Haapsalu
Bay (cluster 1). Cluster 4, which included all the other coastal areas, did not exceed 10 mg m−3

chl-a in 2022 (Figure 4). This suggests that a one-size-fits-all approach to estimating ES is not
applicable to all coastal water bodies when basing it on chl-a and turbidity. The annual peak of
chl-a in Pärnu Bay likely occurs in the early spring as the chl-a is already highest in April and
shows a downward trend from then on.

According to the turbidity, the coastal areas were divided into six clusters (Figure 5).
Clusters 3 and 5 showed low turbidity throughout the time series. In clusters 1 and 6, the
areas were more turbid during the spring and early summer. Cluster 4, which includes the
Pärnu and Matsalu bays, showed a peak in turbidity before the start of our observation
period which likely stems from higher river inputs during the early spring as a result of
snowmelt. However, a second turbidity peak appeared at the end of the summer. Cluster 2,
which exclusively included Haapsalu Bay, showed the highest turbidity values as well as
the largest seasonal variability. There was a clear peak in May and another, even higher
peak, at the end of August (Figure 4). The peak at the end of the summer is in accordance
with a chl-a peak a few days before. This could be a possible indication of a significant
bloom event in Haapsalu Bay in 2022 (Figure 4 cluster 1 and Figure 5 cluster 2).

Figure 6 shows the comparison of the C2RCC and POLYMER estimated chl-a and
the measured in situ chl-a. The C2RCC validation resulted in a total of 135 valid chl-
a match-ups and only 46 for POLYMER. Both processors showed a weak relationship:
C2RCC R2 = 0.2 (r = 0.45, df = 133, p < 0.05), and POLYMER R2 = 0.39 (r(41) = 0.64, p < 0.05)
(Figure 6). Similarly, previous research has also shown a poor correlation between the AC
algorithms in the Baltic Sea [56,57]. Although POLYMER showed a better relationship,
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there were fewer match-ups compared to C2RCC. Previous work has also suggested that
for the Baltic Sea region, C2RCC is the best available processor for chl-a estimates [58].
Because of these reasons, it was decided to proceed with the C2RCC data products.
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3.1.2. N2-Fixing Cyanobacterial Biomass

The N2-fixing cyanobacteria are most prevalent during the summer in the Baltic
Sea. As the name suggests, they fix nitrogen from the atmosphere and make nitrogen
bioavailable which can have cascading effects on food webs [59,60]. The equation used
here to estimate the biomass from the satellite data is based on a relationship between the
MCI values against the in situ-measured N2-fixing cyanobacteria biomass (mg m−3):

Biomass = 346.33 × MCI2 + 1043.2 × MCI + 1089.1 (4)

The relationship between the in situ biomass and the MCI was relatively poor (R2 = 0.39,
p < 0.05). An important aspect is that the MCI method for estimating cyanobacteria biomass
is only useful at higher concentrations (>300 mg m−3). The MCI uses the red and NIR
wavelengths that are also influenced by turbidity which makes it difficult to estimate low
chl-a. The poor relationship here is partly explained by the very low concentrations of
chl-a and higher turbidity in the coastal areas compared to inland lakes, where the MCI has
previously been successfully used [61].

Monitoring the seasonality of cyanobacteria blooms is of key importance. Using satel-
lites gives a better overview than only relying on in situ sampling for monitoring seasonal-
ity. The average in situ biomass was highest in the Hara and Kolga bays (731.4 mg m−3)
and Muuga-Tallinna-Kakumäe Bay (615.9 mg m−3) and lowest in the Gulf of Riga (NW)
(1.0 mg m−3) and Moonsund Sea (1.3 mg m−3). It is important to note that in situ measure-
ments are point measurements and satellite data are an average of a polygon (black dots
and line in Figure 7) or a 3 × 3 pixel (red stars in Figure 7). As can be seen from Figure 8 and
especially from Figure 7, the in situ measurements are sparse both in time and space, only
having measurements throughout the entire time series for four coastal areas. Additionally,
the concurrence of satellite-derived biomass with data from in situ sampling points in
Haapsalu Bay (Figure 7A) shows that satellite data can provide good coincidence with
the in situ-measured values within one vegetation period. Many of the peaks of N2-fixing
cyanobacteria biomass would be missed when relying exclusively on in situ sampling.
However, the in situ dataset considers all concentrations, whereas satellite data do not
consider concentrations below 300 mg m−3. In some of the coastal water bodies, in situ and
satellite-derived biomass are relatively similar, mostly in the areas belonging to the Gulf of
Finland. Most similar were the results in Soela Strait. On longer timescales (2016–2022), the
largest differences between the two methods can be observed in the Haapsalu, Matsalu, and
Pärnu bays (Figure 8). Although the averaged results for the years are similar, significant
seasonal differences can be observed, for example, in Muuga-Tallinna-Kakumäe Bay, when
comparing cyanobacteria biomass (Figures 7B and 8).

3.2. Indices for Phytoplankton Bloom Characterization
3.2.1. Phytoplankton Intensity Index (PII)

The Phytoplankton Intensity Index is a non-normalized index that is solely based on
chl-a. Higher values correspond to more extensive blooms. Here, the PII values ranged
from 0 to 1256 (Figure 8). Nine bays had a PII value of 0 during the time period under
study. There is considerable variation between the index values in different years. The
highest mean values were calculated for Matsalu Bay (PII = 740), Haapsalu Bay (691), and
Pärnu Bay (619). Similarly, the highest values were estimated in Haapsalu Bay (1256),
Matsalu Bay (1171), and Pärnu Bay (807) (Figure 9). It is likely that due to the nature
of the bays, the results indicate phytoplankton blooms in the areas but not necessarily
cyanobacterial biomass.
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3.2.2. CSA Index

The CSA Index inputs include the chl-a and turbidity derived from satellite data. CSA
Index values of 1 correspond to negligible to no-bloom events, whereas a value of 0 indicates
extensive growth. The most extensive blooms according to the CSA Index (corresponding
to the lowest CSA Index values) were in the Hara and Kolga bays, Kihelkonna Bay, and
Moonsund Sea, where the index was 0 (Figure 9). The Hara and Kolga and Kihelkonna
bays are very open coastal areas and are highly influenced by the rest of the Baltic Sea,
whereas Moonsund Sea is a shallow coastal area between the large western islands and the
Estonian west coast. Conversely, three coastal areas had years when there were no blooms
(corresponding to a CSA Index of 1). These were Eru-Käsmu Bay, Kassari-Õunaku Bay,
and Matsalu Bay. For CSA, considerable variation in the results was observed between
different years, and extreme values were calculated for the bays in different years. Looking
at the whole period (2016–2022), the median CSA Index was highest in Kassari-Õunaku Bay
(CSA = 0.76), Moonsund Sea (0.71), and the Hara and Kolga bays (0.65), whereas the lowest
values were calculated for Pärnu Bay (0.27), Narva-Kunda Bay (0.28), and the central Gulf
of Riga (0.34) (Figure 9). The adjacent Kassari-Õunaku Bay and Moonsund Sea form an area
between the large western islands and the mainland which could explain the similarities of
the results. The Narva-Kunda and Pärnu bays and the central Gulf of Riga are all highly
productive and nutrient-rich areas, and the three areas are all heavily influenced by river
inflows. The two other parts of the Gulf of Riga (NW and NE) also showed low index
values indicating high levels of water exchange between them.
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Figure 7. N2-fixing cyanobacteria biomass (mg m−3) in (A) Haapsalu Bay in 2021 and (B) Muuga-
Tallinna-Kakumäe Bay in 2022 from June to September estimated from OLCI (polygon average, black
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satellite-derived values from station locations (red stars).



Appl. Sci. 2023, 13, 10211 13 of 25Appl. Sci. 2023, 13, 10211 13 of 26 
 

 
Figure 8. In situ (station average) and satellite-derived (polygon average) N2-fixing cyanobacterial 
biomass (mg m−3) in the years 2016–2022 in Estonian coastal areas. Boxplots represent 2016–2021 
values (boxes represent IQR, middle line represents median, whiskers represent maximum and min-
imum values, and black dots represent outliers), and orange-red diamonds represent 2022 values. 
Note the scale differences in the y-axis. 

3.2. Indices for Phytoplankton Bloom Characterization 
3.2.1. Phytoplankton Intensity Index (PII) 

The Phytoplankton Intensity Index is a non-normalized index that is solely based on 
chl-a. Higher values correspond to more extensive blooms. Here, the PII values ranged 
from 0 to 1256 (Figure 8). Nine bays had a PII value of 0 during the time period under 
study. There is considerable variation between the index values in different years. The 
highest mean values were calculated for Matsalu Bay (PII = 740), Haapsalu Bay (691), and 

Figure 8. In situ (station average) and satellite-derived (polygon average) N2-fixing cyanobacterial
biomass (mg m−3) in the years 2016–2022 in Estonian coastal areas. Boxplots represent 2016–2021
values (boxes represent IQR, middle line represents median, whiskers represent maximum and
minimum values, and black dots represent outliers), and orange-red diamonds represent 2022 values.
Note the scale differences in the y-axis.
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3.2.3. CyaBI with In Situ Cyanobacterial Biomass

Similar to the CSA Index, the CyaBI indicator values of 1 correspond to negligible to
no-bloom events, whereas a value of 0 indicates extensive blooms. The inputs for the CyaBI
include satellite-derived chl-a and turbidity as well as in situ N2-cyanobacteria biomass.
The most substantial blooms according to the CyaBI with in situ cyanobacterial biomass
(corresponding to the lowest indicator values) were in the Hara and Kolga bays, Kihelkonna
Bay, and Moonsund Sea (CyaBI = 0) (Figure 9). These results are similar to the CSA results,
as is expected because the Hara and Kolga bays and Moonsund Sea had very limited in situ
biomass data. Considerable variation in the results was observed between the different years,
and extreme values were calculated for the bays in different years. The highest indicator
values were calculated for Eru-Käsmu Bay, Matsalu Bay (CyaBI = 1), and the NW Gulf of Riga
(0.97). For the whole period (2016–2022), the median CyaBI was highest in Kihelkonna Bay
(0.76), Moonsund Sea (0.71), and the Hara and Kolga bays (0.65). The lowest median CyaBI
values were calculated for Liivi Bay (NW) (0.39), Eru-Käsmu Bay (0.42), and Narva-Kunda
Bay (0.43) (Figure 9). Narva-Kunda and Eru-Käsmu lie on the Northern coast, in the Gulf
of Finland, and are heavily influenced by waves and river inputs. The three bays with the
lowest values had a lot of available in situ cyanobacteria biomass data. The cyanobacteria
biomass parameter gives an indication of the actual biomass in the water column and thus
supplements the surface measurements of the RS data, giving more reliable results. Different
results for these three bays between CSA and the CyaBI indicate a benefit of the addition of a
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biomass parameter into the status assessments. Similar to the CSA, all three water bodies in
the Gulf of Riga had relatively low values of the CyaBI (in situ).

3.2.4. CyaBI with Satellite-Derived Cyanobacterial Biomass

The inputs used for the CyaBI (satellite) included satellite-derived chl-a, turbidity, and
N2-fixing cyanobacteria biomass. The most extensive blooms according to the CyaBI with
satellite-derived cyanobacterial biomass (corresponding to the lowest indicator values) were
in the Hara and Kolga bays (CyaBI = 0), Pärnu Bay (0.05), and the NW Gulf of Riga (0.05)
(Figure 9). The highest indicator values were calculated for Soela Strait (0.99), the NE Gulf
of Riga (0.98), and Muuga-Tallinna-Kakumäe Bay (0.94). Like in the case of other indices,
considerable variation in the results was observed between different years for the CyaBI
(satellite), and extreme values were calculated for the bays in different years. For the whole
period (2016–2022), the median CyaBI was highest in Hiiu Shallow (0.70), the Hara and Kolga
bays (0.69), and Kihelkonna Bay (0.67). All three of the coastal areas are open to the larger
Baltic Sea. The lowest median CyaBI values were calculated for the NW Gulf of Riga (0.39),
Narva-Kunda Bay (0.47), and Soela Strait (0.47) (Figure 9). The satellite CyaBI showed the
largest contrast to the rest of the indices. Although the two areas neighbor each other on
the west coasts of Saaremaa and Hiiumaa, Soela Strait had one of the lowest index values,
whereas Kihelkonna Bay had the highest. Unlike the CyaBI (in situ) and CSA, only one of
the Gulf of Riga water bodies had a very low index value. In contrast to previous indices, the
variation within the whole Gulf of Riga according to the CyaBI (satellite) was very high.

3.3. Current Environmental Status of Estonian Coastal Areas

Taking the 75th percentile of the results in the years 2016–2021 gave the threshold
value for deciding whether GES is reached in a coastal area in 2022. The results showed
a lot of variation from area to area. The NW Gulf of Riga achieved a GES according to
all four indices; however, the threshold values there were much lower than in other areas
(PII = 105, CSA = 0.55, CyaBI (in situ) = 0.55, and CyaBI (satellite) = 0.49) (Table 4) and the
results are exclusively reliant on satellite-derived data as the NW Gulf of Riga did not have
in situ sampling stations before 2022. Out of 16 coastal areas, 5 did not reach GES under
any of the four methodologies—the Haapsalu, Hara and Kolga, NE Gulf of Riga, Matsalu,
and Pärnu bays. Another seven areas reached GES according to only one index. Reaching
GES was most difficult according to the CSA Index, under which only the NW Gulf of Riga
achieved it (Appendix A, Figure A1).

Table 4. Environmental status of the coastal areas in 2022 compared to threshold values for the 4
indices. Results underlined and in bold represent reaching GES.

Coastal Area
CSA Index CyaBI (In Situ) CyaBI (Satellite) Phytoplankton Intensity Index

Threshold 2022 Threshold 2022 Threshold 2022 Threshold 2022

Eru-Käsmu Bay 0.67 0.34 0.67 0.34 0.67 0.66 237 173
Haapsalu Bay 0.73 0.33 0.73 0.33 0.78 0.17 633 1256

Hara and Kolga bays 0.84 0.52 0.84 0.52 0.83 0.64 112 148
Hiiu Shallow 0.82 0.13 0.82 0.13 0.75 0.56 28 15

Kassari-Õunaku Bay 0.71 0.39 0.59 0.39 0.64 0.69 16 16
Kihelkonna Bay 0.81 0.80 0.81 0.80 0.76 0.90 59 0

Gulf of Riga (center) 0.47 0.16 0.71 0.61 0.73 0.51 142 135
Gulf of Riga (NE) 0.61 0.42 0.75 0.71 0.78 0.69 304 312
Gulf of Riga (NW) 0.55 0.68 0.55 0.68 0.49 0.84 105 0

Matsalu Bay 0.79 0.03 0.79 0.03 0.80 0.43 813 1171
Muuga-Tallinna-
Kakumäe Bay 0.71 0.54 0.73 0.62 0.69 0.77 123 47

Narva-Kunda Bay 0.66 0.28 0.60 0.64 0.57 0.47 237 155
Pakri bays 0.67 0.21 0.67 0.21 0.77 0.60 71 42
Pärnu Bay 0.60 0.04 0.79 0.51 0.64 0.05 670 794
Soela Strait 0.85 0.27 0.85 0.27 0.79 0.36 0 * 0 *

Moonsund Sea 0.86 0.00 0.86 0.00 0.71 0.50 46 27

* Chl-a did not exceed 5 mg m−3 in Soela Strait.
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4. Discussion

Monitoring and managing aquatic resources is necessary to ensure the safety of marine
environments. The MSFD sets out rules for all European member states to organize efforts
to monitor and improve their coastal areas. Under the MSFD, Estonian coastal waters need
to be monitored and GES must be reached and maintained [24]. The formation of HABs by
cyanobacteria is a parameter for estimating the ES of an area and is one part of the larger
monitoring scheme for the MSFD and the national environmental monitoring scheme in
Estonian waters [62,63]. The purpose of the assessment is to obtain the current status of the
Estonian coastal areas as input for improving the conditions of the areas—where to focus
adaptation and remediation efforts. The use of satellite data in the assessment could be of
benefit to monitoring programs as a quicker and more extensive tool for the short- to long-term
monitoring of coastal waters. An additional benefit of satellite data to the public is the quicker
availability and spatial coverage of information about HABs in contrast to in situ sampling.

The first goal of this study was to assess the applicability of the C2RCC and POLYMER
processors, which have previously shown good results in regions influenced by high phy-
toplankton biomass (high chl-a), CDOM, and TSM [56,64–66]. C2RCC has been shown to
be useful in many different water bodies, for example, in the Baltic Sea [47] or in Estonian
and Latvian lakes [67]. However, the Baltic Sea is an optically complex water body, where
atmospheric correction and bio-optical modeling are difficult as evidenced by previous results
by Toming et al. [57] and Kratzer and Plowey [56] in coastal areas in the Baltic Sea, where
chl-a is typically lower and where influence by CDOM is high [47,68]. Nonetheless, C2RCC
and POLYMER have previously shown the most promise for chl-a detection which was the
reason for their selection here. Our validation of the two satellite data processors provided
rather poor match-ups with the in situ chl-a (Figure 6). Our data also showed that very
high chl-a (>20 mg m−3) estimated by C2RCC was often highly turbid (>15 FNU) with low
corresponding in situ chl-a (<10 mg m−3) (Figure 6). This makes it difficult to accurately
estimate chl-a in highly turbid areas, like the Pärnu, Matsalu, or Haapsalu bays. Similar to
Kyryliuk et al. [47], C2RCC tended to underestimate high chl-a at points where the turbidity
was low (<5 FNU) (Figure 6). Although the POLYMER validation provided a higher coef-
ficient of determination (R2 = 0.39), the processor flags significantly more pixels. This is an
issue when the goal of using satellite data for an environmental status assessment is to cover
an area of interest as frequently as possible. One reason for the poor results received from
our validation analysis is the difference in the collection methodology of chl-a. The satellite
data consist of pixels covering an area of 300 m × 300 m, whereas the in situ data consist of
depth-integrated point measurements. The current way of gathering in situ samples is via
ships which has previously been criticized as mixing the water column and disrupting the
surface bloom, providing results that are not in accordance with the actual conditions [20].
Additionally, the current methodology aggregates chl-a from depths of 0–10 m below sea
level which is an issue in cases where prevalent surface and subsurface blooms or turbidity of
the water hinder light penetration to those depths. Nodularia spumigena, for example, forms
dense surface blooms [31]. In order to improve the accuracy of chl-a detection, advances in
bio-optical modeling and the use of hyperspectral sensors could be future research areas.

Comparing N2-fixing cyanobacteria biomass gathered in situ, it was observed that
biomass from satellites tended to overestimate the actual biomass measured at sampling
stations. It has been previously documented that the MCI works better with higher chl-
a [51], whereas chl-a in Estonian coastal areas is relatively low with seasonal dynamics
responsible for high peaks (IQR = 2.8–6.1 mg m−3, median = 4.1 mg m−3). However,
the use of the MCI for determining cyanobacteria biomass from satellite data is likely
to be the reason for high satellite-derived biomass values in the Pärnu, Matsalu, and
Haapsalu bays, as high chl-a was present in these areas. Because the MCI is high when
there are surface planktonic blooms or aquatic vegetation, it does not discriminate between
groups of phytoplankton or other vegetation and has been used to monitor, e.g., Sargassum
and algal blooms in the Baltic Sea and the Arctic [69,70]. Nonetheless, the MCI-derived
values are best suited to compare different areas and to map potential bloom areas. Our
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results showed that the dynamics of the blooms when the biomass is above 300 mg m−3

can be monitored. The differences between the in situ and EO data are a result of the
differences in both methodologies. In situ sampling is more accurate at a singular point
but does not give an overview of the entire area, whereas satellite-derived biomass covers
a larger area but suffers from the inability to detect low biomass values in the presence
of high CDOM (e.g., absorption at Pärnu Bay 1.38–14.08 m−1) [40] and TSM (e.g., Pärnu
Bay 5–24.3 g m−3) [71]. In situ biomass sampling also suffers from the same drawbacks as
the sampling of chl-a discussed above—besides more frequently monitored areas, there
is a lack of consistent data for others. Even then, our cluster analysis has shown seasonal
variability in the chl-a and turbidity which would have been missed without the satellites,
adding to the usefulness of using EO data for monitoring. Regarding the difficulty of
deriving biomass from satellite data, cyanobacteria are typically estimated in the form of an
index [72]. Developing more accurate algorithms for the detection of cyanobacteria from
satellites is necessary. Difficulties in assessing cyanobacteria from satellite data, especially
in areas with low biomass, are not unique to the method used here but are known issues
with current remote monitoring techniques as evidenced in [51,72–74].

The indices are largely based on satellite-derived chl-a with additional inputs from tur-
bidity and cyanobacteria biomass. The CSA, CyaBI (in situ), and CyaBI (satellite) showed
comparable results for the coastal areas (Figure 9). Chl-a is used as a proxy for all types of
phytoplankton and aquatic vegetation biomass [28]. Because the PII is solely based on chl-a, it
gives the least additional information about the presence of cyanobacteria biomass. The three
species of cyanobacteria included in our analysis, Aphanizomenon, Nodularia, and Dolichos-
permum, did not correlate well with the in situ chl-a (the best result being Aphanizomenon,
R2 = 0.15, p > 0.05). As such, on its own, using the PII is the least useful for coastal areas, where
other vegetation or a bloom event consisting of other species of phytoplankton are present.
Other indices do not show significant differences in the results of the Haapsalu, Matsalu, and
Pärnu bays and the rest of the coastal areas, whereas the PII does.

Originally, chl-a was intended to be used as a proxy for cyanobacterial biomass
and turbidity was intended to indicate the presence of dead cyanobacteria cells in open
sea areas [17]. In calculating the CSA Index, turbidity is used as an input to classify
cyanobacteria blooms in pixels. In the case of Estonian coastal areas, not only is turbidity
caused by organic material but is most likely dominated by mineral particles, especially
in the case of shallow areas and strong wind events [75]. For this reason, in Estonian
coastal areas, the CSA Index, like other indices, is limited in differentiating between
cyanobacteria biomass and other phytoplankton. Additionally, the relationship between
chl-a and turbidity is not linear in most coastal areas (Appendix B, Figure A2), and according
to our cluster analysis, a peak in chl-a is not followed by peaks in turbidity as would be
expected if dead cyanobacteria cells were present in the area after a chl-a peak. One
exception is Haapsalu Bay, where a peak in chl-a is followed by higher turbidity (Figure 4
cluster 1, and Figure 5 cluster 2). However, the shallow parts of Haapsalu Bay are dominated
by bottom vegetation covering parts of the sea which could also explain the high chl-a
picked up by the satellite. Although supplementing turbidity and chl-a with cyanobacteria
biomass would lead to more accurate estimates, in the absence of such data, the CSA
Index could be used for Haapsalu Bay with consideration for possible bottom vegetation
influence, especially in the late summer.

Estimating chl-a and turbidity from satellite data allows for spatial and temporal cov-
erage not possible with in situ measurements. However, these parameters have deficiencies
regarding the accurate estimation of cyanobacteria biomass [17,28]. Our results indicate
a similar deficiency as areas with high chl-a and turbidity showed values indicative of
cyanobacteria blooms under CSA and the PII but did not show high N2-fixing cyanobacteria
biomass. This resulted in more favorable CyaBI (both in situ and satellite) values in 2022
for the Pärnu, Muuga-Tallinna-Kakumäe, and Narva-Kunda bays and the NE Gulf of Riga
compared to the CSA and PII values in those areas (Table 3). Because of this, the most appli-
cable index is the CyaBI in coastal areas which are naturally turbid and have a lot of chl-a
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(Pärnu, Matsalu, and Haapsalu bays). Both the satellite-derived and in situ CyaBI have
their merits over the other. The use of the CyaBI (in situ) is most applicable in coastal areas
where satellite-derived N2-fixing biomass is the most difficult to assess, such as the Pärnu,
Matsalu, and Haapsalu bays. These areas are dominated by CDOM and TSM. This index
benefits from the use of both in situ cyanobacterial biomass and satellite-derived turbidity
and chl-a. In situ measurements, however, are sparse, as evidenced in the frequency of the
measurements in Table 1. It would be advisable to supplement the satellite-derived chl-a
and turbidity estimates with in situ cyanobacteria biomass, but in areas where turbidity is
less of a factor (<1 FNU), the use of satellite-derived biomass is possible e.g., the Hara and
Kolga, Eru-Käsmu, or Muuga-Tallinna-Kakumäe bays, and would provide better temporal
coverage. In such areas, the CyaBI (satellite) could be used.

An additional goal of this study was to assess the current ES in the Baltic Sea on the
Estonian coast during the summer cyanobacteria bloom events from 2016 to 2022 using
four indices that have previously been applied in the region. As mentioned in Section 3.3,
there were five coastal regions that did not achieve GES in 2022 under any of the four
methodologies used in this study. It is unlikely to be an accurate estimate of ES in terms of
describing cyanobacteria blooms, but rather a possible reason for these results could be the
spatial and hydrological effects dominating these coastal areas. The Haapsalu, Matsalu,
and Pärnu bays are heavily influenced by river and wetland inputs and wave dynamics,
which increase the turbidity of the bays [40,76–78]. Particularly during windy days, the
shallowness of these areas leads to high concentrations of resuspended bottom sediment in
the water column [40]. High turbidity from sediments rather than dead cyanobacteria cells
is one possible explanation for not achieving GES in these areas. From our analysis, higher
satellite-derived chl-a was more evident when the turbidity was also higher even though
the corresponding in situ-sampled chl-a was not (Figure 6A, where turbidity > 20 FNU). It
also highlights why using the PII in turbid areas is disadvantageous as turbidity can inhibit
accurate chl-a estimation. In the case of Pärnu Bay, for example, the 2022 in situ samples
did not show significant cyanobacteria biomass in the area, whereas the turbidity was high.
This would indicate an erroneous ES assessment as the turbidity is not a result of dead
cyanobacteria cells but rather inorganic matter being picked up by the satellite.

Upwelling is a possible cause for the seasonal dynamics in the Gulf of Finland
(Hara–Kolga, Eru-Käsmu, Muuga-Tallinna-Kakumäe, and Pakri bays) and in the NE Gulf
of Riga. Upwelling in the Gulf of Finland (northern coast of Estonia) is a regular occurrence
that displaces the warm surface water with cold water from the bottom layer of the sea
while increasing nutrients in the upper layers. Because cyanobacteria generally prefer
warmer temperatures and are normally phosphorous-limited [15,79], upwelling has an
effect in areas where it occurs. Due to the variability in upwelling events, which might
be seasonal or one-off events, it is difficult to measure its effect on the annual ES of a
coastal area. Upwelling can have a promoting effect on the formation of cyanobacteria
blooms as it enriches the higher water levels with phosphorous [80,81]. Other evidence
has shown that the upwelling process can temporarily displace cyanobacteria species and
disrupt the structure of community composition [82], but the effect is only temporary as
communities tend to return to compositions similar to those before an upwelling event
shortly after [82]. Water temperature which can be measured via satellites can be used as an
additional parameter for future ES assessments which would link the impacts of upwelling
to the environmental status assessment.

An important aspect to note is the large year-to-year variation in the index results
which shows high natural variability in the bloom parameters. Due to the limitations of
using S3/OLCI data, our dataset extends only as far back as 2016. Because of this, the
period from which a threshold ES value is calculated is rather small and might skew the
result if an area has had a particularly turbid or chl-a-dominated year. The reliability of
determining the “good-bad” threshold value and environmental status depends mainly
on the representativeness of the data. Because the variability between years can be quite
impressive, it would be beneficial to assess the environmental status of an area over a larger
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time frame. On the other hand, the data series analyzed here cannot be extended into the
very distant past due to differences in EO instruments. In general, however, the results
indicating the poor environmental status of the coastal areas are consistent with other
methodologies. Previous assessments by HELCOM [37] indicated a poor environmental
status based on the CyaBI in the Gulf of Finland, Gulf of Riga, Eastern Gotland Basin,
and Northern Baltic Proper (areas that include Estonian coastal areas). However, under
HELCOM’s methodology, no sampling took place in the NW part of the Gulf of Riga,
which, according to our analysis, achieved GES. This highlights the usefulness as well as the
necessity of using satellites for more accurate monitoring. Similar to HELCOM, a national
monitoring report by the Estonian Environment Agency indicated a poor environmental
status for some Estonian coastal areas (Gulf of Riga (NW), Gulf of Riga (center), Pärnu Bay,
Muuga-Tallinna-Kakumäe Bay, and Narva-Kunda Bay). Their assessment methodology is
based on other factors instead of cyanobacteria blooms, such as plankton, bottom vegetation,
and bottom fauna [83]. As the Sentinel-3 mission is going to continue [49], a longer time
period for threshold detection would be beneficial.

Future work should also focus on connecting the ES results as well as the chl-a given
here to other environmental variables to explain the possible causes of the conditions
of coastal areas. Causes will most likely differ between coastal areas. Some possible
reasons for the results could be connected to temperature and nutrient inputs to the coastal
areas via coastal upwelling [80] or inputs from rivers which might explain differences
between coastal water bodies. Increases in atmospheric and aquatic CO2 could also have
a promoting effect on blooms but would influence all coastal areas comparably [9,84].
To further improve the indices for cyanobacteria monitoring, another pigment showing
promising results, phycocyanin (PC) [85–87], could be added to the assessment. As PC
detection improves, future work could include a measure of PC to better differentiate
between cyanobacteria and other phytoplankton.

5. Conclusions

Cyanobacterial blooms are a nuisance to ecosystems, aquaculture, and public health.
Thus, monitoring bloom parameters is of importance to society at large. Under the MSFD,
European waters, including the Baltic Sea, must reach and maintain GES. Using satellite re-
mote sensing for monitoring purposes could be a useful way to fill any gaps in the data and
supplement the monitoring process. The impacts of climate change on the cyanobacteria
communities will vary geographically and no single solution is applicable to all [84,88,89].
Here, we show four different approaches to assessing the ES of Estonian coastal areas
based on satellite-derived chl-a, turbidity, and cyanobacterial biomass estimates. Satel-
lite data allow for spatial and temporal resolution which in situ measurements cannot
match. However, in situ sampling provides the necessary validation and can be useful
for tuning the algorithms and developing new RS-based methods. Different approaches
to assessing coastal areas are recommended as the areas differ from each other regarding
chl-a, turbidity, and N2-fixing cyanobacteria biomass. However, overall, the CyaBI gives
the most comprehensive assessment of cyanobacteria blooms, with the satellite-derived
CyaBI being better suited in large areas which would be difficult to accurately cover with
in situ sampling and which are less impacted by CDOM and TSM. The CSA index could be
useful in Haapsalu Bay in the absence of in situ cyanobacteria biomass data, where a peak
in chl-a is followed by a slight increase in turbidity. We have presented threshold values
for all 16 coastal areas and four indices to be used in assessments. As new data emerge,
threshold values can be updated to reflect the environmental status better. Comparing the
2022 index results to the threshold values, it was found that most coastal areas failed to
achieve GES under one or multiple indices. The NW Gulf of Riga was the only area where
GES was achieved according to all four indices. Five areas, mostly closed bays, did not
achieve GES under any of the four indices. We have also discussed the current limitations
and inaccuracies associated with using satellite data in Case-2 coastal waters. Research
into improving the current processors needs to be undertaken, especially in complex areas
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which are heavily influenced by various environmental parameters. Assessing bloom
parameters with satellite data could complement in situ monitoring practices with the
provision of a more frequent and spatially expansive overview.
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Figure A1. The results of the ES assessment in 2022 for all Estonian coastal areas. In green: area 
achieved GES according to all 4 indices; in yellow: area achieved GES according to some but not all 
indices; in red: areas failed to achieve GES according to any of the indices. (a) Eru-Käsmu Bay, (b) 
Haapsalu Bay, (c) Hara and Kolga bays, (d) Hiiu Shallow, (e) Kassari-Õunaku Bay, (f) Kihelkonna 
Bay, (g) Central Gulf of Riga, (h) NE Gulf of Riga, (i) NW Gulf of Riga, (j) Matsalu Bay, (k) Muuga-
Tallinna-Kakumäe Bay, (l) Narva-Kunda Bay, (m) Pakri bays, (n) Pärnu Bay, (o) Soela Strait, (p) 
Moonsund Sea. Base image: Google Hybrid. 
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Figure A2. Relationship between satellite-derived chl-a and turbidity for each coastal area. The 
dashed line represents a 1:1 relationship, black line represents the line of best fit, and 95% confidence 
interval is shown in grey. 
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