Corrosion Fatigue Assessment of Bridge Cables Based on Equivalent Initial Flaw Size Model
Abstract
:1. Introduction
2. Corrosion Fatigue Lifespan Model Based on EIFS Theory
2.1. EIFS Theory
2.2. Corrosion Fatigue Lifespan of Steel Wire
- (1)
- The fracture morphology characteristics of steel wire were obtained through a corrosion fatigue test, e.g., depth of erosion pit ap, width of erosion pit cp, area of fracture Scoor, depth of main crack ac, and depth of facture Dcoor. The number of fatigue sources is also recorded.
- (2)
- According to the number of fatigue sources, the type of fatigue source expansion is determined, and the initial crack value a0 is tentatively determined.
- (3)
- The fatigue life NF of corroded steel wire is calculated by substituting the parameter values obtained in steps (1) to (2) into Equations (1)–(10).
- (4)
- Determine whether the relative error between the calculated fatigue life (NF) of the corroded steel wire and the actual fatigue life (NE) is less than 1%. If it is, the value of a0 obtained from step (2) is the EIFS. If not, increase the value of a0 by 1 × 10−6 and use it as the corrected a0 value; then, repeat the evaluation process of step (4).
3. Corrosion Fatigue Performance of Steel Wire
3.1. Fatigue Lifespan Evaluation of Steel Wire
3.2. Quantitative Analysis of Corrosion Fatigue Coupling Effect
4. Corrosion Fatigue Lifespan Assessment of Parallel Wire Cable
4.1. Cable Life Evaluation Model Considering Corrosion Fatigue Effect
4.2. Measured Stress of Bridge Cable
4.3. Load Effect on Corrosion Fatigue Lifespan
4.4. Service Environment Effect on Corrosion Fatigue Lifespan
5. Conclusions
- (1)
- Building upon the EIFS method calculation model, this study further analyzes the influence of corrosion and fatigue load coupling on the corrosion fatigue performance of rusted steel wires. The results indicate that under corrosion fatigue conditions, the initiation of cracks in steel wires is more prone, and their fracture toughness is further reduced. However, this coupling effect does not increase the number of fatigue sources. The factors affecting the number of fatigue sources are primarily the number of pits along the circumference of the steel wire.
- (2)
- Based on the series–parallel fiber bundle model, a corrosion fatigue full lifespan model for parallel wire suspension cables is provided. The parallel wire cables are simplified as independent individual wires connected in parallel. The corrosion propagation model is used to consider the interrelation between each wire, and the conversion criteria are applied to calculate the corrosion fatigue full lifespan of the parallel wire suspension cables.
- (3)
- A case study of the Runyang Suspension Bridge is taken, and the stress time history spectra of short cables near the central clamp are measured. The analysis results of the case study demonstrate that under weak corrosion conditions, the cable wires of the Runyang Suspension Bridge under traffic load will not experience corrosion fatigue fracture during the design reference period. Even under severe traffic loads (calculated based on an equivalent stress amplitude of 70 MPa), the cables can still serve safely. When the steel wire has initial defects, the fracture lifespan under corrosion fatigue conditions depends on the strength of the corrosive medium. The effect of the medium on crack propagation is evaluated using the Ccor value, with a larger Ccor value indicating a more severe reduction in lifespan. Even under low stress amplitudes, the steel wires may still experience fracture within the design reference period.
- (4)
- The influence of the environment is considered using conversion factors. The calculation results indicate that the reduction in corrosion fatigue lifespan in a corrosive environment is significantly greater than that due to heavy loads. For a 109-wire suspension cable, the lifespan under severe loads (equivalent stress amplitude of 70 MPa) is approximately 93 years, while in a severe corrosive environment, the lifespan is about 39 years. Therefore, when constructing or maintaining suspension cable facilities, the impact of environmental corrosion should be considered as a primary factor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Guo, T.; Chai, S. Probabilistic Fatigue Life Prediction of Bridge Cables Based on Multiscaling and Mesoscopic Fracture Mechanics. Appl. Sci. 2016, 6, 99. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, T.; Hebdon, M.H.; Han, W. Measurement and Comparative Study on Movements of Suspenders in Long-Span Suspension Bridges. J. Bridge Eng. 2019, 24, 04019026. [Google Scholar] [CrossRef]
- Lu, N.; Beer, M.; Noori, M.; Liu, Y. Lifetime Deflections of Long-Span Bridges under Dynamic and Growing Traffic Loads. J. Bridge Eng. 2017, 22, 04017086. [Google Scholar] [CrossRef]
- Mayrbaurl, R.M.; Camo, S. Cracking and Fracture of Suspension Bridge Wire. J. Bridge Eng. 2001, 6, 645–650. [Google Scholar] [CrossRef]
- Deng, Y.; Ju, H.; Zhong, G.; Li, A.; Ding, Y. A general data quality evaluation framework for dynamic response monitoring of long-span bridges. Mech. Syst. Signal Process. 2023, 200, 110514. [Google Scholar] [CrossRef]
- Xu, J.; Chen, W. Behavior of wires in parallel wire stayed cable under general corrosion effects. J. Constr. Steel Res. 2013, 85, 40–47. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, X.; Ren, Y.; Chang, W.; Deng, C.; Huang, Q. Fatigue reliability analysis for suspenders of a long-span suspension bridge considering random traffic load and corrosion. Structures 2023, 56, 104981. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, W.; Cai, C.S.; Zhou, L.; Zhu, Y. Fatigue assessment of fillet weld in steel bridge towers considering corrosion effects. Eng. Fail. Anal. 2023, 143, 106901. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, X.; Guo, T.; Yang, J.; Correia, J. Damage diagnosis and fretting wear performance analysis of short suspenders in cable-supported bridges. Structures 2023, 56, 104909. [Google Scholar] [CrossRef]
- Fan, Z.; Ye, Q.; Xu, X.; Ren, Y.; Huang, Q.; Li, W. Fatigue reliability-based replacement strategy for bridge stay cables: A case study in China. Structures 2022, 39, 1176–1188. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Wang, G.; Wang, L.; Zhang, J.; Lee, D. Corrosion fatigue crack growth prediction of bridge suspender wires using Bayesian gaussian process. Int. J. Fatigue 2023, 168, 107377. [Google Scholar] [CrossRef]
- Liu, X.; Han, W.; Guo, X.; Yuan, Y.; Chen, S. Fatigue lifespan assessment of stay cables by a refined joint probability density model of wind speed and direction. Eng. Struct. 2022, 252, 113608. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, X.; Pu, G.; Wang, T.; Zheng, D. Temporal and spatial variability of corrosion of high-strength steel wires within a bridge stay cable. Constr. Build. Mater. 2021, 308, 125108. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, X.; Pu, G.; Wang, T.; Guo, Q. Corrosion features and time-dependent corrosion model of Galfan coating of high strength steel wires. Constr. Build. Mater. 2021, 313, 125534. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, T.; Han, D.; Li, A. Experimental Study on Corrosion-Fretting Fatigue Behavior of Bridge Cable Wires. J. Bridge Eng. 2020, 25, 04020104. [Google Scholar] [CrossRef]
- Godard, H.P. The corrosion behavior of aluminum in natural waters. Can. J. Chem. Eng. 1960, 38, 167–173. [Google Scholar] [CrossRef]
- Ezuber, H.; El-Houd, A.; El-Shawesh, F. A study on the corrosion behavior of aluminum alloys in seawater. Mater. Des. 2008, 29, 801–805. [Google Scholar] [CrossRef]
- Fu, Y.; Yue, S.; Changbo, D.; Jun, L. Determination Method of Reliability Index of Main Cable Life of Suspension Bridge. J. Disaster Prev. Mitig. Eng. 2020, 40, 358–364. [Google Scholar] [CrossRef]
- Kim, Y.H.; Fine, M.E. Fatigue crack initiation and strain-controlled fatigue of some high strength low alloy steels. Metall. Trans. A 1982, 13, 59–72. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, H.; Liu, Y.; Li, D. A Fatigue Life Assessment Method for Arch Bridge Suspension Rods Based on Monitoring Data and Its Application. J. Disaster Prev. Mitig. Eng. 2010, 30, 314–317. [Google Scholar] [CrossRef]
- Donahue, J.R.; Lass, A.B.; Burns, J.T. The interaction of corrosion fatigue and stress-corrosion cracking in a precipitation-hardened martensitic stainless steel. npj Mater. Degrad. 2017, 1, 11. [Google Scholar] [CrossRef]
- Olive, J.M.; Cwiek, J.; Desjardins, D. Quantification of the hydrogen produced during corrosion fatigue crack propagation. Corros. Sci. 1999, 41, 1067–1078. [Google Scholar] [CrossRef]
- Shipilov, S.A. Location of the fracture process zone for hydrogen-induced corrosion fatigue crack propagation. Scr. Mater. 2002, 47, 301–305. [Google Scholar] [CrossRef]
- Llorca, J.; Sanchez-Galvez, V. Fatigue threshold determination in high strength cold drawn eutectoid steel wires. Eng. Fract. Mech. 1987, 26, 869–882. [Google Scholar] [CrossRef]
- Li, H.; Lan, C.M.; Ju, Y.; Li, D.S. Experimental and Numerical Study of the Fatigue Properties of Corroded Parallel Wire Cables. J. Bridge Eng. 2012, 17, 211–220. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, T.; Yu, X.; Huang, X.; Correia, J. Corrosion fatigue and electrochemical behaviour of steel wires used in bridge cables. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 63–73. [Google Scholar] [CrossRef]
- Liu, Y.; Mahadevan, S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution. Int. J. Fatigue 2009, 31, 476–487. [Google Scholar] [CrossRef]
- FAWAZ, S.A. Equivalent initial flaw size testing and analysis of transport aircraft skin splices. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 279–290. [Google Scholar] [CrossRef]
- Sankararaman, S.; Ling, Y.; Shantz, C.; Mahadevan, S. Inference of equivalent initial flaw size under multiple sources of uncertainty. Int. J. Fatigue 2011, 33, 75–89. [Google Scholar] [CrossRef]
- Merati, A.; Eastaugh, G. Determination of fatigue related discontinuity state of 7000 series of aerospace aluminum alloys. Eng. Fail. Anal. 2007, 14, 673–685. [Google Scholar] [CrossRef]
- Krasnowski, B.R.; Rotenberger, K.M.; Spence, W.W. Damage tolerance method for helicopter dynamic components. J. Am. Helicopter Soc. 1991, 36, 52–60. [Google Scholar] [CrossRef]
- Chen, J.; Diao, B.; He, J.; Pang, S.; Guan, X. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion. Int. J. Fatigue 2018, 110, 153–161. [Google Scholar] [CrossRef]
- Lankford, J.; Hudak, S.J. Relevance of the small crack problem to lifetime prediction in gas turbines. Int. J. Fatigue 1987, 9, 87–93. [Google Scholar] [CrossRef]
- Xue, Y.; Horstemeyer, M.F.; McDowell, D.L.; El Kadiri, H.; Fan, J. Microstructure-based multistage fatigue modeling of a cast AE44 magnesium alloy. Int. J. Fatigue 2007, 29, 666–676. [Google Scholar] [CrossRef]
- Wang, L.; Daniewicz, S.R.; Horstemeyer, M.F.; Sintay, S.; Rollett, A.D. Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy. Int. J. Fatigue 2009, 31, 651–658. [Google Scholar] [CrossRef]
- Xiang, Y.; Lu, Z.; Liu, Y. Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I Uniaxial Load. Int. J. Fatigue 2010, 32, 341–349. [Google Scholar] [CrossRef]
- Beretta, S.; Boniardi, M. Fatigue strength and surface quality of eutectoid steel wires. Int. J. Fatigue 1999, 21, 329–335. [Google Scholar] [CrossRef]
- Kaynak, C.; Ankara, A.; Baker, T.J. Effects of short cracks on fatigue life calculations. Int. J. Fatigue 1996, 18, 25–31. [Google Scholar] [CrossRef]
- Huang, Y.; Ye, X.; Hu, B.; Chen, L. Equivalent crack size model for pre-corrosion fatigue life prediction of aluminum alloy 7075-T6. Int. J. Fatigue 2016, 88, 217–226. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Sun, Q.; Liu, S.; Shi, B.; Lu, H. Giga-fatigue life prediction of FV520B-I with surface roughness. Mater. Des. 2016, 89, 1028–1034. [Google Scholar] [CrossRef]
- Roffey, P. The fracture mechanisms of main cable wires from the forth road suspension. Eng. Fail. Anal. 2013, 31, 430–441. [Google Scholar] [CrossRef]
- Forman, R.G.; Shivakumar, V. Growth Behavior of Surface Cracks in the Circumferential Plane of Solid and Hollow Cylinders; American Society for Testing and Materials: Philadelphia, PA, USA, 1986; pp. 59–64. [Google Scholar]
- Xu, J. Mechanism of Damage Evolution and Assessment of Remaining Service Lifespan of Tie Ropes; School of Civil Engineering, Tongji University: Shanghai, China, 2006. [Google Scholar]
- Li, S.; Xu, Y.; Li, H.; Guan, X. Uniform and Pitting Corrosion Modeling for High-Strength Bridge Wires. J. Bridge Eng. 2014, 19, 04014025. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Nettis, A.; Uva, G.; Pellegrino, F.; Varum, H.; Adam, J.M. Analytical fault tree and diagnostic aids for the preservation of historical steel truss bridges. Eng. Fail. Anal. 2022, 133, 105996. [Google Scholar] [CrossRef]
- Bertolesi, E.; Buitrago, M.; Adam, J.M.; Calderón, P.A. Fatigue assessment of steel riveted railway bridges: Full-scale tests and analytical approach. J. Constr. Steel Res. 2021, 182, 106664. [Google Scholar] [CrossRef]
- Song, Y.; Ding, Y. Fatigue monitoring and analysis of orthotropic steel deck considering traffic volume and ambient temperature. Sci. China Technol. Sci. 2013, 56, 1758–1766. [Google Scholar] [CrossRef]
- Xu, J.; Chen, W.; Liu, X. Degradation Mechanism of Inclined Cable and Steel Wire Mechanical Model. J. Tongji Univ. Nat. Sci. Ed. 2008, 36, 911–915. [Google Scholar] [CrossRef]
- CJJ 99-2003; Technical Specifications for Maintenance of Urban Bridges. Ministry of Construction of the People’s Republic of China: Beijing, China, 2004.
- Jiang, J.H.; Ma, A.B.; Weng, W.F.; Fu, G.H.; Zhang, Y.F.; Liu, G.G.; Lu, F.M. Corrosion fatigue performance of pre-split steel wires for high strength bridge cables. Fatigue Fract. Eng. Mater. Struct. 2009, 32, 769–779. [Google Scholar] [CrossRef]
- Verpoest, I.; Aernoudt, E.; Deruyttere, A.; De Bondt, M. The fatigue threshold, surface condition and fatigue limit of steel wire. Int. J. Fatigue 1985, 7, 199–214. [Google Scholar] [CrossRef]
- Chen, X.; Tang, M. Corrosion rate spectra of ungalvanized high-tensile steel wires in temperature and humidity environments. J. Southwest Jiaotong Univ. 2018, 53, 253–259. [Google Scholar] [CrossRef]
- Liao, C.; Wei, T.; Wang, Y.; Wang, M. Experimental study on the corrosion rate of cable wires of large-span bridges. J. Southwest Jiaotong Univ. 2014, 49, 513–518. [Google Scholar] [CrossRef]
- Li, R.; Miao, C.; Wei, T. Experimental study on corrosion behaviour of galvanized steel wires under stress. Corros. Eng. Sci. Technol. 2020, 55, 622–633. [Google Scholar] [CrossRef]
Extension Type | Depth of Erosion Pit ap/mm | Depth of Erosion Pit cp/mm | Fracture Area Scoor/mm2 | a0 /mm | asc /mm | ac /mm | Nn | Nsc | Nlc |
---|---|---|---|---|---|---|---|---|---|
single fatigue source | 0.422 | 3.609 | 18.412 | 0.0072 | 0.054 | 2.678 | 635 | 54,526 | 14,818 |
0.179 | 2.165 | 19.588 | 0.0031 | 0.061 | 2.124 | 8210 | 136,428 | 16,548 | |
0.325 | 2.401 | 18.828 | 0.0059 | 0.056 | 2.274 | 690 | 70,428 | 15,498 | |
0.263 | 2.358 | 19.734 | 0.0040 | 0.062 | 2.485 | 2617 | 114,486 | 16,758 | |
0.223 | 1.475 | 20.210 | 0.0043 | 0.065 | 2.453 | 1365 | 117,326 | 17,507 | |
0.124 | 0.629 | 19.135 | 0.0022 | 0.058 | 2.135 | 1001 | 163,434 | 15,894 | |
0.245 | 2.614 | 18.545 | 0.0055 | 0.055 | 2.279 | 1469 | 70,407 | 14,964 | |
0.088 | 0.397 | 19.709 | 0.0022 | 0.062 | 2.329 | 950 | 177,582 | 16,744 | |
multi-fatigue source | 0.147 | 1.948 | 18.057 | 0.0056 | 0.052 | 1.733 | 1821 | 63,296 | 14,187 |
0.339 | 2.485 | 19.133 | 0.0068 | 0.058 | 2.205 | 673 | 66,480 | 15,926 | |
0.175 | 1.057 | 19.508 | 0.0051 | 0.061 | 2.198 | 691 | 90,730 | 16,349 | |
0.248 | 2.292 | 19.468 | 0.0068 | 0.060 | 2.556 | 1427 | 70,725 | 16,470 | |
0.278 | 3.307 | 17.948 | 0.0069 | 0.051 | 1.982 | 1076 | 51351 | 14,143 | |
0.126 | 2.579 | 18.419 | 0.0044 | 0.054 | 1.898 | 12,145 | 82,241 | 14,765 | |
0.290 | 1.915 | 17.299 | 0.0060 | 0.048 | 2.489 | 300 | 50,741 | 13,103 | |
0.339 | 2.886 | 16.960 | 0.0074 | 0.046 | 2.075 | 328 | 39,036 | 12,663 | |
0.183 | 2.218 | 18.693 | 0.0056 | 0.056 | 2.008 | 2227 | 71,985 | 15,108 | |
0.359 | 1.823 | 19.844 | 0.0073 | 0.063 | 2.146 | 379 | 71,414 | 16,908 |
Case Information | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | Case 9 |
---|---|---|---|---|---|---|---|---|---|
Single fatigue source expansion | ap/mm | 0.136 | 0.277 | 0.167 | 0.434 | 0.219 | 0.337 | 0.116 | - |
a0/mm | 0.003 | 0.005 | 0.003 | 0.008 | 0.004 | 0.006 | 0.002 | - | |
φ | 1.212 | 1.194 | 1.241 | 1.154 | 1.216 | 1.176 | 1.276 | - | |
γ | 0.160 | 0.049 | 0.125 | 0.051 | 0.013 | 0.000 | 0.037 | - | |
Multi-fatigue source expansion | ap/mm | 0.395 | 0.105 | 0.177 | 0.118 | 0.181 | 0.155 | 0.152 | 0.238 |
a0/mm | 0.008 | 0.004 | 0.005 | 0.005 | 0.006 | 0.005 | 0.005 | 0.006 | |
φ | 1.157 | 1.226 | 1.198 | 1.219 | 1.197 | 1.205 | 1.206 | 1.183 | |
γ | 0.368 | 0.247 | 0.024 | 0.206 | 0.097 | 0.267 | 0.000 | 0.428 |
Temperature/°C | Humidity Level/% | |||||
---|---|---|---|---|---|---|
50~60 | 70 | 75 | 80 | 85 | 90 | |
10 | 7.431 × 10−15 | 5.8 × 10−14 | 2.48 × 10−13 | 3.29 × 10−13 | 4.08 × 10−13 | 4.25 × 10−13 |
20 | 1.5817 × 10−13 | 2.01 × 10−13 | 2.28 × 10−13 | 3.1 × 10−13 | 4.85 × 10−13 | 5.39 × 10−13 |
30 | 1.6596 × 10−13 | 1.83 × 10−13 | 1.86 × 10−13 | 2.78 × 10−13 | 3.35 × 10−13 | 7.32 × 10−13 |
40 | 1.1253 × 10−13 | 1.77 × 10−13 | 1.89 × 10−13 | 5.93 × 10−13 | 8.08 × 10−13 | 1.43 × 10−12 |
50 | 5.3786 × 10−14 | 1.69 × 10−13 | 4.15 × 10−13 | 9.06 × 10−13 | 1.27 × 10−12 | 1.8 × 10−12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Guo, T.; Yu, X.; Niu, S.; Correia, J. Corrosion Fatigue Assessment of Bridge Cables Based on Equivalent Initial Flaw Size Model. Appl. Sci. 2023, 13, 10212. https://doi.org/10.3390/app131810212
Liu Z, Guo T, Yu X, Niu S, Correia J. Corrosion Fatigue Assessment of Bridge Cables Based on Equivalent Initial Flaw Size Model. Applied Sciences. 2023; 13(18):10212. https://doi.org/10.3390/app131810212
Chicago/Turabian StyleLiu, Zhongxiang, Tong Guo, Xiaming Yu, Shilei Niu, and José Correia. 2023. "Corrosion Fatigue Assessment of Bridge Cables Based on Equivalent Initial Flaw Size Model" Applied Sciences 13, no. 18: 10212. https://doi.org/10.3390/app131810212
APA StyleLiu, Z., Guo, T., Yu, X., Niu, S., & Correia, J. (2023). Corrosion Fatigue Assessment of Bridge Cables Based on Equivalent Initial Flaw Size Model. Applied Sciences, 13(18), 10212. https://doi.org/10.3390/app131810212