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Abstract: An Electric Solar Wind Sail (E-sail) is a propellantless propulsion concept that extracts
momentum from the high-speed solar wind stream to generate thrust. This paper investigates the
performance of such a propulsion system in obtaining the transition from a prograde to a retrograde
motion. The spacecraft is assumed to initially trace a circular heliocentric orbit of given radius.
This particular trajectory, referred to as Circular Orbit Flip Trajectory (COFT), is analyzed in a two-
dimensional mission scenario, by exploiting the capability of a medium-high performance E-sail
to change the spacecraft angular momentum vector during its motion in the interplanetary space.
More precisely, the paper describes a procedure to evaluate the E-sail optimal performance in a set
of COFTs, by calculating their minimum flight times as a function of the sail reference propulsive
acceleration. It is shown that a two-dimensional COFT can be generated by means of a simple steering
law in which the E-sail nominal plane has a nearly fixed attitude with respect to an orbital reference
system, for most of the time interval of the interplanetary transfer.

Keywords: electric solar wind sail; orbit flip maneuver; preliminary mission design; H-reversal
maneuver

1. Introduction

A plane change maneuver, i.e., a maneuver that changes the orbital inclination of a
Keplerian orbit while keeping the semimajor axis and eccentricity (i.e., both its shape and
size) unchanged [1], is usually considered to be one of the most demanding maneuvers in
astrodynamics from the standpoint of velocity change and, therefore, propellant expendi-
ture [2]. A possible solution to perform such an orbital maneuver is given by the use of a
propellantless propulsion system, such as a (photonic) solar sail [3–5] or an Electric Solar
Wind Sail (E-sail) [6], which exploit either the solar radiation pressure (solar sail case) or
the solar wind momentum flux (E-sail case) to generate a propulsive acceleration.

The solar sail capabilities in a plane change maneuver of a circular heliocentric orbit
have been analyzed by the authors [7] as a special case of a more general orbit-to-orbit
interplanetary transfer between two mutually inclined circular trajectories. A plane change
maneuver with an E-sail-based spacecraft has not yet been investigated and is not even the
goal of this work because, in this regard, a detailed study is left for future research. Instead,
the aim of this paper is to analyze a more specific mission scenario in which the orbital
inclination of a given heliocentric Keplerian orbit is changed by exactly 180 degrees. In other
terms, this particular plane change maneuver allows the spacecraft to invert its direction
of rotation around the Sun, thus obtaining a sort of artificial (thrust-induced) ‘orbit flip
mechanism’ [8–11], which preserves the shape and the dimension of the original trajectory.
More precisely, the focus of this study is on the analysis of the orbit flip mechanism of a
circular heliocentric orbit of assigned radius, by means of a two-dimensional propelled
trajectory coplanar to the initial circular orbit. Such a COFT is obtained by using the
propulsive acceleration given by an E-sail propulsion system.

An E-sail is a propellantless thruster concept proposed by Pekka Janhunen [12–15]
at the beginning of this century. Such a propulsion system uses a number of conduct-
ing tethers [16–18] to deflect the solar wind and obtain a thrust in the interplanetary
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space [18–20]. The E-sail thrust vector can be steered [21–23] by suitably changing the sail
attitude with respect to the solar wind stream direction [24,25]. The main characteristics of
the E-sail concept are thoroughly illustrated in a recent review paper [6], while an interest-
ing collection of papers on E-sail mission applications is reported in a special issue of the
companion Aerospace journal (The Aerospace special issue named “Advances in CubeSat
Sails and Tethers” can be found at the URL https://www.mdpi.com/journal/aerospace/
special_issues/2319OV36DR, accessed on 23 August 2023).

The new features of this work are essentially two. The first one concerns the study of
the COFT from an optimal point of view, using a general mathematical model that can be
employed in a wide range of mission scenarios. In fact, the proposed model provides a
set of graphs that allow the reader to quickly estimate the E-sail performance in a COFT
without the need of numerical simulations. The optimization process also points out that
a generic COFT can be thought of as a special case of Vulpetti H-reversal trajectory, the
main features of which are illustrated in the review by Zeng et al. [26]. The second and
most important contribution of this work lies in a particular shape of the COFTs, which
has been identified during the numerical study of the trajectories. In fact, the optimization
process has shown that there exists a family of COFTs that presents a close passage near
the Sun and a zero magnitude of the inertial velocity in correspondence of the aphelion
point. This particular feature of COFTs had not been discovered during previous studies of
heliocentric trajectories with H-reversal points. In this sense, the utility of the results of
this work can be considered more general than the simple application to a mission case
involving an orbit flip maneuver.

The paper is organized as a follows. Section 2 describes the mission scenario and
illustrates the mathematical model used to obtain the COFT as a function of the propulsive
performance of the E-sail. The core of the paper is Section 3, which highlights the charac-
teristics of the COFTs obtained through the optimization process. In particular, Section 3
illustrates two possible shapes of the optimal trajectory. Finally, Section 4 critically analyzes
the obtained results and proposes possible extensions of this work.

2. Problem Description and Mathematical Approach

Consider a heliocentric, two-dimensional mission scenario in which a spacecraft
initially (i.e., at time t = t0 , 0) follows a circular orbit of assigned radius r0 around
the Sun. Note that the mathematical model for an elliptic parking orbit can be obtained
by paralleling the procedure described in the recent Ref. [27]. The spacecraft primary
propulsion system is an E-sail with an assigned value of characteristic acceleration ac,
which is defined as the maximum magnitude of the E-sail propulsive acceleration a when
the distance from the Sun is r⊕ , 1 au. In particular, according to the mathematical model
proposed by Huo et al. [28], the analytical expression of a is

a = τ
ac

2

( r⊕
r

)
[r̂ + (n̂ · r̂) n̂] (1)

where τ ∈ {0, 1} is a dimensionless switching parameter that models the thruster operating
mode (either on, when τ = 1, or off, when τ = 0), r̂ is the Sun-spacecraft (or radial) unit
vector, r is the Sun-spacecraft distance, and n̂ is the unit vector normal to the sail nominal
plane (i.e., the plane that nominally contains the conducting tethers) such that r̂ · n̂ > 0.
In particular, if the E-sail attitude is fixed with respect to an orbital reference frame, then
the magnitude of a is inversely proportional to r [15,29]. In the context of this mission
scenario it is useful to introduce the reference propulsive acceleration a0, defined as the
maximum magnitude of a at distance r0 from the Sun. Equivalently, a0 is the maximum
magnitude of the propulsive acceleration in the circular parking orbit. Recall that the
maximum acceleration is obtained in a Sun-facing attitude condition [30] (that is, when
n̂ ≡ r̂) and τ = 1. From the definition of a0, it follows that

a0 = ac

(
r⊕
r0

)
(2)

https://www.mdpi.com/journal/aerospace/special_issues/2319OV36DR
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from which the design parameter

β ,
a0

µ�/r2
0
= ac

(
r0 r⊕
µ�

)
(3)

can be used as a dimensionless value of reference propulsive acceleration, being defined
as the ratio of a0 to the Sun’s gravitational acceleration at a distance equal to r0. Taking
Equations (2) and (3) into account, the propulsive acceleration of Equation (1) becomes

a = τ
β µ�
2 r0 r

[r̂ + (n̂ · r̂) n̂]. (4)

The last equation suggests that the propulsive acceleration may be written in dimen-
sionless form by using the ratio µ�/r2

0 as a sort of acceleration unit, viz.

ã ,
a

µ�/r2
0
= τ

β

2 r̃
[r̂ + (n̂ · r̂) n̂] (5)

where r̃ , r/r0 is the dimensionless radial distance. The thrust vector model of Equation (5)
will be used to describe the spacecraft dynamics, as detailed in the next subsection. To that
end, the components of ã are calculated in a polar reference frame T (O; r, θ), see Figure 1,
in which the origin O coincides with the Sun’s center of mass and θ represents the (time-
variable) polar angle, that is, the angle measured counterclockwise from the Sun-spacecraft
line at t = t0 to the current Sun-spacecraft line. Let îr and îθ be the unit vectors of T , where
îr ≡ r̂ and îθ is the transverse unit vector illustrated in Figure 1. The same figure also shows
the sail pitch angle αn ∈ [−π/2, π/2] rad, that is, the angle between îr and n̂. Note that αn
defines the orientation of the E-sail nominal plane with respect to the radial direction, that
is, the E-sail attitude in the polar reference frame.

to the Sun

Sun

propelled
trajectory

parking
orbit

start

r

�

a

E-sail

0r

ˆ
r

i

ˆ
�
i

O

fixed
direction

n̂
n

�

Figure 1. Polar reference frame and spacecraft states in a two-dimensional mission scenario.

The normal unit vector can be written as

n̂ = cos αn îr + sin αn îθ (6)
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so that Equation (5) becomes

ã = τ
β

2 r̃

(
1 + cos2 αn

)
îr + τ

β

2 r̃
cos αn sin αn îθ . (7)

Note that αn and τ are the two control variables of our two-dimensional problem.

2.1. Spacecraft Dynamics

The state of the spacecraft in the polar reference frame is defined by the variables
{r, θ, u, v}, where u (or v) is the radial (or transverse) component of the vehicle inertial
velocity. The equations of motion are

ṙ = u, θ̇ =
v
r

, u̇ = −µ�
r2 +

v2

r
+ a · îr, v̇ = −u v

r
+ a · îθ (8)

where µ� is the Sun’s gravitational parameter. The initial conditions on a circular orbit of
radius r0 are

r(t0) = r0, θ(t0) = 0, u(t0) = 0, v(t0) =

√
µ�
r0

(9)

where it is assumed, without loss of generality, that the spacecraft initially orbits the Sun in
a counterclockwise direction as is illustrated in Figure 1 (see the green arrows).

The differential Equations (8) and (9) can be rewritten in dimensionless form using the
definition of r̃ and introducing the dimensionless velocity components ũ and ṽ, defined as

ũ =
u√

µ�/r0
, ṽ =

v√
µ�/r0

(10)

and the dimensionless time
t̃ =

t√
r3

0/µ�
(11)

where t̃0 = 0 is the initial time. The dimensionless equations of motion are

r̃′ = ũ (12)

θ′ =
ṽ
r̃

(13)

ũ′ = − 1
r̃2 +

ṽ2

r̃
+ τ

β

2 r̃

(
1 + cos2 αn

)
(14)

ṽ′ = − ũ ṽ
r̃

+ τ
β

2 r̃
cos αn sin αn (15)

where the prime symbol denotes a derivative taken with respect to t̃, while the initial
conditions (9) become

r̃(t̃0) = 1, θ(t̃0) = 0, ũ(t̃0) = 0, ṽ(t̃0) = 1. (16)

Since the dimensionless Equations (12)–(15) and the initial conditions (16) do not
depend on r0, the results of the trajectory design discussed in the next subsection will be
independent of the radius of the circular parking orbit. As a result, the numerical results
obtained from the proposed approach can be easily adapted to a wide range of heliocentric
mission scenarios.

2.2. Trajectory Design and Optimization

The aim of this subsection is to design the COFT to obtain a transition from a prograde
motion (when the spacecraft flies counterclockwise in the parking orbit sketched in Figure 1)
to a retrograde motion (i.e., a motion along the circular parking orbit of Figure 1 with a
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clockwise direction), using a two-dimensional transfer coplanar with the plane of the
parking orbit. We assume that the orbit flip maneuver is completed at time t f > t0, or

t̃ f = t f /
√

r3
0/µ�, so that, if the final polar angle θ is left free, the spacecraft states at the

(unknown) time t f are constrained by the equations

r(t f ) = r0, u(t f ) = 0, v(t f ) = −
√

µ�
r0

(17)

or, in dimensionless form

r̃(t̃ f ) = 1, ũ(t̃ f ) = 0, ṽ(t̃ f ) = −1. (18)

Note that the only difference between Equation (18) and the corresponding initial
values of the state variables given by Equation (16) is in the sign of the transverse component
ṽ of the spacecraft velocity.

The transfer trajectory study is conducted from an optimization perspective, by looking
for the COFTs that minimize the flight time ∆t̃ = t̃ f for a given value of the dimensionless
propulsive acceleration β defined in Equation (3). The optimization problem has been
solved with an indirect method [31,32], in particular by using the calculus of variations [33]
and the Pontryagin’s maximum principle [34] to obtain the optimal control law. The
latter coincides with the pair of functions αn = αn(t̃) and τ = τ(t̃) that maximizes the
performance index [35]

J̃ , −∆t̃ = −t̃ f . (19)

The approach used to solve the problem, which is similar to that used by the authors
in recent works [36,37], is now summarized for the sake of completeness.

Bearing in mind the equations of motion (12)–(15) and introducing the dimensionless
adjoint variables {λr̃, λθ , λũ, λṽ}, the Hamiltonian function turns out to be

H̃ = λr̃ũ +
λθ ṽ

r̃
− λũ

r̃2 +
λũ ṽ2

r̃
+ τ

λũ β

2 r̃

(
1 + cos2 αn

)
− λṽ ũ ṽ

r̃
+ τ

λṽ β

2 r̃
cos αn sin αn (20)

which is necessary to write the Euler–Lagrange differential equations [38]

λ′r̃ = −
∂H̃
∂r̃

= λũ

[
ṽ2

r̃2 −
2
r̃3 +

τ β (cos 2αn + 3)
4 r̃2

]
− λṽ

[
ũ ṽ
r̃2 −

τ β sin 2αn

4 r̃2

]
+

λθ ṽ
r̃2 (21)

λ′θ = −∂H̃
∂θ

= 0 (22)

λ′ũ = −∂H̃
∂ũ

=
λṽ ṽ

r̃
− λr̃ (23)

λ′ṽ = −∂H̃
∂ṽ

= −λθ − λṽ ũ + 2 λũ ṽ
r̃

(24)

in which t̃ is the independent variable. The optimal control law is derived from the
Pontryagin maximum principle [34] by maximizing, at each instant of time, the Hamiltonian
function (20). The result is in agreement with the model proposed in Ref. [28], so that the
pitch angle αn and the switching parameter τ are expressed as a function of the two
dimensionless adjoint variables {λũ, λṽ} as

αn =
αp

2
, τ =

1 + sign
(
1 + 3 cos αp

)
2

(25)

where sign(�) denotes the signum function, while the auxiliary angle αp ∈ [−π/2, π/2] rad
is defined as

αp , arctan
(

λṽ
λũ

)
. (26)
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The transversality condition [33] provides two additional constraints at the final time

λθ(t̃ f ) = 0, H̃(t̃ f ) = 1 (27)

which complete the two-point boundary problem (TPBVP) formed by the four equations of
motion (12)–(15), the four Euler-Lagrange differential Equations (21)–(24), and the seven
boundary constraints given by Equations (16) and (18). In fact, since in this problem t̃ f is an
output of the optimization process [33], solving the TPBVP requires nine scalar constraints.

For a given value of the dimensionless propulsive acceleration β, the TPBVP associated
to the optimization process has been solved with an absolute error less than 10−8. Note
that, according to Equation (22), the adjoint variable λθ is a constant of motion and, taking
advantage of Equation (27), we get λθ = 0 throughout the flight. The adjoint variable λθ

can therefore be removed from the mathematical model, with a slight simplification of the
numerical solution.

3. Numerical Simulations and Discussion

The numerical solution of the TPBVP, which has been described at the end of the previ-
ous section, gives the COFT as a function of a given value of the dimensionless propulsive
acceleration β. The TPBVP has been numerically solved using a specific procedure based
on the multiple shooting method [39–41] and the classical simplex algorithm. Trajectory
optimization was conducted considering both a Direct Transfer (DT) scenario and a single
Solar Wind Assist (SWA) transfer. The DT and SWA are two types of transfers introduced
by the authors [42] by drawing parallels with similar concepts used in an interstellar
mission based on a photonic solar sail [43–46]. In the recent literature, this two concepts
have also been used to analyze the optimal transfer to heliostationary points using a very
high-performance E-sail [37].

More precisely, in a DT the radial distance increases continuously with time until
the spacecraft reaches the aphelion point (subscript a), as shown in Figure 2a. Instead, a
trajectory with a (single) SWA contains an initial phase where the spacecraft approaches
the Sun to increase its propulsive acceleration magnitude, and then rapidly grows its
radial distance to reach the aphelion point [37]; see the scheme of Figure 2b. Note that the
mathematical model discussed in the previous section does not include a constraint on the
minimum solar distance, that is, a constraint on the perihelion (subscript p) distance, as was
considered in the model described in Ref. [37]. Therefore, the (unconstrained) perihelion
distance rp is an output of the optimization process in a transfer with a single SWA.

Sun

transfer
trajectory

parking
orbit

aphelion

start/arrival

r

q

0r

O

fixed
direction

ar

aq

(a) Direct transfer (DT) scenario.

Figure 2. Cont.
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perihelion

aphelion

Sun start/arrival

parking
orbit

(b) Transfer with a single solar wind assist (SWA).

Figure 2. Conceptual scheme of a COFT of DT type or with a single SWA.

The numerical simulations show that a generic COFT can ideally be divided into two
symmetrical parts: (i) a first half part of the transfer trajectory in which the spacecraft
reaches, at time t̃ = t̃a = t̃ f /2, the aphelion point with a zero inertial velocity, that is, with
ũ(t̃a) = ṽ(t̃a) = 0 (see the green arrows in Figure 2); (ii) a second half-part in which the
spacecraft retraces the trajectory obtained in the first half part backwards until it again
reaches the starting point with ũ(t̃ f ) = 0 and ṽ(t̃ f ) = −1 (see the orange arrows in Figure 2).
In particular, a COFT with a DT has a lenticular shape, while a COFT with a single SWA is
characterized by a knot shape that encompasses the Sun. A conceptual sketch of these two
possible shapes of a COFT is shown in Figure 2.

The solution of the optimization process indicates that the spacecraft achieves a helio-
stationary condition (i.e., a zero value of its inertial velocity) at the aphelion of the generic
COFT, both in a DT scenario and in a transfer with a single SWA. Such a heliostation-
ary condition is achieved only at a single point along the transfer trajectory, while in the
neighboring of the COFT aphelion the spacecraft experiences a quasi-heliostationary condi-
tion as the magnitude of its inertial velocity is very small. In the case of solar sail-based
mission [3–5], such a specific feature of a propelled trajectory has been highlighted by
the authors [47] and by Zeng et al. [48–50] in a non-Keplerian orbit [51,52] with multiple
H-reversal points. In particular, an H-reversal point occurs when the magnitude of the
spacecraft angular momentum vector is zero but, usually, it also indicates a point where
the angular momentum vector of the osculating orbit reverses its direction.

The concept of H-reversal trajectory was originally proposed by Vulpetti [53,54] in
the middle of the 1990s as a possible trajectory of a high (or very-high) performance solar
sail [55] in an advanced mission application such as an escape from the Solar System [56],
or a fast transfer to the outer regions of our planetary system [57]. The H-reversal trajectory
has been also proposed in an asteroid deflection mission, as discussed by Gong et al. [58].
Generally speaking, a multi H-reversal trajectory can be thought of as an extension of
Vulpetti’s original idea [53,54]. In fact, in a multi H-reversal trajectory, two (or more) H-
reversal points are used to generate a non-Keplerian closed orbit that does not encompass
the Sun. This trajectory is then maintained for a long time interval by exploiting the
propulsive acceleration given by a propellantless propulsion system such as, for example, a
solar sail. This concept is thoroughly illustrated in the recent review by Zeng et al. [26] and
in Vulpetti’s book about the so called ‘fast solar sailing’ [59–61].

Recalling the results obtained in a solar sail-based scenario [26], an optimal COFT in
a DT case can be regarded as half of a particular double H-reversal trajectory, in which
the perihelion coincides with the starting position [47]. In contrast, the case where a SWA
occurs during an optimal transfer generates a propulsive trajectory that is completely
different from the results in the literature. Therefore, the results obtained in the case of
a SWA represent a novelty from the point of view of the shapes of optimal trajectories
generated by continuous-thrust propulsion systems.
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The results of the optimization process, in terms of minimum flight time ∆t and
characteristics of the optimal COFT, are illustrated in the following two subsections for a
DT scenario and a transfer with a single SWA, respectively.

3.1. Case of DT Scenario

For a DT case, Figure 3 shows the ratio of the minimum flight time ∆t to the period of

the circular parking orbit T0 = 2 π
√

r3
0/µ� as a function of β. Note that

∆t
T0

=
∆t

2 π
√

r3
0/µ�

≡ ∆t̃
2 π

(28)

so that ∆t/T0 is independent of the radius r0. Additionally, note that

∆t
T0

= − J̃
2 π

(29)

where J̃ is the performance index defined in Equation (19).

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

3

4

5

6

7

8

9

10

Figure 3. Case of a DT: ratio of the minimum flight time ∆t to the orbital period of the parking orbit
T0 as a function of the dimensionless propulsive acceleration β.

The curve plotted in Figure 3 can be used to rapidly estimate the transfer performance
in an orbit flip mission for an E-sail of given characteristics, starting from a circular orbit
of assigned radius. For example, Figure 3 indicates that an E-sail with a propulsive
acceleration of β = 0.25 travels through the optimal COFT in a time interval of about 6 T0.
In that case, assuming r0 = r⊕ = 1 au (a scenario compatible with the deployment of the
sail just outside the Earth’s sphere of influence when the escape trajectory is parabolic and
the eccentricity of the Earth’s orbit is neglected), the period T0 is equal to 1 year, while
µ�/r2

0 ' 5.93 mm/s2. The orbital flip is completed in about 6 years using an E-sail with
a characteristic acceleration of about 0.25× 5.93 mm/s2 ' 1.5 mm/s2, corresponding to a
medium-high performance propulsion system [62]. As a second example, if the mission is
to be completed in less than 4 years, Figure 3 states that β ≥ 0.35, that is, it is necessary an
E-sail with ac ≥ 2.1 mm/s2 when r0 = r⊕.

Since in a DT case the perihelion coincides with the starting point, the position of
the COFT aphelion is an output of the optimization process. The simulation results are
summarized in Figure 4. The upper part of Figure 4 shows the aphelion distance ra, while
the bottom part shows the angular position (i.e., the polar angle θa) of the aphelion point.
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0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

3

4

5

6

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
100

150

200

250

Figure 4. Case of a DT: radial (ra) and angular (θa) position on the aphelion point as a function of β.

For example, assuming again r0 = r⊕, an optimal COFT obtained with β = 0.25 has
an aphelion point at a distance of about 4 au from the Sun, and the E-sail sweeps a polar
angle of about 170 deg to move from the starting to the aphelion point. This same result
is clearly visible in the polar COFT depicted in Figure 5, which also shows the optimal
transfer trajectories for different values of β.
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Figure 5. Polar form of the COFT (black line) for a set of values of the propulsive acceleration β in a
DT scenario. Black circle→ starting point; red star→ aphelion; orange circle→ Sun; blue line→
parking orbit. The radial distance is normalized with the parking orbit radius r0.
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3.2. Case of a Transfer with a Single SWA

Figure 6 shows the minimum flight time for a range of variation of β compatible with
a medium-performance E-sail. As expected, bearing in mind the results obtained in a Solar
System escape scenario [42] or in a more challenging interstellar mission [63], the presence
of a SWA allows the E-sail to reduce the flight time compared with the DT case discussed
in the previous subsection. Moreover, if a single SWA is included in the trajectory design,
the same time of flight as in the DT case can be obtained, but with a reduced value of β. For
example, a comparison between the curves of Figures 3 and 6 indicates that a flight time of
about 8 T0 requires a propulsive acceleration β ' 0.21 for a DT case, while the same flight
time is obtained with β ' 0.185 in a transfer with a single SWA.

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23
6

7

8

9

10

Figure 6. Case of a transfer with a single SWA: variation of the dimensionless time ∆t/T0 with β.

The presence of a SWA obviously complicates the shape of the transfer trajectory, as
confirmed by the schemes in Figure 2 and, more importantly, introduces a perihelion point
at a solar distance rp less than the radius of the circular parking orbit; see Figure 7. Note,
however, that Figure 7 does not give the actual value of rp, but it only reports the ratio
rp/r0 as a function of the E-sail propulsive characteristics, so that the actual distance of rp
from the Sun depends on the value of r0. This is an important consideration, because in
an E-sail mission scenario the value of rp is inferiorly limited by the maximum operating
temperature of the conducting tethers. For example, an E-sail structure made of aluminum
tethers must operate at a solar distance greater than 0.5 au, while using copper tethers in
the sail design reduces the minimum solar distance to about 0.33 au [42]. In the latter case,
if the parking orbit radius is r0 = r⊕, Figure 7 shows that SWA transfers with β > 0.2 are
unfeasible. If, instead, r0 = 0.9 au, Figure 7 states that β should be less than about 0.18.

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23
0.28
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0.32
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0.36

0.38

0.4
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Figure 7. Case of a transfer with a single SWA: dimensionless radial distance rp/r0 of the perihelion
point as a function of the propulsive acceleration β.
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An illustrative set of COFTs is summarized in Figure 8 for six different values of the
dimensionless propulsive acceleration. In particular, the figure shows how the shape of
the COFT changes as the value of β increases, and in this regard, an interesting behavior
concerns the position of the aphelion point, marked by a red star. In fact, Figure 8 shows
that ra decreases as β increases, while, in the selected range of β, its angular position is
essentially in opposition to the starting point. This behavior is confirmed by Figure 9, which
shows the coordinates of the aphelion points as a function of β.

The presence in the optimal COFT of a heliostationary aphelion point with a solar
distance on the order of a few multiples of r0, in both a DT- and SWA-based scenario, sug-
gests a potential (and additional) interesting application of this advanced two-dimensional
trajectory concept. In fact, as proposed by the authors a few years ago, a propellantless
propulsion system can be used to achieve a linear trajectory (i.e., a Keplerian orbit with
a null value of the semilatus rectum) that allows the spacecraft to move along a straight,
radial path to regions near the Sun to obtain in situ measurements of the space surround-
ing our star. Building on that mission concept, in a COFT-based scenario, a “piggy-back”
science probe could be released at the aphelion point with a heliocentric velocity equal to
zero. Upon release, the main spacecraft (i.e., the vehicle propelled by the E-sail subsystem)
would return to the circular parking orbit by retracing the heliocentric path, while the
scientific probe would follow the linear trajectory to final destruction in the Sun’s inner
regions. This specific mission concept, in the case of a single SWA maneuver, has been
schematized in Figure 10, which represents the extended version of the scheme in Figure 2b.
In particular, the magenta line in Figure 10 indicates the linear trajectory followed by the
science probe after its release (with zero inertial velocity) at the COFT’s aphelion point.
Note that the same mission concept can also be applied to a DT case.
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Figure 8. Polar form of the COFT (black line) for a set of values of the propulsive acceleration β in a
scenario with a single SWA. Black circle→ starting point; red star→ aphelion point; orange circle→
Sun; blue line→ parking orbit. The radial distance is normalized with the parking orbit radius r0.
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Figure 9. Case of a transfer with a single SWA: radial (ra) and angular (θa) position of the aphelion
point as a function of β.

perihelion

aphelion

Sun start/arrival

parking
orbit

scientific probe
release

scientific probe

spacecraft

Figure 10. Conceptual sketch of an extended mission scenario (in presence of a single SWA), in which
a scientific probe is released at the aphelion point to cover a linear trajectory. See also Figure 2b.

The mission analysis involving the insertion of a scientific probe into a linear trajectory
is one of the possible extensions of the models discussed in this paper, and a couple of other
potential extensions are briefly discussed in the conclusion section at the end of this paper.
The next subsection, instead, describes the interesting characteristics of the optimal control
law in two specific scenarios.
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3.3. Mission Applications

The aim of this subsection is to analyze the time variation of the parameters of the
osculating orbit and the corresponding optimal control laws in two mission scenarios, each
of which were obtained with a different value of β. For exemplary purposes we select a
value of β for the DT case and a different one for the transfer with a single SWA. Note that
the general characteristics of the time variation of the two control variables {τ, αn} can be
shared with other mission scenarios obtained with different values of β.

3.3.1. Case of DT with β = 0.3

The first mission example refers to a DT obtained with a medium-high performance
E-sail with β = 0.3. According to Figure 3, the minimum flight time is ∆t ' 4.74 T0, while
the aphelion point has a radial distance ra ' 3.43 r0 and its polar angle is θa ' 155 deg; see
also Figure 4. The polar form of the COFT is shown in one of the plots included in Figure 5,
while the time variations of the state variables are reported in Figure 11, where the red star
indicates the aphelion point reached during the transfer trajectory.
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Figure 11. Time variations of the state variables in a DT scenario with β = 0.3. Black circle→ starting
point; red star→ aphelion point; black square→ arrival.

The analysis of the curves reported in Figure 11 confirms that the aphelion point is
reached right in the middle of the transfer, and indicates that the variation of {r, θ, u, v}
is essentially symmetrical over time. This is, of course, a consequence of the spacecraft
retracing the same heliocentric trajectory after reaching the aphelion point, as mentioned
in the previous section. In the same figure, note how the transverse component v of the
spacecraft velocity decreases with time (with a zero value in correspondence of the aphelion,
as expected), while the radial component u presents three points in which its value is zero,
that is, the {start, aphelion, arrival} points.
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Regarding the optimal control law, simulations indicate that the E-sail propulsion
system is always on during a DT, so that τ = 1 for t ∈ [t0, t f ]. Instead, αn changes during
the transfer and its time variation has the symmetrical form sketched in Figure 12. The
interesting aspect that emerges from this figure is that the value of the pitch angle is
essentially constant throughout most of the COFT. In fact, from Figure 12 it can be seen
that αn ' 45 deg in about 70% of the transfer. This is an interesting behavior, common
to the other DTs analyzed in the simulations, because an almost constant value of pitch
angle indicates a nearly constant sail attitude in an orbital reference frame. In the context
of optimal control laws, a different behavior appears in a transfer with a single SWA, as
discussed in the next section.

0 1 2 3 4 5

-45

-30

-15

0

15

30

45

Figure 12. Time variation of the sail pitch angle αn in a DT scenario with β = 0.3. Black circle→ start;
red star→ aphelion point; black square→ arrival.

3.3.2. Single SWA Transfer with β = 0.19

The presence of a SWA complicates both the transfer trajectory and the optimal control
law. For example, assume β = 0.19, which is related to a medium performance E-sail.
In the presence of a single SWA, numerical simulations give an optimal transfer with a
minimum flight time ∆t ' 7.68 T0, a perihelion distance rp ' 0.34 r0, and an aphelion
distance ra ' 4.41 r0; see also Figures 6, 7 and 9. The optimal COFT is shown in Figure 13,
where the radial distance is in multiples of r0 and the red triangle indicates the perihelion
point. Note how the Sun-perihelion distance is well below the radial distance of the starting
point (the black circle in the figure), while the aphelion point reaches a high solar distance.
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Figure 13. Polar form of the optimal COFT with a single SWA when β = 0.19. Black circle→ starting
point; red star→ aphelion point; red triangle→ perihelion point.
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The time variations of the state variables {r, θ, u, v} are shown in Figure 14, where
the presence of two red triangles indicates that the perihelion point is reached by the
spacecraft at two separate instants of time, due to the inherent symmetry of the problem. A
comparison between the curves in Figure 14 and those sketched in Figure 11 clearly shows
that the general trends of the state variables in a DT and SWA case are profoundly different,
even in the presence of a heliostationary condition at the aphelion point. Indeed, note how
the two components of the spacecraft velocity are both zero at the midpoint of the COFT.
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Figure 14. Time variations of the spacecraft state variables in a SWA transfer with β = 0.19.
Black circle → starting point; red star → aphelion point; red triangle → perihelion point; black
square→ arrival.

Another evident difference between the two transfer concepts (DT and SWA) is in the
time variations of the two control parameters {τ, αn}. For example, the SWA case with
β = 0.19 has the optimal control law shown in Figure 15, where the two gray shaded areas
indicate the presence of two coasting arcs (when the propulsion system of the electric sail
is off), while in the rest of the transfer τ = 1. Although the two coating arcs have a very
small time length, they demonstrate that a condition with τ = 0 can also be optimal from
the viewpoint of the flight time minimization [62].
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Figure 15. Time variation of the two control parameters in a SWA transfer with β = 0.19. Black circle
→ starting point; red star→ aphelion point; black square→ arrival; red triangle→ perihelion point;
shaded area→ τ = 0.

4. Final Remarks and Conclusions

In the context of mission scenarios based on the use of E-sails, the present work
has proposed a new approach to achieve a complete reversal of the direction of motion
along a circular, heliocentric orbit of assigned radius. The orbit reversal maneuver uses a
two-dimensional transfer trajectory that is coplanar to the initial parking orbit and uses
the continuous thrust provided by a medium-high performance E-sail to suitably change
the parameters of the osculating orbit during flight. The concept discussed in this paper
stems from observation of the particular shape of a family of H-reversal orbits, originally
proposed by Giovanni Vulpetti more than 25 years ago and subsequently studied in detail
in more recent literature.

What is interesting is that the analysis of two-dimensional “flip trajectories”, conducted
using an optimization approach, revealed the existence of a new class of highly non-
Keplerian orbits with the presence of both an H-reversal condition and a close passage to
the Sun. Such interesting transfer trajectories allow the two-dimensional orbital flip to be
completed in a time interval of a few multiples of the period of the parking orbit, even using
a medium-performance E sail. This is an intriguing result, because in the case of a solar
sail-based spacecraft, propelled trajectories that include an H-reversal point usually require
a high-performance propulsion system, as Vulpetti pointed out in his pioneering work.
Therefore, the possibility of achieving this rather exotic orbital transfer with a medium-
performance propulsion system indicates a possible new application of the propulsion
system invented by Janhunen 20 years ago.

The procedure discussed in this paper can be extended, with relatively low effort, to a
solar sail-based mission scenario. In this case, the presence of a flip trajectory with a close
pass to the Sun would reduce (when assigning the total flight time) the value of the sail
characteristic acceleration required to complete the transfer.

A second possible extension of this work involves comparing the performance of a
two-dimensional flip trajectory with that of a cranking maneuver. Indeed, in a mission
scenario based on the use of sails (both in the case of the solar sail and the E-sail), when
it is necessary to achieve a high variation in the orbital inclination of a heliocentric orbit
(as in the case studied in this work), the typical optimal transfer trajectory can ideally
be divided into three parts. A first part in which the spacecraft approaches the Sun to
increase the maximum modulus of propulsive acceleration, a middle part in which the
orbital inclination is changed while keeping the solar distance (usually sufficiently low)
essentially constant, and ,finally, a third part in which the spacecraft increases the orbital
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radius to return to the initial solar distance and thus complete the transfer. In this context,
an extension of this work could clarify whether the proposed two-dimensional approach
provides better performance (in terms of flight time reduction) than the typical three-part
procedure for varying orbital inclination. If so, a parametric study of the problem should be
conducted, considering both the effect of propulsive performance (i.e., the sail acceleration)
and the value of the required change in orbital inclination.
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Abbreviations and Symbols

COFT circular orbit flip trajectory
E-sail Electric Solar Wind Sail
TPBVP two-point boundary problem

Notation

ac spacecraft characteristic acceleration [mm/s2]
a0 reference propulsive acceleration [mm/s2]
a propulsive acceleration vector [mm/s2]
H Hamiltonian function
îr radial unit vector
îθ transverse unit vector
J performance index [days]
n̂ sail normal unit vector
O Sun’s center of mass
r Sun-spacecraft distance [au]
r̂ Sun-spacecraft unit vector
r⊕ reference distance [1 au]
t time [days]
T polar reference frame
u radial component of spacecraft velocity [km/s]
v transverse component of spacecraft velocity [km/s]
αn pitch angle [deg]
αp auxiliary angle [deg]
β dimensionless reference propulsive acceleration
θ spacecraft polar angle [deg]
λr̃ variable adjoint to r̃
λũ variable adjoint to ũ
λṽ variable adjoint to ṽ
λθ variable adjoint to θ

µ� Sun’s gravitational parameter [km3/s2]
τ dimensionless control parameter

Subscripts

0 initial parking orbit
a aphelion point
f final
p perihelion point
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Superscripts

· derivative with respect to time
∼ dimensionless form
′ derivative with respect to t̃
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