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Abstract: This investigation is centered around the application of warm mix asphalt (WMA) tech-
nologies to address workability concerns linked to rubberized asphalt binders. The primary aim of
incorporating crumb rubber (CR) and WMA additives is to establish a robust paving method that
fosters energy conservation, efficient waste management, noise reduction, and improved overall
performance. The current study aims to comprehensively characterize and differentiate the phys-
ical attributes of rubberized asphalt binders by employing three distinct WMA additives: Sasobit,
Cecabase RT and Rediset WMX. These additives are introduced into eight unique asphalt binders.
Laboratory assessments are carried out to evaluate the workability and physical properties of these
binders. The evaluation encompasses penetration, softening point, penetration index, penetration
viscosity number, storage stability, ductility, viscosity, and stiffness modulus analyses. The findings
indicate that the rubberized asphalt binder enhanced with Sasobit demonstrates the highest levels of
both hardness and softening point in comparison to asphalt binders supplemented with alternative
WMA additives. The evaluation of storage stability underscores the satisfactory stability across
all modified asphalt binders. Both the unmodified and modified binders meet the requirements
stipulated by the ductility test; the rubberized asphalt binder modified with Rediset falls short. The
rubberized asphalt binder improved with Sasobit displays the most notable enhancement in workabil-
ity. Furthermore, the blend of crumb rubber and Sasobit binder reveals the highest stiffness modulus
values under conditions of intermediate and high temperatures with 1.88 and 0.46 MPa, respectively.
In summation, the rubberized asphalt binder incorporating crumb rubber with Sasobit showcases
superior improvements in both stiffness and workability compared to counterparts modified with
Cecabase RT and Rediset WMX.

Keywords: warm mix asphalt (WMA); crumb rubber (CR); WMA additives; physical properties;
workability; stiffness modulus

1. Introduction

Authorities across the globe are dealing with limited budgets for constructing and
maintaining infrastructures by implementing cost-saving strategies that utilize recycled
materials [1,2]. Pavement researchers are still looking for cost-effective solutions that reduce
project expenditures by incorporating waste material into road pavements [3]. Several
studies have examined the performances of pavements modified with waste materials,
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including recycled asphalt shingles (RAS), reclaimed asphalt pavement (RAP), glass, steel
slag, waste frying oil (WFO), waste engine oil (WEO), and crumb rubber (CR) [4–7].

The rapid growth of the automotive sector and the number of vehicles on the road
each year has increased the demand for tires. Globally, 1.5 billion tires are produced,
and 4.0 billion tires are disposed of annually [8]. The decomposition of discarded tires,
sometimes known as black pollution, could be worse than plastic or white pollution. The
thermosetting nature of natural and synthetic rubbers, which seldom degrade in typical
climate conditions, makes scrap tire disposal challenging. The conventional methods
for disposing of waste tires are landfilling and burning. The landfilling of scrap tires
poses health risks and can cause unintentional fires, while burning scrap tires pollutes
the environment. In short, waste tire dumping causes environmental, economic, health,
and social issues [9]. Recycling scrap tires in asphalt pavements is a cost-effective and
environmentally responsible approach to disposing of these waste materials [10,11]. The
usage of crumb rubber (CR) is advantageous for environmental reasons (i.e., noise isolation).
The exposure to emissions in asphalt-rubber production was the same as in traditional
asphalt production. Moreover, in comparison to the influence of other factors, the effect of
CRM on emissions may be minimal. The dryer’s fueling rate, mix temperature, asphalt
throughput rate, and binder content are some of those factors [12].

The wet and dry methods exist for integrating crumb rubber into asphalt pave-
ments [13,14]. Wet bitumen modification techniques involve blending the asphalt binder
and CR at temperatures between 160 ◦C and 200 ◦C, adhering to specific shear rates and
durations [15]. At these elevated temperatures, crumb rubber particles rapidly expand due
to the absorption of the lighter components of the bitumen during mixing [16]. The incor-
poration of crumb rubber into asphalt binders significantly enhances the characteristics
of the modified binder. Various factors, including raw material properties and interac-
tion conditions, exert an influence on the properties of rubberized binders. Researchers
have extensively employed CR to ameliorate the performance of rubberized asphalt pave-
ments while upholding environmental considerations [17]. CR-modified asphalt binders
exhibit augmented viscosity, heightened resistance to rutting, cracking, and moisture sus-
ceptibility, as well as elevated manufacturing and laying temperatures (approximately
10 ◦C) in comparison to conventional blends [18]. However, challenges associated with CR-
modified asphalt pavements encompass reduced workability and heightened temperature
prerequisites at asphalt manufacturing facilities [19]. Recent studies have concentrated on
mitigating production and laying temperatures and enhancing workability. On the other
hand, the absence of a universally standardized warm mix asphalt (WMA) mix design
underscores the necessity to comprehend the fundamental mechanisms through which
additives operate within the mixture. The insufficiency of information concerning the
capabilities and dynamics of WMA, prevalent in various global regions, is attributed to
factors such as the variation in WMA additives, suggested quantities, and technological
approaches. This knowledge gap can be attributed in part to the limited understanding
of WMA additives, which impedes the cultivation of expertise in WMA practices among
industry professionals [20].

In recent years, warm mix asphalt has been gaining popularity due to its benefits,
including reduced fossil fuel consumption, reduced greenhouse gas emissions, lower man-
ufacturing, and laying temperatures [20]. Many studies and field cases have demonstrated
the eco-friendliness, superior performance, and economic benefits of WMA technologies,
such as improved compaction and mixing temperatures, longer hauling distances, and
paving workability [18,21], which contributed to the rapid increase of its market share. In
the United States, WMA asphalt made up about 38.9% of the total paving, the equivalent
of 147.4 million tons in 2017 [22]. There was a 26% increase in WMA output between 2016
and 2017. The production in Europe, Japan, Canada, and South Africa is still insufficient.
The data from the European Asphalt Pavement Association showed that, between 2013
and 2017, several European countries allowed the use of WMA, which leads to increasing
use of WMA technology year after year [18].
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In recent studies, three distinct WMA techniques have been devised: (a) utilization of
foaming additives, (b) incorporation of chemical additives (surfactants), and (c) inclusion of
non-foaming additives. Recent examinations conducted in both laboratory settings and in
the field have demonstrated that pavements constructed using WMA exhibit equivalent or
improved performance compared to those constructed using hot mix asphalt (HMA) [23].
Researchers have observed that the introduction of additives for WMA into asphalt blends
leads to a notable reduction in the temperatures required for mixing and compaction, with
temperature decreases ranging between 20 ◦C and 40 ◦C [19,24]. WMA technologies that
employ fluidifying additives to lower the viscosity of bitumen during mixture production
temperatures, while upholding bitumen functionality, offer a potential resolution to chal-
lenges linked with crumb rubber-modified (CRM) binders. Incorporating WMA additives
into CR asphalt binders has shown the potential to decrease mixing and compaction temper-
atures by 15 to 30 ◦C [25,26]. Numerous WMA additives have demonstrated the capacity to
lower the production temperature of rubberized binder mixtures by reducing viscosity and
enhancing the workability of the rubberized binder [27,28]. A sustainable paving approach
has been developed by researchers, involving the use of WMA asphalt to modify rubber-
ized asphalt binders, thereby contributing to environmental preservation and performance
enhancement [29]. The integration of Sasobit into the rubberized binder leads to a decrease
in the high-temperature viscosity and low-temperature ductility of rubber asphalt, while
also resulting in an increase in the softening point. This combination of effects is beneficial
for enhancing workability and promoting high-temperature stability [30]. In a prior investi-
gation conducted by Sesay et al. [31], a comparative analysis was carried out involving three
distinct WMA additives: Sasobit, Rediset, and Alube. These additives were introduced into
the rubberized asphalt binder to assess their influence on high and intermediate temper-
ature performance. The study revealed that the rubberized asphalt binder incorporating
Sasobit exhibited superior high-temperature performance in comparison to the rubberized
asphalt binder with Alube. Conversely, concerning intermediate-temperature performance,
the rubberized asphalt binder with Rediset displayed the most favorable outcomes.

The available literature reveals a dearth of investigations concerning the collective
impact of various CR asphalt binders modified with optimal quantities of WMA additives.
Addressing this gap, the present study aims to investigate the physical attributes of diverse
CR binders, each modified with Sasobit, Rediset, and Cecabase. The aim of this investiga-
tion is to identify a suitable WMA additive that enhances the workability of the rubberized
binder while maintaining a stiffness value higher than that of the original asphalt binder.

2. Material and Methods
2.1. Asphalt Binder

The bitumen binder employed in this research possesses a 60/70 penetration grade
and is supplied by the Kemaman Bitumen Company Sdn. Bhd, Selangor, Malaysia. This
binder boasts a flash point of 240 ◦C and a density of 1.02 gm/cm3.

2.2. Crumb Rubber

The Malaysian supplier, Miroad Rubber Industries Sdn Bhd, furnishes crumb rubber
powder with a mesh size of 20 (passing 0.15 mm). The crumb rubber modifier (CRM) is
manufactured through a process of mechanical shredding followed by grinding at ambient
temperature.

2.3. WMA Additives

This research used three warm mix additives, an organic additive (Sasobit), and two
chemical additives (Rediset WMX and Cacebase). The dosage of the WMA additives
followed the recommendations of previous studies [32–34]. Figure 1 shows all warm
mix asphalt additives and crumb rubber used in this study. Table 1 shows the physical
characteristics of the warm mix asphalt additives used in this research.
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Table 1. Properties of the WMA additives.

Properties Sasobit Cecabase RT 975 Rediset WMX

Appearance at 25 ◦C Pastille flakes Liquid Pastilles

Density at 25 ◦C (g/cm3) 0.9 0.997 0.55

Color Off-white Dark amber liquid Light brown

Melting point (◦C) 100–120 - 80–90

Flash point (◦C) 285 >200 253

2.3.1. Sasobit

Sasobit, among the pioneering WMA additives, was introduced for pavement produc-
tion. Its inaugural field trial occurred in Hamburg, Germany in 1997. Sasobit, a synthetic
paraffin wax, is synthesized using the Fischer–Tropsch technique, involving the combina-
tion of heated coal and natural gas with steam and a catalyst [18]. Its viscosity surpasses
that of the binder below its melting point. The manufacturer recommends a dosage range
of 0.8% to 3% by weight of the binder [35].

2.3.2. Cecabase RT 975

Cecabase RT 975 is a chemical additive produced by the Arkema Group in France. It is
liquid at 25 ◦C and can reduce the asphalt mixing and laydown temperatures by 20–40 ◦C.
Cecabase RT 975 is one of the most popular liquid WMA additives with a recommended
dose of 0.2–0.5% and does not require curing in the mixing process. It is pumped directly
into the asphalt mixture or mixed with the asphalt binder [36].

2.3.3. Rediset WMX

Rediset WMX is a blend of organic additives and surface-active chemicals produced
by a Dutch firm, Akzo Nobel. Rediset WMX was first proposed in 2007 to resolve the
reported flaws in the warm mix asphalts, including the effects of water on warm asphalt
mixes and their lower hardness compared to hot mixes, and the unpredictability of their
low-temperature characteristics. Rediset WMX is mixed with the asphalt binder or mixture
at a dosage of 0.5 to 2.5% by weight of the asphalt binder [34].

2.4. Preparation of the CR Binders Containing the WMA Additives

The virgin asphalt binders were placed in a container and heated in a 110 ◦C oven
for 60 min. The asphalt binder was added with 5% CR for 30 min at 700 rpm and 177 ◦C.
Then, the hot plate was left for five minutes to reach the desired temperature before the
next addition, which adjusted the temperature to 120 ◦C [32]. The required amounts of the
WMA additives were added at 1000 rpm and 120 ◦C for 10 min to ensure that the asphalt
binders were sufficiently fluid, uniform, and consistent [37]. The modified binders were
placed in the containers for investigation. Table 2 presents the composition of all asphalt
binders, and Figure 2 shows the high-shear mixer used to mix the modified asphalt binders.
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Table 2. Composition of the modified and virgin asphalt binders.

Binder ID Asphalt Binder
(%)

Crumb
(%)

Warm Mix Additive
(%)

Virgin 60/70 V 100 - -

Crumb rubber CR 100 5 -

Sasobit SA 100 - 1.5

Cecabase CE 100 - 0.44

Rediset RE 100 - 1.5

Sasobit + crumb rubber SECR 100 5 1.5

Cecabase + crumb rubber CECR 100 5 0.44

Rediset + crumb rubber RECR 100 5 1.5
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2.5. Testing Program

Table 3 summarizes the penetration, softening point, penetration index, storage stabil-
ity, ductility, loss on heating, and viscosity tests performed in this research to determine the
properties of the conventional asphalt binder. The softening point and penetration values
were used to compute the penetration index (PI) using Formula (1).

PI =
1952 − 500loglog PEN − 20SP

50loglog PEN − SP − 120
, (1)

where PI is the penetration index, PEN is the penetration value (0.1 mm), and SP is the
softening point value (◦C). The viscosity and penetration values were used to compute the
penetration viscosity number (PVN) using Formula (2).

PVN =
4.258 − 0.7967 log P − loglog V

(0.795 − 0.1858 log P)
(2)

where PVN is the penetration viscosity number, V is the viscosity in centistokes measured
at 135 ◦C (cp), and P is the penetration value at 25 ◦C (0.1 mm).



Appl. Sci. 2023, 13, 10337 6 of 15

Table 3. The physical properties tests conducted in this research.

Asphalt Binder Test (Unit) Test Standard Specification

Penetration at 25 ◦C (0.1 mm) ASTM D5 60–70

Softening point (◦C) ASTM D36 48–52

Penetration index - −2 to 2

Penetration viscosity number - -

Storage stability (◦C) ASTM D5892 <2.2

Ductility at 25 ◦C (cm) ASTM D113 Min. 100

Loss on heating (%) AASHTO T240 Max. 1.00

Viscosity at 120 and 135 ◦C (cp) ASTM D4402 -

Stiffness modulus (MPa) - -

Van der Poel [38] introduced the concept of stiffness modulus, which represents the
ratio between a consistent uniaxial stress and the resultant uniaxial strain at a specified time.
By examining the outcomes of tests conducted on 47 bitumens, Van der Poel constructed
a graphical tool, known as a nomograph, designed to ascertain the stiffness of asphalt
binder, accounting for temperature and loading time (or frequency), given knowledge
of the softening temperature and penetration. For the practical determination of binder
stiffness, the BitProps program is a useful tool. This program utilizes a digitized version
of Van der Poel’s nomograph, developed by G. Rowe and M. Sharrock [39], facilitating
the ease of calculation. The study evaluated the stiffness characteristics of eight distinct
asphalt binders, both unmodified and modified, across varying temperature conditions:
low, intermediate, and high. This assessment employed five distinct loading scenarios,
considering outcomes from penetration and softening point tests. The selected temperatures
for this investigation corresponded to the low, intermediate, and high temperature ranges
observed in Kuala Lumpur, Malaysia. Figure 3 shows the flowchart of the research.
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3. Results and Discussion
3.1. Penetration

The assessment of asphalt binder characteristics involves multiple tests to determine
their properties. Figure 4 illustrates the penetration values of various asphalt binders at
25 ◦C, which serve as an indicator of their hardness or softness. A lower penetration value
in CR asphalt binders corresponds to increased hardness. Previous research [40] high-
lighted that introducing crumb rubber into asphalt binders led to a significant reduction in
penetration values, contingent on CR content. Among WMA additives, Cecabase exhibited
minimal impact on asphalt binder hardness, with the modified binder’s penetration value
aligning closely with that of the virgin binder. This was confirmed by Awazhar et al. [41],
who noted Cecabase’s limited influence on penetration values. In contrast, Sasobit and
Rediset exerted more substantial effects on asphalt binder hardness than Cecabase. The
liquid form of Cecabase had minimal impact on the hardness of the CECR asphalt binder.
The SECR asphalt binder demonstrated the lowest penetration value due to the combined
influence of Sasobit and crumb rubber, which augmented the binder’s hardness. Bilema
et al. [37] reported comparable findings regarding the combined effect of crumb rubber and
Sasobit on penetration values, consistent with our current study.
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3.2. Softening Point

The outcome of the softening point test, presented in Figure 5, reveals the temperature
at which asphalt binders transition from semi-solid to soft states. Higher softening points
are preferable for greater resilience in warm conditions. CR-modified asphalt binders
exhibited higher penetration values, aligning with previous research [42]. Among WMA
additives, Cecabase demonstrated the lowest softening point (47.5 ◦C), while Sasobit exhib-
ited the highest (50.5 ◦C). The CECR asphalt binder displayed a relatively low softening
point, whereas the SECR binder exhibited the highest value (54 ◦C), attributed to the com-
bined influence of crumb rubber and Sasobit, resulting in higher melting temperatures.
Kök et al. [43] obtained similar results, concluding that Sasobit enhanced softening points.
In a preceding study undertaken by Akpolat [44], it was determined that the incorporation
of Sasobit additive in combination with CR leads to an elevation in the value of softening
points. This concurs with the findings observed in the current research.
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3.3. Viscosity

The Brookfield rotational viscosity test gauges asphalt binder workability at temper-
atures of 120 and 135 ◦C, determining their capacity to withstand shear forces. Figure 6
displays viscosities for virgin and modified asphalt binders. At the higher test temperature
of 135 ◦C, asphalt binders demonstrated reduced viscosity values. CR asphalt binders
exhibited the highest viscosity values at both temperatures, attributed to crumb rubber par-
ticle behavior. Elevated viscosity of aged binders can decline asphalt mixture workability,
causing reduced adhesion between aggregates and binders [45]. Higher viscosity demands
elevated laying, compaction, and mixing temperatures, consuming more energy, as noted
by Sengoz and Isikyakar [46]. WMA additives lowered viscosities across asphalt binders.
Sasobit had the most significant influence on binder workability, whereas Rediset had a
limited effect. Viscosity in all asphalt binders, with crumb rubber and WMA additives, was
akin to virgin asphalt binders. SECR asphalt binder exhibited the lowest viscosity values at
both temperatures due to Sasobit’s substantial workability enhancement, consistent with
Veeraiah and Nagabhushanarao’s findings [47].
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3.4. Temperature Susceptibility

Temperature susceptibility of modified asphalt binders was assessed using the penetra-
tion index (PI) and penetration viscosity number (PVN) based on penetration and softening
point at 25 ◦C and viscosity at 135 ◦C. Higher PI and PVN values indicated reduced
temperature susceptibility. PI classified asphalt binder type and suitability for highway
construction, while PVN gauged temperature susceptibility. The findings in Table 4 in-
dicate that both PI and PVN values increased with crumb rubber addition, signifying
lower temperature susceptibility in CR asphalt binders. Except for Sasobit, WMA additives
displayed similar behavior in raising temperature susceptibility values. Asphalt binders
modified with WMA additives and crumb rubber exhibited temperature susceptibility akin
to virgin asphalt binders. The utilization of Sasobit in the rubberized asphalt binder leads
to an elevation in the PI value, accompanied by a reduction in the PVN value. This aligns
with the outcomes observed in the present study [48]. Table 4 shows the outcome of the
PVN and PI of all asphalt binders in the study.

Table 4. The PI and PVN for all asphalt binders.

ID PI PVN

V −0.54 −0.06

CR 0.04 0.39

SA −0.49 −0.92

CE −1.17 −0.69

RE −0.83 −0.59

SECR −0.02 0.004

CECR −0.48 0.23

RECR −0.62 0.07

3.5. Storage Stability

The storage stability test, depicted in Figure 7, was conducted to assess the success of
binder modification and its stability during storage. Acceptable storage stability demands
a minimal temperature difference between sample top and bottom. All asphalt binders
showed adequate stability without significant separation, owing to slight variations in
softening points within 2.2 ◦C. Virgin and WMA-modified asphalt binders exhibited lower
storage stability, with a 0.5 ◦C difference. RECR asphalt binder exhibited the highest storage
asphalt due to the crumb rubber’s contribution. Elevated crumb rubber content decreased
modified binder stability, aligning with prior studies [21].

3.6. Ductility

The outcome of the ductility test, depicted in Figure 8, illustrates the evaluation of
asphalt binder flexibility and deformation. The figure indicates that the inclusion of CR
resulted in a decrease in asphalt binder ductility. This reduction in ductility was attributed
to the absorption of the asphalt binder’s oily components by the rubber powder, leading to
an increase in the mass of rubber particles. Consequently, the CR asphalt binder exhibited
a greater thickness compared to unmodified asphalt binder samples, aligning with the
observations made by Mashaan et al. [49]. Across all asphalt binders, the introduction
of WMA additives brought about a reduction in ductility. Sasobit had a minimal effect
on asphalt binder ductility, while Rediset produced the highest difference in the ductility
values. Sedaghat et al. [50] reported that Sasobit reduced the ductility value, which is
consistent with the result of this research. The 109 and 101 cm ductility values of the SECR
and CECR asphalt binder fulfilled the ductility test requirement. However, the RECR
asphalt binder did not meet the ductility test requirement of 98 cm.
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3.7. Loss on Heating

This research conducted the Rolling Thin Film Oven (RTFO) test to determine the
mass loss on heating when the samples were exposed to high temperatures and pressures.
The impurities and particles in the asphalt binders became volatile and escaped into the
air at high temperatures, causing the asphalt binder to lose some mass. Loss on heating is
a critical factor since a considerable loss on heating can cause problems with the asphalt
binder’s workability. The loss on heating typically ranges from 0.05 to 0.5%, and the
maximum loss on heating is 1.0%. Figure 9 presents the loss on heating for all asphalt
binders. All asphalt binders in this study fulfilled the 0.05 to 0.5% requirement for the loss
on heating test and showed a lower loss on heating than the virgin asphalt binder since
the blending process exposed them to a high temperature for a particular period. In a
prior investigation conducted by Li et al. [48], it was determined that various dosages of
rubberized asphalt binder and Sasobit yielded comparable outcomes to the original asphalt
binder, as the percentages fell within the designated test range. These findings correspond
harmoniously with the results observed in the current study.
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3.8. Stiffness Modulus

Table 5 presents two predominant patterns: as test temperatures rise, stiffness values
decline, whereas stiffness values increase as loading time decreases. Notably, at a loading
time of 10 s, the SECR exhibits the most elevated stiffness modulus figures under interme-
diate and low temperatures, measuring 0.07 and 0.49 MPa, respectively. Conversely, the CE
displays the least stiffness among all unmodified and modified asphalt binders at interme-
diate temperatures, registering 0.03 MPa. Similar trends in stiffness modulus emerge at
loading times of 5, 1, and 0.5 s, mirroring the observations at a 10 s loading time. At the
lowest loading times and temperatures explored in this study, modified asphalt binders
manifest distinct behavior. Specifically, the RECR demonstrates the highest stiffness values
at low temperatures, reaching 11.31 MPa. Among the warm mix asphalt additives without
crumb rubber, Sasobit records the highest stiffness values across all temperatures and
loading times, except at low temperatures and loading times of 0.5 and 0.1 s, where stiffness
values for CE measure 3.23 and 9.93 MPa, respectively. Comparable stiffness values are
observed between RECR and SECR. The influence of loading time on stiffness values is
evident from the data in Table 5, revealing a notable impact. Reducing the loading time
enables a deeper exploration of asphalt binder stiffness behavior. The presence of crumb
rubber yields higher stiffness values compared to warm mix asphalt additives, attributed
to the combination of low penetration and elevated softening point values. Table 5 shows
stiffness modulus values for virgin and modified asphalt binders at different loading times
and temperatures.

Table 5. The stiffness modulus for unmodified and modified asphalt binders.

Asphalt ID
Stiffness (MPa) at Loading Time: 10 (s)

High Temperature Intermediate Temperature Low Temperature

V 0.01 0.04 0.31

CR 0.01 0.06 0.43

SA 0.01 0.05 0.36

CE 0.00 0.03 0.31

RE 0.01 0.04 0.34

SECR 0.01 0.07 0.49

CECR 0.01 0.05 0.39

RECR 0.01 0.06 0.44
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Table 5. Cont.

Asphalt ID
Stiffness (MPa) at Loading Time 5 (s)

High Temperature Intermediate Temperature Low Temperature

V 0.01 0.07 0.47

CR 0.02 0.11 0.7

SA 0.01 0.08 0.54

CE 0.01 0.06 0.48

RE 0.01 0.07 0.5

SECR 0.02 0.13 0.83

CECR 0.01 0.09 0.61

RECR 0.02 0.1 0.73

Asphalt ID
Stiffness (MPa) at Loading Time: 1 (s)

High Temperature Intermediate Temperature Low Temperature

V 0.05 0.32 1.48

CR 0.07 0.37 1.93

SA 0.05 0.31 1.71

CE 0.04 0.24 1.7

RE 0.05 0.28 1.71

SECR 0.08 0.42 2.51

CECR 0.06 0.34 1.87

RECR 0.07 0.38 2.35

Asphalt ID
Stiffness (MPa) at Loading Time: 0.5 (s)

High Temperature Intermediate Temperature Low Temperature

V 0.08 0.42 2.58

CR 0.13 0.56 3.48

SA 0.09 0.47 3.09

CE 0.07 0.4 3.23

RE 0.08 0.43 3.16

SECR 0.15 0.67 4.17

CECR 0.1 0.49 3.45

RECR 0.11 0.58 4.11

Asphalt ID
Stiffness (MPa) at Loading Time: 0.1 (s)

High Temperature Intermediate Temperature Low Temperature

V 0.3 1.23 7.81

CR 0.42 1.64 9.24

SA 0.35 1.44 8.67

CE 0.26 1.31 9.93

RE 0.3 1.39 9.43

SECR 0.46 1.88 11.04

CECR 0.37 1.57 9.17

RECR 0.41 1.8 11.31

4. Conclusions

This research investigated the effects of three warm mix additives on the physical
properties of rubberized asphalt binder by performing physical tests, namely the penetra-
tion, softening point, penetration index, penetration viscosity number, storage stability,
ductility, viscosity test, and stiffness modulus. Based on the research results, the researchers
draw the following conclusions.
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• Enhanced asphalt binders, resulting from modifications, display increased levels of
hardness. Notably, the binder that underwent modification through the introduction
of crumb rubber and Sasobit showcases the most pronounced hardness.

• All rubberized asphalt binders modified with warm mix asphalt (WMA) techniques
manifest elevated values of softening points in comparison to the original asphalt
binder. Among these alternatives, the rubberized asphalt binder that incorporates
Sasobit stands out with the highest softening point.

• The penetration index, penetration viscosity number, and loss on heating of crumb
rubber with WMA additives closely resemble those of the virgin asphalt binder.

• The modified asphalt binders exhibit commendable stability over the course of storage.
• With the exception of the rubberized asphalt binder adjusted with Rediset, all other

modified asphalt binders adhere to the criteria set by the ductility test.
• All pairings of rubberized asphalt binder and WMA additives contribute to the re-

duction of viscosity values. Notably, the rubberized asphalt binder with Sasobit
showcases superior workability compared to its counterparts employing alternative
WMA additives.

• Among the assortment of asphalt binders, the combination that involves crumb rubber
and Sasobit-modified binder presents the highest stiffness modulus values under
conditions of intermediate and high temperatures.

• When subjected to lower temperatures and briefer loading periods, the blend of
Rediset and crumb rubber produces the most significant stiffness modulus values.

The findings suggest that employing crumb rubber with Sasobit could be effectively
implemented in nations with hot weather conditions, whereas the combination of crumb
rubber and Rediset could be suitable for countries experiencing colder climates. For
forthcoming studies, it is recommended to center attention on examinations conducted at
lower temperatures, specifically emphasizing tests like the Bending Beam Rheometer (BBR)
and the Direct Tension Test (DTT). Furthermore, an augmentation of the investigation could
involve the incorporation of a broader collection of warm-mix asphalt additives.
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