A Moment-Fitted Extended Spectral Cell Method for Structural Health Monitoring Applications
Abstract
:1. Introduction
2. Problem Statement and Main Strategy
3. Moment Fitting for Enriched Spectral Elements
3.1. The Spectral Element Method
3.2. The Extended Finite Element Method
- The normal level set , representing the signed distance from the crack surface:
- The tangential level set , representing a signed distance function satisfying the conditions
- is the set of nodes enriched with the discontinuous function (Equation (12)). This set includes all nodes belonging to elements that are split in two by cracks but not those that contain crack tips/fronts.
- is the set of nodes enriched with the asymptotic function (Equation (13)). This set includes all nodes belonging to elements that contain crack tips/fronts.
3.3. Discretized Equilibrium Equations
3.4. Mass Lumping for Standard Spectral Elements
3.5. Element Partitioning
3.6. Mass Lumping for Enriched Spectral Elements
3.6.1. Accuracy
3.6.2. Stability
4. Numerical Examples
4.1. Example 1
4.2. Example 2
4.3. Example 3
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Constraints for the Quadratic Programming Problem
Appendix B. Definition of Shape Function Matrix in Multiple Dimensions
References
- Magnier, S.A.; Donzé, F.V. Numerical simulations of impacts using a discrete element method. Mech. Cohesive-Frict. Mater. Int. J. Exp. Model. Comput. Mater. Struct. 1998, 3, 257–276. [Google Scholar] [CrossRef]
- Geubelle, P.H.; Baylor, J.S. Impact-induced delamination of composites: A 2D simulation. Compos. Part B Eng. 1998, 29, 589–602. [Google Scholar] [CrossRef]
- Charatpangoon, B.; Kiyono, J.; Furukawa, A.; Hansapinyo, C. Dynamic analysis of earth dam damaged by the 2011 Off the Pacific Coast of Tohoku Earthquake. Soil Dyn. Earthq. Eng. 2014, 64, 50–62. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Lu, W.; Zhou, C.; Chen, M.; Yan, P. XFEM based seismic potential failure mode analysis of concrete gravity dam–water–foundation systems through incremental dynamic analysis. Eng. Struct. 2015, 98, 81–94. [Google Scholar] [CrossRef]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001. [Google Scholar] [CrossRef]
- Aryan, P.; Kotousov, A.; Ng, C.T.; Cazzolato, B. A model-based method for damage detection with guided waves. Struct. Control Health Monit. 2017, 24, e1884. [Google Scholar] [CrossRef]
- Menouillard, T.; Rethore, J.; Combescure, A.; Bung, H. Efficient explicit time stepping for the eXtended Finite Element Method (X-FEM). Int. J. Numer. Methods Eng. 2006, 68, 911–939. [Google Scholar] [CrossRef]
- Menouillard, T.; Rethore, J.; Moes, N.; Combescure, A.; Bung, H. Mass lumping strategies for X-FEM explicit dynamics: Application to crack propagation. Int. J. Numer. Methods Eng. 2008, 74, 447–474. [Google Scholar] [CrossRef]
- Liu, Z.; Menouillard, T.; Belytschko, T. An XFEM/Spectral element method for dynamic crack propagation. Int. J. Fract. 2011, 169, 183–198. [Google Scholar] [CrossRef]
- Noh, G.; Bathe, K.J. An explicit time integration scheme for the analysis of wave propagations. Comput. Struct. 2013, 129, 178–193. [Google Scholar] [CrossRef]
- Soares, D., Jr. A novel family of explicit time marching techniques for structural dynamics and wave propagation models. Comput. Methods Appl. Mech. Eng. 2016, 311, 838–855. [Google Scholar] [CrossRef]
- Kim, W. A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics. Eng. Struct. 2019, 195, 358–372. [Google Scholar] [CrossRef]
- Kuhl, D.; Crisfield, M. Energy-conserving and decaying algorithms in non-linear structural dynamics. Int. J. Numer. Methods Eng. 1999, 45, 569–599. [Google Scholar] [CrossRef]
- Kwon, S.B.; Bathe, K.J.; Noh, G. An analysis of implicit time integration schemes for wave propagations. Comput. Struct. 2020, 230, 106188. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, R.; Masarati, P. Improved second-order unconditionally stable schemes of linear multi-step and equivalent single-step integration methods. Comput. Mech. 2021, 67, 289–313. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. On the partial difference equations of mathematical physics. IBM J. Res. Dev. 1967, 11, 215–234. [Google Scholar] [CrossRef]
- Hughes, T.J. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Diaz, J.; Grote, M.J. Energy conserving explicit local time stepping for second-order wave equations. SIAM J. Sci. Comput. 2009, 31, 1985–2014. [Google Scholar] [CrossRef]
- Grote, M.J.; Mitkova, T. Explicit local time-stepping methods for time-dependent wave propagation. In Direct and Inverse Problems in Wave Propagation and Applications; De Gruyter: Berlin, Germany, 2013; pp. 187–218. [Google Scholar]
- Hughes, T.J.; Liu, W. Implicit-explicit finite elements in transient analysis: Stability theory. J. Appl. Mech. 1978, 45, 375–378. [Google Scholar] [CrossRef]
- Hughes, T.J.; Pister, K.S.; Taylor, R.L. Implicit-explicit finite elements in nonlinear transient analysis. Comput. Methods Appl. Mech. Eng. 1979, 17, 159–182. [Google Scholar] [CrossRef]
- Asareh, I.; Song, J.H.; Mullen, R.L.; Qian, Y. A general mass lumping scheme for the variants of the extended finite element method. Int. J. Numer. Methods Eng. 2020, 121, 2262–2284. [Google Scholar] [CrossRef]
- Fried, I.; Malkus, D.S. Finite element mass matrix lumping by numerical integration with no convergence rate loss. Int. J. Solids Struct. 1975, 11, 461–466. [Google Scholar] [CrossRef]
- Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J. Concepts and Applications of Finite Element Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Duczek, S.; Gravenkamp, H. Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods. Comput. Methods Appl. Mech. Eng. 2019, 353, 516–569. [Google Scholar] [CrossRef]
- Düster, A.; Bröker, H.; Rank, E. The p-version of the finite element method for three-dimensional curved thin walled structures. Int. J. Numer. Methods Eng. 2001, 52, 673–703. [Google Scholar] [CrossRef]
- Duczek, S.; Gabbert, U. Anisotropic hierarchic finite elements for the simulation of piezoelectric smart structures. Eng. Comput. 2013, 30, 682–706. [Google Scholar] [CrossRef]
- Szabó, B.; Babuška, I. Finite Element Analysis: Method, Verification and Validation; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Hughes, T.J.; Cottrell, J.A.; Bazilevs, Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 2005, 194, 4135–4195. [Google Scholar] [CrossRef]
- Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J. Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 2006, 195, 5257–5296. [Google Scholar] [CrossRef]
- Anitescu, C.; Nguyen, C.; Rabczuk, T.; Zhuang, X. Isogeometric analysis for explicit elastodynamics using a dual-basis diagonal mass formulation. Comput. Methods Appl. Mech. Eng. 2019, 346, 574–591. [Google Scholar] [CrossRef]
- Patera, A.T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 1984, 54, 468–488. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Kudela, P.; Krawczuk, M.; Zak, A. Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Żak, A.; Krawczuk, M. Certain numerical issues of wave propagation modelling in rods by the Spectral Finite Element Method. Finite Elem. Anal. Des. 2011, 47, 1036–1046. [Google Scholar] [CrossRef]
- Willberg, C.; Duczek, S.; Perez, J.V.; Schmicker, D.; Gabbert, U. Comparison of different higher order finite element schemes for the simulation of Lamb waves. Comput. Methods Appl. Mech. Eng. 2012, 241, 246–261. [Google Scholar] [CrossRef]
- Komatitsch, D.; Tromp, J. Spectral-element simulations of global seismic wave propagation—I. Validation. Geophys. J. Int. 2002, 149, 390–412. [Google Scholar] [CrossRef]
- Kudela, P.; Żak, A.; Krawczuk, M.; Ostachowicz, W. Modelling of wave propagation in composite plates using the time domain spectral element method. J. Sound Vib. 2007, 302, 728–745. [Google Scholar] [CrossRef]
- Kudela, P. Parallel implementation of spectral element method for Lamb wave propagation modeling. Int. J. Numer. Methods Eng. 2016, 106, 413–429. [Google Scholar] [CrossRef]
- Komatitsch, D.; Barnes, C.; Tromp, J. Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics 2000, 65, 1251–1260. [Google Scholar] [CrossRef]
- Kudela, P.; Krawczuk, M.; Ostachowicz, W. Wave propagation modelling in 1D structures using spectral finite elements. J. Sound Vib. 2007, 300, 88–100. [Google Scholar] [CrossRef]
- Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 1999, 45, 601–620. [Google Scholar] [CrossRef]
- Moës, N.; Dolbow, J.; Belytschko, T. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
- Belytschko, T.; Gracie, R.; Ventura, G. A review of extended/generalized finite element methods for material modeling. Model. Simul. Mater. Sci. Eng. 2009, 17, 043001. [Google Scholar] [CrossRef]
- Fries, T.P.; Belytschko, T. The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Methods Eng. 2010, 84, 253–304. [Google Scholar] [CrossRef]
- Sukumar, N.; Chopp, D.L.; Moës, N.; Belytschko, T. Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 2001, 190, 6183–6200. [Google Scholar] [CrossRef]
- Babuška, I.; Caloz, G.; Osborn, J.E. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 1994, 31, 945–981. [Google Scholar] [CrossRef]
- Melenk, J.M.; Babuška, I. The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 1996, 139, 289–314. [Google Scholar] [CrossRef]
- Babuška, I.; Melenk, J.M. The partition of unity method. Int. J. Numer. Methods Eng. 1997, 40, 727–758. [Google Scholar] [CrossRef]
- Abedian, A.; Parvizian, J.; Düster, A.; Khademyzadeh, H.; Rank, E. Performance of different integration schemes in facing discontinuities in the finite cell method. Int. J. Comput. Methods 2013, 10, 1350002. [Google Scholar] [CrossRef]
- Fries, T.P.; Omerović, S. Higher-order accurate integration of implicit geometries. Int. J. Numer. Methods Eng. 2016, 106, 323–371. [Google Scholar] [CrossRef]
- Duczek, S.; Joulaian, M.; Düster, A.; Gabbert, U. Simulation of Lamb waves using the spectral cell method. In Proceedings of the Health Monitoring of Structural and Biological Systems 2013, International Society for Optics and Photonics, San Diego, CA, USA, 11–14 March 2013; Volume 8695, p. 86951U. [Google Scholar]
- Duczek, S.; Joulaian, M.; Düster, A.; Gabbert, U. Numerical analysis of Lamb waves using the finite and spectral cell methods. Int. J. Numer. Methods Eng. 2014, 99, 26–53. [Google Scholar] [CrossRef]
- Duczek, S. Higher Rrder Finite Elements and the Fictitious Domain Concept for Wave Propagation Analysis; Otto-von-Guericke-Universitat Magdeburg: Magdeburg, Germany, 2014. [Google Scholar]
- Duczek, S.; Liefold, S.; Gabbert, U. The finite and spectral cell methods for smart structure applications: Transient analysis. Acta Mech. 2015, 226, 845–869. [Google Scholar] [CrossRef]
- Giraldo, D.; Restrepo, D. The spectral cell method in nonlinear earthquake modeling. Comput. Mech. 2017, 60, 883–903. [Google Scholar] [CrossRef]
- Nicoli, S.; Agathos, K.; Chatzi, E. Moment fitted cut spectral elements for explicit analysis of guided wave propagation. Comput. Methods Appl. Mech. Eng. 2022, 398, 115140. [Google Scholar] [CrossRef]
- Belytschko, T.; Chen, H.; Xu, J.; Zi, G. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng. 2003, 58, 1873–1905. [Google Scholar] [CrossRef]
- Réthoré, J.; Gravouil, A.; Combescure, A. An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int. J. Numer. Methods Eng. 2005, 63, 631–659. [Google Scholar] [CrossRef]
- Malkus, D.S.; Plesha, M.E. Zero and negative masses in finite element vibration and transient analysis. Comput. Methods Appl. Mech. Eng. 1986, 59, 281–306. [Google Scholar] [CrossRef]
- Elguedj, T.; Gravouil, A.; Maigre, H. An explicit dynamics extended finite element method. Part 1: Mass lumping for arbitrary enrichment functions. Comput. Methods Appl. Mech. Eng. 2009, 198, 2297–2317. [Google Scholar] [CrossRef]
- Belytschko, T.; Mullen, R. Mesh partitions of explicit-implicit time integration. In Formulations and Computational Algorithms in Finite Element Analysis; MIT Press: Cambridge, MA, USA, 1976; pp. 673–690. [Google Scholar]
- Belytschko, T.; Mullen, R. Stability of explicit-implicit mesh partitions in time integration. Int. J. Numer. Methods Eng. 1978, 12, 1575–1586. [Google Scholar] [CrossRef]
- Sanchez-Rivadeneira, A.; Duarte, C. A high-order generalized Finite Element Method for multiscale structural dynamics and wave propagation. Comput. Methods Appl. Mech. Eng. 2021, 384, 113934. [Google Scholar] [CrossRef]
- Geelen, R.; Plews, J.; Dolbow, J. Scale-bridging with the extended/generalized finite element method for linear elastodynamics. Comput. Mech. 2021, 68, 295–310. [Google Scholar] [CrossRef]
- Schweitzer, M.A. Variational mass lumping in the partition of unity method. SIAM J. Sci. Comput. 2013, 35, A1073–A1097. [Google Scholar] [CrossRef]
- Mousavi, S.; Xiao, H.; Sukumar, N. Generalized Gaussian quadrature rules on arbitrary polygons. Int. J. Numer. Methods Eng. 2010, 82, 99–113. [Google Scholar] [CrossRef]
- Mousavi, S.; Sukumar, N. Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput. Mech. 2011, 47, 535–554. [Google Scholar] [CrossRef]
- Mousavi, S.; Sukumar, N. Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Comput. Methods Appl. Mech. Eng. 2010, 199, 3237–3249. [Google Scholar] [CrossRef]
- Hubrich, S.; Di Stolfo, P.; Kudela, L.; Kollmannsberger, S.; Rank, E.; Schröder, A.; Düster, A. Numerical integration of discontinuous functions: Moment fitting and smart octree. Comput. Mech. 2017, 60, 863–881. [Google Scholar] [CrossRef]
- Düster, A.; Allix, O. Selective enrichment of moment fitting and application to cut finite elements and cells. Comput. Mech. 2020, 65, 429–450. [Google Scholar] [CrossRef]
- Müller, B.; Kummer, F.; Oberlack, M. Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int. J. Numer. Methods Eng. 2013, 96, 512–528. [Google Scholar] [CrossRef]
- Hubrich, S.; Düster, A. Numerical integration for nonlinear problems of the finite cell method using an adaptive scheme based on moment fitting. Comput. Math. Appl. 2019, 77, 1983–1997. [Google Scholar] [CrossRef]
- Xiao, H.; Gimbutas, Z. A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Comput. Math. Appl. 2010, 59, 663–676. [Google Scholar] [CrossRef]
- Thiagarajan, V.; Shapiro, V. Adaptively weighted numerical integration in the finite cell method. Comput. Methods Appl. Mech. Eng. 2016, 311, 250–279. [Google Scholar] [CrossRef]
- Joulaian, M.; Hubrich, S.; Düster, A. Numerical integration of discontinuities on arbitrary domains based on moment fitting. Comput. Mech. 2016, 57, 979–999. [Google Scholar] [CrossRef]
- Bui, H.G.; Schillinger, D.; Meschke, G. Efficient cut-cell quadrature based on moment fitting for materially nonlinear analysis. Comput. Methods Appl. Mech. Eng. 2020, 366, 113050. [Google Scholar] [CrossRef]
- Legrain, G. Non-negative moment fitting quadrature rules for fictitious domain methods. Comput. Math. Appl. 2021, 99, 270–291. [Google Scholar] [CrossRef]
- Garhuom, W.; Düster, A. Non-negative moment fitting quadrature for cut finite elements and cells undergoing large deformations. Comput. Mech. 2022, 70, 1059–1081. [Google Scholar] [CrossRef]
- Parvizian, J.; Düster, A.; Rank, E. Finite cell method. Comput. Mech. 2007, 41, 121–133. [Google Scholar] [CrossRef]
- Düster, A.; Parvizian, J.; Yang, Z.; Rank, E. The finite cell method for three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 2008, 197, 3768–3782. [Google Scholar] [CrossRef]
- Düster, A.; Rank, E.; Szabó, B. The p-Version of the Finite Element and Finite Cell Methods. In Encyclopedia of Computational Mechanics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–35. [Google Scholar]
- Boyd, J.P. Chebyshev and Fourier Spectral Methods; Courier Corporation: North Chelmsford, MA, USA, 2001. [Google Scholar]
- Pozrikidis, C. Introduction to Finite and Spectral Element Methods Using MATLAB; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Dauksher, W.; Emery, A.F. Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements. Finite Elem. Anal. Des. 1997, 26, 115–128. [Google Scholar] [CrossRef]
- Dauksher, W.; Emery, A. The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Comput. Methods Appl. Mech. Eng. 2000, 188, 217–233. [Google Scholar] [CrossRef]
- Cohen, G. Higher-Order Numerical Methods for Transient Wave Equations; Springer Science & Business Media: Cham, Switzerland, 2001. [Google Scholar]
- Tschöke, K.; Gravenkamp, H. On the numerical convergence and performance of different spatial discretization techniques for transient elastodynamic wave propagation problems. Wave Motion 2018, 82, 62–85. [Google Scholar] [CrossRef]
- Joulaian, M.; Duczek, S.; Gabbert, U.; Düster, A. Finite and spectral cell method for wave propagation in heterogeneous materials. Comput. Mech. 2014, 54, 661–675. [Google Scholar] [CrossRef]
- Pozrikidis, C. Numerical Computation in Science and Engineering; Oxford University Press: New York, NY, USA, 1998; Volume 6. [Google Scholar]
- Strouboulis, T.; Babuška, I.; Copps, K. The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 2000, 181, 43–69. [Google Scholar] [CrossRef]
- Strouboulis, T.; Copps, K.; Babuška, I. The generalized finite element method: An example of its implementation and illustration of its performance. Int. J. Numer. Methods Eng. 2000, 47, 1401–1417. [Google Scholar] [CrossRef]
- Sukumar, N.; Huang, Z.; Prévost, J.H.; Suo, Z. Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Methods Eng. 2004, 59, 1075–1102. [Google Scholar] [CrossRef]
- Ashari, S.E.; Mohammadi, S. Modeling delamination in composite laminates using XFEM by new orthotropic enrichment functions. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2010; Volume 10, p. 012240. [Google Scholar]
- Afshar, A.; Daneshyar, A.; Mohammadi, S. XFEM analysis of fiber bridging in mixed-mode crack propagation in composites. Compos. Struct. 2015, 125, 314–327. [Google Scholar] [CrossRef]
- Zhao, L.; Zhi, J.; Zhang, J.; Liu, Z.; Hu, N. XFEM simulation of delamination in composite laminates. Compos. Part A Appl. Sci. Manuf. 2016, 80, 61–71. [Google Scholar] [CrossRef]
- Wang, Y.; Waisman, H. Material-dependent crack-tip enrichment functions in XFEM for modeling interfacial cracks in bimaterials. Int. J. Numer. Methods Eng. 2017, 112, 1495–1518. [Google Scholar] [CrossRef]
- Wang, Y.; Cerigato, C.; Waisman, H.; Benvenuti, E. XFEM with high-order material-dependent enrichment functions for stress intensity factors calculation of interface cracks using Irwin’s crack closure integral. Eng. Fract. Mech. 2017, 178, 148–168. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, I.V.; Mishra, B.; Singh, A. New enrichments in XFEM to model dynamic crack response of 2-D elastic solids. Int. J. Impact Eng. 2016, 87, 198–211. [Google Scholar] [CrossRef]
- Agathos, K.; Ventura, G.; Chatzi, E.; Bordas, S.P. Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes. Int. J. Numer. Methods Eng. 2018, 113, 252–276. [Google Scholar] [CrossRef]
- Béchet, É.; Minnebo, H.; Moës, N.; Burgardt, B. Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int. J. Numer. Methods Eng. 2005, 64, 1033–1056. [Google Scholar] [CrossRef]
- Liu, M.; Gorman, D.G. Formulation of Rayleigh damping and its extensions. Comput. Struct. 1995, 57, 277–285. [Google Scholar] [CrossRef]
- Gresil, M.; Giurgiutiu, V. Prediction of attenuated guided waves propagation in carbon fiber composites using Rayleigh damping model. J. Intell. Mater. Syst. Struct. 2015, 26, 2151–2169. [Google Scholar] [CrossRef]
- Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration; Courier Corporation: North Chelmsford, MA, USA, 2007. [Google Scholar]
- Stroud, A. Approximate Calculation of Multiple Integrals. Prentice-Hall Series in Automatic Computation; Prentice-Hall: Hoboken, NJ, USA, 1971. [Google Scholar]
- Duruflé, M.; Grob, P.; Joly, P. Influence of Gauss and Gauss-Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain. Numer. Methods Partial Differ. Equ. Int. J. 2009, 25, 526–551. [Google Scholar] [CrossRef]
- Jensen, M.S. High convergence order finite elements with lumped mass matrix. Int. J. Numer. Methods Eng. 1996, 39, 1879–1888. [Google Scholar] [CrossRef]
- Duczek, S.; Gabbert, U. Efficient integration method for fictitious domain approaches. Comput. Mech. 2015, 56, 725–738. [Google Scholar] [CrossRef]
- Kudela, L.; Zander, N.; Kollmannsberger, S.; Rank, E. Smart octrees: Accurately integrating discontinuous functions in 3D. Comput. Methods Appl. Mech. Eng. 2016, 306, 406–426. [Google Scholar] [CrossRef]
- Chin, E.B.; Sukumar, N. Modeling curved interfaces without element-partitioning in the extended finite element method. Int. J. Numer. Methods Eng. 2019, 120, 607–649. [Google Scholar] [CrossRef]
- Strang, G. Linear Algebra and Its Applications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Chessa, J.; Wang, H.; Belytschko, T. On the construction of blending elements for local partition of unity enriched finite elements. Int. J. Numer. Methods Eng. 2003, 57, 1015–1038. [Google Scholar] [CrossRef]
- Fries, T.P. A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 2008, 75, 503–532. [Google Scholar] [CrossRef]
- Bathe, K.J. Finite Element Procedures; Klaus-Jurgen Bathe: Berlin, Germany, 2006. [Google Scholar]
- Giurgiutiu, V. Structural Health Monitoring: With Piezoelectric Wafer Active Sensors; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Newmark, N.M. A method of computation for structural dynamics. J. Eng. Mech. Div. 1959, 85, 67–94. [Google Scholar] [CrossRef]
- Huang, G.; Song, F.; Wang, X. Quantitative modeling of coupled piezo-elastodynamic behavior of piezoelectric actuators bonded to an elastic medium for structural health monitoring: A review. Sensors 2010, 10, 3681–3702. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Nanthakumar, S.; Lahmer, T.; Rabczuk, T. Detection of flaws in piezoelectric structures using extended FEM. Int. J. Numer. Methods Eng. 2013, 96, 373–389. [Google Scholar] [CrossRef]
- Nanthakumar, S.; Lahmer, T.; Rabczuk, T. Detection of multiple flaws in piezoelectric structures using XFEM and level sets. Comput. Methods Appl. Mech. Eng. 2014, 275, 98–112. [Google Scholar] [CrossRef]
- Jung, J.; Jeong, C.; Taciroglu, E. Identification of a scatterer embedded in elastic heterogeneous media using dynamic XFEM. Comput. Methods Appl. Mech. Eng. 2013, 259, 50–63. [Google Scholar] [CrossRef]
- Jung, J.; Taciroglu, E. Modeling and identification of an arbitrarily shaped scatterer using dynamic XFEM with cubic splines. Comput. Methods Appl. Mech. Eng. 2014, 278, 101–118. [Google Scholar] [CrossRef]
- Sun, H.; Waisman, H.; Betti, R. A sweeping window method for detection of flaws using an explicit dynamic XFEM and absorbing boundary layers. Int. J. Numer. Methods Eng. 2016, 105, 1014–1040. [Google Scholar] [CrossRef]
- Polytec-Platz 1-7; Polytec GmbH: Waldbronn, Germany; Available online: www.polytec.com (accessed on 27 July 2023).
- Kudela, P.; Radzienski, M.; Fiborek, P.; Wandowski, T. Elastic constants identification of woven fabric reinforced composites by using guided wave dispersion curves and genetic algorithm. Compos. Struct. 2020, 249, 112569. [Google Scholar] [CrossRef]
- Nicoli, S.; Agathos, K.; Kudela, P.; Ostachowicz, W.; Chatzi, E. Comparison of plate and solid spectral element modeling of composite delamination for guided wave simulations. In Proceedings of the 13th International Workshop on Structural Health Monitoring (IWSHM 2021), Stanford, CA, USA, 15–17 March 2021. [Google Scholar]
11 | 12 | 22 | |
---|---|---|---|
Discretization | SEM Pristine | SEM Damaged | XSCM Damaged |
---|---|---|---|
Shape | a (mm) | b (mm) | x (mm) | y (mm) |
---|---|---|---|---|
Ellipse | 30 | 20 | 1 | |
Circle | 20 | 20 | ||
Square | 20 | 20 | 126 | |
Rectangle | 30 | 20 | 1 | 126 |
Parameters | (1/s) | (kg/m3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GFRP | 8000 | 1750 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoli, S.; Agathos, K.; Kudela, P.; Chatzi, E. A Moment-Fitted Extended Spectral Cell Method for Structural Health Monitoring Applications. Appl. Sci. 2023, 13, 10367. https://doi.org/10.3390/app131810367
Nicoli S, Agathos K, Kudela P, Chatzi E. A Moment-Fitted Extended Spectral Cell Method for Structural Health Monitoring Applications. Applied Sciences. 2023; 13(18):10367. https://doi.org/10.3390/app131810367
Chicago/Turabian StyleNicoli, Sergio, Konstantinos Agathos, Pawel Kudela, and Eleni Chatzi. 2023. "A Moment-Fitted Extended Spectral Cell Method for Structural Health Monitoring Applications" Applied Sciences 13, no. 18: 10367. https://doi.org/10.3390/app131810367
APA StyleNicoli, S., Agathos, K., Kudela, P., & Chatzi, E. (2023). A Moment-Fitted Extended Spectral Cell Method for Structural Health Monitoring Applications. Applied Sciences, 13(18), 10367. https://doi.org/10.3390/app131810367