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Abstract: The efficiency of hyper- and multispectral imaging (HSI and MSI) has gained considerable
attention in research on plant phenotyping. This is due to their ease of use while being considered a
nondestructive technology. Unlike current point-scanned spectroscopy, both HSI and MSI extract
spatial and spectral information while covering a wide range of a plant body. Moreover, it is
necessary to equip the extracted information with multivariate calibration techniques, followed by
model evaluation. To date, the application of HSI and MSI for monitoring plant growth under a
controlled environment is emerging and showing a good trend. Our systematic literature review
discusses spectroscopy imaging techniques and their chemometric approaches as a sustainable sensor
technology to detect plant traits. In conclusion, we also explore the possibility of carrying out HSI
and MSI during plant trait analysis.
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1. Introduction

To date, the campaign to end hunger has received great attention from nations. With
the growth in human population and the ongoing rise in food demand, hunger is a pertinent
subject that warrants concern. Furthermore, the global population is expected to continue
rising and eventually reach nine billion people [1]. Moreover, a meta-analysis investigated
by Dijk et al. [2] demonstrated that there will be a rise in food consumption through 2050.

Although crop yields are projected to rise, concerns regarding food security and food
safety have been spreading around the globe [3]. Coronavirus disease (COVID-19) and
the war in Ukraine were the pressing problems in 2020–2022, leading to a loss of food
security [4]. The challenge of food security appeared when people tried to deal with social
distancing, which forced citizens to stay at home. In this case, people tended to store up
their food shelves in huge amounts. Additionally, the fear of viral infection could heighten
the concern about food unavailability [5] caused by inadequate access to agricultural ac-
tivities. Similarly, the war between Russia and Ukraine significantly affects agricultural
processes, from plant growth to food markets [6]. Further, food safety deals with the safety
of the food production line, ranging from on-farm to off-farm practices [7,8]. Hazards
commonly occur due to chemical contamination [9], physical contamination [10,11], food
adulteration [12,13], genetic modification [14], and other processes. Chemical contamina-
tion and food adulteration in agricultural products are present as the side effects of food
unavailability. Hence, an analytical method, such as spectroscopy, can be used. Spec-
troscopy imaging techniques are emerging as a powerful tool to directly and rapidly assess
food quality [15], although a model needs to be built using machine learning algorithms
before an assessment is conducted. We suggest the reviews by Gowen et al. [16] and
Qin et al. [15] for detailed applications of spectroscopy imaging techniques in food safety
control assessment. A description of current spectroscopy imaging techniques is available
in Section 3.
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Plants are considered one of the important food resources for humans and stocks.
The consumption of plants can offer various advantages for the human body. This is
due to the presence of natural materials in plants, such as vitamins, minerals, and other
micro- and macronutrients. However, the quality of food products derived from plants
depends on the unique traits during their growth period. Abiotic stresses, such as high
salinity [17,18], extreme temperature [19,20], and drought [21,22], play a role in causing
yield loss [23,24]. Nevertheless, these factors are present naturally during crop growth.
Subsequently, numerous symptoms and alterations may occur throughout the growth
time and, hence, plant growth can be disturbed. Plant biotechnology has been widely
developed by researchers to strengthen various crops’ resistance to stresses, such as Chinese
cabbage [25] and potato [26]. The term hybridization refers to combining high-resistance
and high-yield genes with a target gene [27,28]. In this process, a technician is needed
to isolate the desired gene and subsequently clone it to the target plant. Nevertheless,
some Asian countries still face difficulties when confronting abiotic stresses that threaten
crops, for example, heat stress during summer in countries such as Indonesia. In this
case, due to the consequences of heat stress, plants are likely to show different responses
(in physiological and biochemical aspects), as previously summarized by Hasanuzzaman
et al. [29]. Under an elevating ambient temperature, the stomata tend to close and produce
a lot of carbon dioxide, and the photosynthetic rate will fall gradually [30,31]. For an
in-depth understanding, readers may refer to [29,30]. Therefore, a preventive step—crop
growth monitoring—should be conducted [32].

At present, the use of spectroscopy imaging technologies, hyper- and multispectral
imaging (HSI and MSI), is more favored than the manual technique. The reason is due to
their ease of use while being rapid and nondestructive. Nondestructive refers to the ability
to reuse samples without damaging them during analysis. In contrast, chromatography
tools, namely gas chromatography [33] and liquid chromatography [33,34], require a lot
of sample preparation and are time-consuming [35]. In such a way, destructive steps
need to be performed, including drying, grinding, and extracting before injecting into the
instrument [36]. In agriculture, research on HSI and MSI has been extensively conducted.
Some of the publications related to the application of HSI and MSI are listed in Table 1.

Table 1. Application of HSI and MSI in agriculture.

Research Emphasis Refs.

Seed viability [37,38]
Chemical compounds [39–41]

Food adulteration [10,42]
Food classification [43–48]

Besides the above cited publications, HSI and MSI are also applicative for monitoring
plant growth status. Plant phenotyping is still believed to be time-consuming and labor-
intensive work [49]. The use of HSI and MSI can provide the physical and chemical features
of plants [50] based on their reflectance/absorbance profiles. In this study, we present a
systematic literature review of the application of HSI and MSI to monitor plant growth
status according to the natural problems encountered by plants. We also provide (i) general
information on plant traits; (ii) the interaction of light and plants; (iii) data analyses; and
(iv) recent trends of HSI and MSI for monitoring plant growth status. For the review, we
collected published papers from Google Scholar with the keywords, “plant abiotic/biotic
stress detection using hyperspectral and multispectral imaging”, in 2010–2023.

2. Plant–Light Interaction

To begin, an HSI and MSI system involves analyzing light–plant interaction. Under-
standing this interaction can help choose the proper sensor [51]. Light (electromagnetic
radiation, EMR) and plant interaction depends on light frequencies [50]. For healthy leaves,
photosynthetic pigments, e.g., chlorophyll, carotenoids, anthocyanin, and xanthophyll,
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can be observed in the VIS region (400–700 nm), while the NIR region (700–1100 nm)
predominantly corresponds to dry matter, and the SWIR region, within 1100–2500 nm, is
mainly attributed to water [50]. Sarić et al. [52] stated that nitrogen and water can also be
observed in the NIR and SWIR regions, respectively. As shown in Figure 1, the visible re-
gion has a lower reflection value. This is caused by the highest absorption at approximately
490 and 690 nm by chlorophyll [53]. A small peak reflection is also observed in the visible
range (~550 nm), which contributes to the green color [54]. In the NIR bands, a high–sharp
reflectance trend occurs, indicating a red edge, in which light absorption by leaf pigments
no longer exists [54,55]. In vegetables, the response of O–H bands is found at 1190, 1450,
and 1940 nm [10]. The absorption of the first overtone of carbon–hydrogen bond could be
detected between 1700 and 1800 nm [56,57]. According to Tunny et al. [10], the response of
C–H might be due to the presence of cellulose.
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Figure 1. Common spectral features of plants (Reprinted/adapted with permission from Ref. [51].
2023, Huajian Liu, Brooke Bruning, Trevor Garnett, Bettina Berger).

When light passes through a leaf, there will be some interactions between the plant
and light. The interactions include (i) reflection, (ii) scattering, (iii) absorption, and (iv)
transmission [50,52]. Reflection occurs when light is bounced back after entering the leaf’s
surface. When light is reflected by a different angle caused by a different shape of the
leaf structure, it is called scattering. In terms of absorption (mathematically described as
Log1/R), electrons accept photons’ whole energy and are displaced to a higher configura-
tion in the form of thermal energy. Otherwise, transmission occurs when atoms pick up
the wave, vibrate briefly, transmit the vibration through the body of the leaf, and emit the
wave as light at the other end. Figure 2 illustrates how light interacts with a leaf surface.
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3. Hyper- and Multispectral Imaging

It is nearly impossible to monitor a crop’s status through the naked eye. The human
eye is limited in its ability to measure or quantify due to fatigue. Consequently, bias results
may occur. Moreover, manual laboratory analyses require highly skilled technicians and are
time-consuming. Thus, the utilization of nondestructive technologies, such as HSI and MSI,
is a promising tool. It offers numerous beneficial aspects, such as being nondestructive and
noninvasive with rapid inspection [15]. Due to its advantages, the use of HSI and MSI has
become a necessity. HSI and MSI offer both spatial and spectral information [40,52,58–60].
For a review of the variability in illumination and camera type, readers can refer to [49]. To
ease readers into the topic, we provide an illustration of HSI/MSI during data collection
in Figure 3.
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In terms of application, HSI is used for fundamental research and MSI is more applica-
ble in field works [15]. In addition, HSI provides high resolution but is time-consuming
compared to MSI. To apply MSI, HSI should be performed first to obtain the optimum
wavebands [15]. According to Qin et al. [15], there are three scanning methods to acquire
3D hyperspectral cubes, namely (i) point scan, (ii) line scan, and (iii) area scan, as presented
in Figure 4. Point scan obtains single-point spatial information by collecting each pixel.
This method is time-consuming since it captures two spatial dimensions (x, y). Further-
more, point scan does not cover a wide area. Secondly, line scan is an extension of the
former scanning method and captures slit spatial information. This method is suitable for
moving samples, i.e., sortation. Additionally, the area scan method instantly captures 2D
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single-band grayscale images with full spatial information. Moreover, if the target object
has undesirable movement, the HSI method is acceptable. In contrast, line and area scans
are more suitable for MSI than point scan [15]. Line scan only works for the selected tracks
during scanning time. Finally, area scan is fast and collects images at various wavelengths
at once.
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3.1. Spectral Correction

During data acquisition, some external disturbances, such as dark noises, unwanted
light intensity, and environmental factors, might occur [32,40,42,61,62]. Commonly, before
performing the measurement, the white and black reference data should be measured [43].
The white reference is obtained using a white Teflon with ±99% reflectance, and the dark
reference (±0% reflectance) can be obtained by covering the lens. Finally, the corrected
image’s spectral feature is mathematically quantified using Equation (1):

IR =
Iraw − Iblack

Iwhite − Iblack
(1)

where Iraw, Iwhite, and Iblack refer to the raw scanned object, the white reference, and the
dark reference reflectance, respectively.

The next step after spectral calibration is the selection of regions of interest (ROIs).
During data acquisition, the captured images not only show the target plant as a research
object but also the background. Therefore, it is necessary to eliminate the background pixels
from the calibrated images [32].

3.2. Preprocessing

Due to the advantages of HSI and MSI, which have been mentioned above, the perfor-
mance of both instruments is primarily affected by their sensitivity, calibration, physical
mechanism, and the surroundings [63]. Spike is a common phenomenon that can be found
within the spectrum body. It presents as extreme rise and fall waves. The complexity of
plant geometrics, i.e., spherical, elliptic, wavy, or irregular shape, has made it necessary
to correct images with preprocessing, which is inspired by chemometrics [50]. Firstly, the
average of spectral data can be employed since averaging can reduce noises and correct
the illumination effect [49]. In addition, spectral averaging is the simplest preprocessing
method. This method has been successfully applied to predict the plant physiology and
leaf water content of maize [64]; the water content, micro-, and macronutrients in maize
and soybean [65]; and the water and nitrogen contents in wheat [66]. Secondly, other
preprocessing techniques, namely multiplicative scatter correction (MSC) and standard
normal variate (SNV), can be established to reduce variability due to scattering or baseline
shift. Thirdly, smoothing by applying a Savitzky–Golay filter can also be established.

3.3. Chemometric Models

Hyper- and multispectral imaging generates reflectance values from each waveband.
Nevertheless, it is indirectly applicable. Chemometrics is an analytical approach originally
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derived from statistical and mathematical concepts [67]. This analytical step is favorably
employed by researchers to develop prediction models based on reflectance values. Chemo-
metric techniques have been intensively carried out to predict the desired objectives within
agri-food production lines, e.g., chemical content, food sensory, and plant monitoring status.
Moreover, chemometrics also promotes simple presentation by reducing the dimension and
complexity of large datasets, classifies samples, and enables data modeling, with robust
accuracy [68].

Principal component analysis (PCA) has been successfully applied by many researchers
as a tool to analyze spectral data. Since spectral data consist of numerical reflectance values
for each waveband, dimensional reduction can be performed to display the information
clearly in a two- or three-dimensional plot (called PCs). Although PCA simply presents
variances in a scatter plot, it does not lose the information. PCA is also an acceptable
method for observing outliers and constructing models. For instance, PCA clearly showed
that adulterant materials had different reflectance values compared to fresh-cut vegeta-
bles [10]. Fresh-cut vegetables had a similar reflectance value, clustered together as a group,
and were separated from adulterant materials. In another study, PCA was used to illustrate
the contrast maps of chemical contents in different treated plants. In contrast, Lee et al. [69]
reported that PCA had a lower coefficient of determination (R2 = 0.69) in predicting total
volatile basic nitrogen in pork. This was caused by the fact that PCA only obtained a single
waveband (460 nm) to build the TVB-N prediction model.

At present, due to the high dimensionality of spectral data acquired using HSI/MSI,
many researchers apply wavelength selection before performing chemometric analysis. The
high dimensionality of HSI/MSI spectral data can be further reduced to a low dimension
through feature extraction and feature selection. Feature extraction utilizes the original
data, while feature selection requires class marking to choose the representative wavelength.
However, wavelength extraction can remove intrinsic features [70].

In optical spectroscopy, outliers may occur during the data acquisition process. This
phenomenon may be present due to the environment and operator errors [71,72]. Nega-
tively, outlier samples can decrease the accuracy of the built predictive model. Therefore,
outliers should be deselected before employing chemometrics. Principal component analy-
sis (PCA) can detect such outliers. In a study by Pandey et al. [65], two-dimensional PC
plots were used to figure out outliers. Since PCA can simply display clusters based on their
similarity, sample outliers can easily be detected. Similarly, the effectiveness of PCA in
tracing outliers had been proven previously [73].

To date, PLS-R has been intensively developed to establish predictive models of tar-
geted components based on spectral features [74]. A latent variable—typically abbreviated
as LV—is considered an important parameter to investigate the linear relatedness of both
spectrum matrices and reference values. High accuracy of PLS-R depends on the number
of chosen LV values, which is determined based on the lowest point of cross-validation
root mean squared error [75]. Nevertheless, the accuracy of PLS-R relates to the validity
of the reference matrices obtained using destructive methods. Generally, PLS-R itself is
considered to be a linear regression and is mathematically described as shown below
(Equation (3)). In Equation (2), Y is the reference value, X is the spectrum matrices (m × n),
B is the PLS-R coefficient, and E represents the error:

Y = XB + E (2)

Similar to PCA, PLS-R has the ability to reduce the high dimensionality of data
matrices [67]. Practically, PLS-R has the ability to predict plant traits [76,77], food chemical
contents [78], and other characteristics. In addition, various chemometric techniques, such
as partial least squared discriminant analysis (PLS-DA), support vector machine regression
(SVM-R), and least squared support vector machine (LS-SVM), can be applied.

Despite the development of the aforementioned chemometric techniques, at present,
deep learning (DL) has been favorably developed and used for HSI/MSI data analysis. The
concept of DL architecture imitates the principle of the human brain’s visual cortex. DL
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offers some advantages: (a) it discovers properties on its own; (b) it saves the process by
reducing the need for computation; (c) it creates features manually; and (d) it uses large,
annotated images that researchers already have access to [79]. However, supervised DL
needs a large-scale dataset. In addition, DL-based spectroscopy is rarely used to quantify
plant phenotypic features. Nevertheless, this method can automatically extract raw spectra
and improve the performance of prediction models [80]. Hence, it is still possible to
combine DL with spectroscopy during plant phenotyping. In Table 2, we summarize recent
applications of DL for monitoring plant growth status. The detailed information of the
use of deep learning in combination with spectroscopy can be found in Wang et al. [81].
Wang et al. [81] provides details of major types of DL (convolutional neural network/CNN,
fully convolutional network/FCN, tensor learning model/TL, deep belief network/DBN,
stacked auto-encoder/SAE, recurrent neural network/RNN, semi-supervised learning,
generative adversarial network/GAN, and active learning model/AL) and challenges in
the agricultural field.

Table 2. Application of deep learning related to HSI/MSI for monitoring plant growth status.

Crop Research
Emphasis

Wavelength
Range (nm)

Measurement
Technique DL Models ** Ref.

Cucumber Leaf nitrogen
prediction 400–1000 Hyperspectral

imaging
ANN-PSO, PLSR,

and CNN [82]

Potato Potato multi-defect
detection 676–952 Multispectral

imaging
YOLO-v5x, YOLOv3-tiny,
DY2TNet, and MDDNet [83]

Wheat Fusarium head
blight inspection 400–750 Hyperspectral

imaging

DarkNet 19, EfficientNet
B0 GoogLeNet MobileNet
V2, ResNet 18 ResNet 50,

ShuffleNet,
and SqueezeNet

[84]

Lettuce
Plant biochemical

features 400–1000 Hyperspectral
imaging 2DCNN and FCNN [80]

Lead (Pb)
detection within

lettuce leaf
480.46–1001.61

Hyperspectral
fluorescence

imaging
WT-SAE and WT-MC-SAE [85]

Citrus
Healthy and

unhealthy leaf
inspection

460, 520, 680, 740,
840, and 940

Multispectral
reflectance

imaging

Lightweight CNN
(MobileNetV3) and

transfer learning
[86]

** ANN-PSO = artificial neural network–particle swarm optimization; CNN = convolutional neural network;
2DCNN = two-dimensional convolutional neural network; FCNN = fully convolutional neural network;
WT-SAE = wavelet transform coupled to stacked auto-encodes; WT-MC-SAE = Monte Carlo wavelet trans-
form coupled to stacked auto-encodes.

3.4. Model Validation

Most researchers have commonly used a few mathematical formulas to evaluate the
performance of their employed models. The importance is to establish that the proposed
models show good satisfaction, as indicated by errors and/or linearity relationship. Based
on our review, researchers have often conducted various chemometric methods in com-
parative study. For instance, different mask segmentations were performed to estimate
chlorophyll contents in wheat using MSI combined with PLSR [87]; various models were
applied to predict alfalfa yield using MSI [88]; and VI models were established to assess
nitrogen status in winter oilseed rape using MSI [89]. The equations that are most com-
monly used are R-squared (R2) and root mean squared error (RMSE), which are expressed
in Equations (3) and (4), respectively:

R2 = 1 −
∑n

i=1

(
yI,es − yI,ref

)2

∑n
i=1

( -
y–yI,es

)2 (3)
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where n corresponds to the total dataset; yi,es and yi,ref refer to the estimated and referenced
values at the ith element, respectively; and y is the average value of the reference data
(destructive value). The value of R2 ranges between −∞ and 1 [90]. A model with the closest
value to 1 has excellent goodness-of-fit performance. However, we do not recommend
evaluating models based on R2 itself. This is due to the fact that R2 represents the connection
between the x-axis (reference) and y-axis (predicted). Additionally, RMSE can be calculated
to make the decision:

RMSE =

√
1
n

n

∑
i=1

(
yi,es − yi,ref

)2
(4)

In contrast, the decision based on RMSE is in selecting a smaller value. Based on our
literature review, a higher RMSE value is caused by a larger gap between the predicted and
observed data. Thus, a higher RMSE indicates a poorly built model and, thus, it should not
be chosen.

4. Trends of HSI/MSI in Monitoring Plant Growth Status
4.1. Drought/Water Stress

Water holds an essential role for any living organism. In addition, the presence of
water during crop production can affect the productivity of crops. As reported by Ihuoma
and Madramootoo [91], water stress triggers some metabolic processes, such as falling
transpiration rate [92], decreasing evaporative cooling, and rising leaf temperature [93].
This phenomenon is primarily caused by stomatal closure. Moreover, the availability of
water is strongly correlated with climate change [94].

According to Abid et al. [94], drought stress triggers several physiological and bio-
chemical changes in wheat (Triticum aesticum L.). During the water stress treatments, it
was discovered that the net photosynthesis rate (Pn) and stomatal conductance (gs) fell
moderately after the 5th and 10th day of stress. The declined net photosynthesis rate was
primarily attributed to the lower stomatal conductance. Furthermore, CO2 content also
decreased along with the reduction in stomatal conductance. Similarly, the leaf pigment,
carotenoid, also decreased. In contrast, water limitation led to a higher value for some
chemical compounds in wheat leaf, such as proline content, amino acids, total soluble sugar,
and fructose. Table 3 below shows a summary of applications of HSI/MSI to reveal the
effects of drought stress on agri-food plants.
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Table 3. Recent publications related to drought detection using HSI/MSI.

Plants Instrument Interest Wavebands (nm) Model R2 RMSE Accuracy
(%) Ref.

Apple
(Malus domestica var.

Buckeye Gala)

HSI (ImSpector V10E, Spectral
Imaging, Oulu, Finland) Water stress detection 385–1000 Vegetation indices (VIs) N/A ** N/A N/A [95]

Barley
(Hordeum vulfare L.)

HSI (SOC-700, Surface Optics
Corps., San Diego, CA, USA)

Functional and structural leaf
and canopy parameters 400–900 Simplex volume

maximization (SiVM) N/A N/A N/A [96]

Soybean (cultivars
William 82 and

Houjaku Kuwazu)

HFSI * (VNIR Concentric
Imaging Spectrograph,

Headwall Photonics, Fitchburg,
Massachusetts, MA, USA)

Drought stress 421–780 Partial least squared
regression (PLS-R) 0.64–0.99 0.00–0.32 N/A [97]

Soybean
(Glycine max,

Thorne variety)

HSI (Headwall Photonics,
Fitchburg,

Massachusetts, MA, USA)
Leaf chemical properties 550–1700 Partial least squared

regression (PLS-R) 0.18–0.93 0.00–16.20 N/A [65]

Maize (Zea mays) HSI (AISA Eagle, Spectral
Imaging, Oulu, Finland)

Relative water content,
quantum yield of PSII †,

differences between leaf and air
temperatures, and leaf

area index

400–992 Vegetation indices (VIs) 0.34–0.82 N/A N/A [98]

HSI (Headwall Photonics,
Fitchburg,

Massachusetts, MA, USA)
Leaf water content 900–1700 Partial least squared

regression (PLS-R) 0.81–0.92 2.3–3.7 N/A [64]

HSI (Headwall Photonics,
Fitchburg,

Massachusetts, MA, USA)
Leaf chemical properties 550–1700 Partial least squared

regression (PLS-R) 0.18–0.93 0.00–16.20 N/A [65]

Maize (Zea mays)
MSI (RedEdge multispectral

camera, MicaSense Inc.,
Kansas, KS, USA)

Crop water stress index 475, 560, 668, 717,
and 840 Vegetation indices (VIs) 0.27–0.81 0.037–0.066 N/A [99]

HSI (ImSpector V10E, Spectral
Imaging, Oulu, Finland)

Water potential, effective
quantum yield of PSII, stomatal

conductance to H2O, and
transpiration rate

500–850 Partial least squared
regression (PLS-R) 0.76–0.91 0.071–0.12 N/A [100]

Kernel ridge
regression (KRR) 0.82–0.92 0.065–0.11 N/A

Gaussian process
regression (GPR) 0.83–0.92 0.079–0.11 N/A

Kernel ridge
regression (KRR) 0.82–0.92 0.065–0.11 N/A

Vineyard MSI (SEQUOIA multispectral
sensors, Parrot Co., Ltd.,

Paris, France)

Water status 500–1000 Vegetation indices (VIs) ≤0.25 2.50–8.02 N/A [101]Artificial neural
network (ANN) 0.84 N/A N/A

* HFSI: hyperspectral fluorescence imaging. † PSII: photosystem II. ** N/A: not available.
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4.2. Heat Stress

Heat stress is an abiotic stress caused by elevating ambient temperatures. It may be
contributed by climate change [29,102]. Nevertheless, heat stress is a normal problem in
most Southeast Asian countries, including Indonesia, particularly during the dry season.
Consequently, heat stress generates low yields in leafy vegetables; discoloration, yellowing,
and browning in fruits; and/or even death [32,103–106]. Kim et al. [32] proved that the
growth parameters, i.e., fresh weight, dry weight, number of leaves, leaf area, leaf length,
and leaf width, and photosynthetic parameters of Chinese cabbage declined with heat
stress. These symptoms were also discovered in wheat [107]. In Table 4, we present a
summary of heat stress investigations using HSI/MSI.

Table 4. Recent publications related to detection of heat stress effects using HSI/MSI.

Plants Instrument Interest Wavebands
(nm) Model R2 RMSE Accuracy

(%) Ref.

Chinese
cabbage
(cultivar

Chunkwang)

S-MSI *
(OCI-D2000,
Bayspec Inc.,

San Jose,
CA, USA)

Plant
physiology 462–870

Partial least squared
discriminant

analysis (PLS-DA)
N/A *** N/A 55.5–92.4 [32]

Least squared support
vector machine

(LS-SVM)
N/A N/A 71.2–93.6

Vegetation
indices (VIs) N/A N/A 42.1–72.5

Ginseng

HFSI **
(Headwall
Photonics,
Fitchburg,

Mas-
sachusetts,
MA, USA)

Plant
greenness 400–750 Partial least squared

regression (PLS-R) ≥0.89 3.59–3.77 N/A [108]

* S-MSI: snapshot-based multispectral imaging. ** HFSI: hyperspectral fluorescence imaging. *** N/A: not available.

4.3. Pathogen Infection

Infections by pathogens are positively connected with economic loss and raise concerns
regarding food security. For instance, viral infection in pear plants successfully triggers
physiological and biochemical activities [109,110]. Similarly, bacterial attack can also reduce
plant productivity, as indicated by lower biochemical and metabolic activities. A recent
study demonstrated the effect of Pseudomonas syringae on soybean growth [111]. HSI/MSI
is applicable for monitoring plant growth of plants infected with pathogens. Table 5
shows our summary of recent publications using HSI/MSI to detect the effects of pathogen
infection on plants.

Table 5. Recent publications related to detection of pathogen infection in plants using HSI/MSI.

Plants Instrument Interest Wavebands
(nm) Model R2 RMSE Accuracy

(%) Ref.

Oilseed
(Brassica napus L.)

HSI (ImSpector V10E,
Spectral Imaging Ltd.,

Oulu, Finland)

Sclerotinia
sclerotiorum
detection

384–1034 Least squared support
vector machine (LS-SVM) N/A * N/A N/A [112]

Sugar beet
(Beta vulgaris)

HSI (ImSpector V10E,
Spectral Imaging Ltd.,

Oulu, Finland)

Cercospora
beticola

detection
400–1000

Sparse
representation-based

approach without
geometry information and
one-class support vector

machine (OC-SVM)

N/A N/A N/A [113]

Tomato
(Lycopersicum
esculentum)

HSI (ImSpector V10E,
Spectral Imaging Ltd.,

Oulu, Finland)

Botrytis cinerea
detection 380–1023 K-nearest neighbor (KNN)

and C5.0 model N/A N/A N/A [114]

Rice
(Oryza sativa)

MSI (MicaSense, Inc.,
Seattle, WA, USA)

Rhizoctonia
solani

detection
(sheath blight)

400–1000 Vegetation indices (VIs) 0.066–
0.627

7.961–
68.376

0.018–
55.059 [115]

Potato (Solanum
tuberosum)

HSI (Specim FX10
hyperspectral line scan

camera, Spectral Imaging
Ltd., Oulu, Finland)

Potato virus Y
detection 400–1000 Fully convolutional neural

network (FCN) N/A N/A N/A [116]

* N/A: not available.
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4.4. Monitoring Nitrogen Status

The nitrogen (N) status of plants is known by evaluating the N content within plant
tissues. Chemical methods are commonly used to examine total nitrogen content (TNC),
which are destructive to the plant body [117]. HSI/MSI offers spatial information and, later,
can be used to visualize the distribution of N content in the plant body, instead of using
soil and plant analyzer development (SPAD). As a common approach used in spectroscopy,
SPAD evaluates TNC based on the point-scanned method. As mentioned above, point-
scanned techniques do not cover the whole body and do not offer pixel information [118].
Table 6 shows recent publications using HSI/MSI to investigate the N status of plants.

Table 6. Recent publications related to application of HSI/MSI to assess nitrogen content.

Plants Instrument Interest Wavebands
(nm) Model R2 RMSE Accuracy

(%) Ref.

Cucumber
(Cucumis sativus)

HSI (ImSpectorVI7E,
Spectra Imaging

Ltd., Oulu, Finland)

Chlorophyll
content 950–1650 Principal component

analysis (PCA) N/A * N/A N/A [118]

Multi-linear regression
(MLR) N/A N/A N/A

Pepper
(Capsicum

frutescens L.
conoides)

HSI (ImSpector V10E,
Spectral Imaging Ltd.,

Oulu, Finland)

Total nitrogen
distribution 380–1030 Partial least squared

regression (PLS-R) 0.59–0.99 0.02–0.47 N/A [117]

Tea (Camellia
sinensis L.)

HSI (ImSpector N10E,
Spectral Imaging Ltd.,

Oulu, Finland)

Nitrogen
content 400–1000

Partial least squared
discriminant analysis
(PLS-DA) and least

squared support vector
machine (LS-SVM)

N/A N/A N/A [119]

Partial least squared
regression (PLS-R) ≥0.90 0.21 N/A

* N/A: not available.

4.5. Heavy Metal Residues

To date, concern about food safety is more prominent. For example, herbal plants are
likely to be consumed due to the benefits of bioactive chemical compounds for the human
body. Nevertheless, many other plant products are also eaten. However, the presence of
heavy metals in soil and water [120] can mitigate the benefits of such plants and negatively
affect the human body if they are consumed (high toxicity). To prevent the consumption
of heavy metal residues, HSI/MSI is a promising tool for investigating and visualizing
heavy metal distribution in plants. Table 7 describes the use of HSI/MSI in recent years for
detecting heavy metal residues in plants.

Table 7. Recent publications using HSI/MSI to detect heavy metal residues.

Plants Instrument Interest Wavebands
(nm) Model R2 RMSE Accuracy

(%) Ref.

Tomato
(Lycopersicum
esculentum)

HSI (ImSpector V10E,
Spectral Imaging Ltd.,

Oulu, Finland)

Cadmium
residue 400–1000

Wavelet transform and
least square support

vector machine regression
(WT-LS-SVR)

0.73–0.94 0.15–0.38 N/A * [121]

Tobacco
(Nicotiana

tabacum L.)

HSI (ImSpector V10E,
Spectral Imaging Ltd.,

Oulu, Finland)

Lead
discrimination 400–1000

Partial least squared
discriminant analysis

(PLS-DA)
N/A N/A 45–50 [122]

Least squared support
vector machine (LS-SVM) N/A N/A ≥98.33

* N/A: not available.

5. Discussion

To date, the use of spectroscopy imaging techniques has a wide range in the agricul-
tural field. In general, we found that hyperspectral imaging is more commonly applied than
multispectral imaging. The reason is perhaps that HSI can provide high-resolution data
compared to MSI. In food safety and quality assessment, Qin et al. [15] had come to similar
conclusions. Nevertheless, an MSI system can perform snapshot-based imaging and be
more practical, as shown in [32]. Based on our literature review, it can be seen that the use
of spectroscopy imaging techniques ranges from seed viability to crop quality evaluation.
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Additionally, the effects of abiotic stresses can be easily detected using HSI and MSI, which
are normally equipped with several chemometrics approaches. In contrast, investigation
on heat stress is still limited. This is prominently caused by heat stress that only appears
in several countries, particularly tropical countries. However, in fact, HSI and MSI can
distinguish biological stresses and quantify nutrient distribution in leaf. Regarding food
safety, heavy metal residues within plant matrixes, such as lead (Pb) and cadmium (Cd),
have also been observed using these techniques. Such investigations have been carried out
due to the high toxicity of heavy metal residues to the human body. Nevertheless, these
studies showed low performance and accuracy. This is perhaps due to the fact that not
every heavy metal exhibits a distinct spectral response [123].

As shown in the tables above, various chemometric models have been built using
HSI/MSI data. In addition, these models were proposed to predict, classify, and discrimi-
nate the spectrum and/or image features acquired by using HSI/MSI. According to our
literature review, regression techniques are widely utilized. In Section 3, we offer a brief
introduction about PLS-R. Nevertheless, other regression techniques mentioned above are
also able to predict chemical compounds in plants with good satisfactory results. Moreover,
model calculation is not only limited to prediction but also includes classification and dis-
crimination. Classification and discrimination models can be developed using supervised
and unsupervised methods. PLS-DA is a linear supervised technique in which the basic
calculation relies on the PLS technique. Differently, the Y matrix contains classes, such as
“0” and “1” in [10] or “2” and “3” in Kim et al. [32]. The other variation for classification,
that is, linear construction, is PCA. PCA is a linear unsupervised technique. As mentioned
in Section 3, users are not required to prepare a response matrix. The information extracted
from an example of PCA is illustrated in Figure 5.
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The results obtained by using PCA can be interpreted through the score values. The
difference among samples can easily be recognized by separated clusters. Another piece
of information gained from PCA is loading. It is useful to describe information about
wavelength [10]. This method relies on spectral features—reflectance or log(1/R). Since
HSI/MSI provides both spectral and spatial features, we can utilize PLS regression (B) and
PC scores to generate a chemical distribution image by multiplying each pixel from the
calibrated image. The process of obtaining a PLS-based chemical distribution image can be
described using Equation (5) [40]:

Ichem =
n

∑
i=1

IiBi + C (5)

where Ii denotes the image corrected pixel at the specific band, Bi corresponds with
the beta coefficient for each wavelength, and C is the coefficient value. Application of
Equation (5) is presented in Figure 5 (left).

Furthermore, wavelength selection is also periodically used by researchers before
applying chemometric models to achieve higher performance [125–133]. In recent years,
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deep learning (DL) algorithms have also been more likely to be utilized, as mentioned
above. In addition, DL could be argued to be a promising method [49]. Typically, DL
consists of two methods for object detection: region-based one-stage method and region
proposal-based two-stage method [134]. Region-based convolutional neural networks
(R-CNNs) take a longer time to perform object detection since they are considered to be
a two-stage method. Another DL model, “You only look once” (abbreviated as YOLO),
is an example of a one-stage method. YOLO takes a considerably shorter time during
object detection. Among the various versions of YOLO, YOLOv4 runs faster. As shown
in Table 2 above, various DL models can be used. The task of deep learning algorithms is
not only object classification but also prediction. Various tasks in content prediction were
summarized in Wang et al. [81]. In our study, we also revealed similar findings for content
prediction as in Sabzi et al. [82]. However, the challenge of using a DL algorithm is the
requirement of huge datasets for the training test to increase result accuracy. In addition,
according to Krishnaswami et al. [84], application of DL is more challenging due to the
utilization of mostly remote sensing data.

We also found that model evaluation is not limited to analyzing R-squared and RMSE
but also may vary. For example, relative percentage difference (RPD) is also potentially
used. In contrast with RMSE, a lower value of RPD indicates a model is worse [121]. RPD
is calculated by dividing standard deviation (SD) with RMSE. Other chemometric models
that we identified, such as LS-SVM, use receiver operating characteristic (ROC) curve to
test the performance of the models in discriminating the samples. An ROC helps us decide
whether a model is applicable or not. A model has great accuracy if the value of the area
under the curve (AUC) is close to or equal to 1 [135]. Similarly, Dharmawan et al. [44]
used an ROC curve to study the performance of PCA-MLP during the authentication of
arabica coffee.

The tables presented above show that vegetation indices (VIs) are also used to de-
termine crop stresses. Vegetation indices are based on mathematical formulas that are
derived from spectral information. In application, VIs have been used to compare with a
built model or for masking an image. Each VI describes a different purpose. For example,
normalized difference vegetation index (NDVI) is a vegetation index that can be used to
assess the impacts of drought on vegetation. NDVI values above 0.6 generally represent
dense vegetation, while values in the range from 0.2 to 0.5 commonly appear in aging
plants, shrubs, and meadows [136]. The equations for different VIs are presented in Table 8.

Table 8. Spectral vegetation indices for crop stress investigation (Reprinted/adapted with permission
from Ref. [95]. 2023, Yunseop Kim, David M. Glenn, Johnny Park, Henry K. Ngugi, Brian L. Lehman).
In the equations, R corresponds to the reflection value obtained using HSI/MSI.

Purpose Formula * No. Eq.

Broadband greenness NDVI = R800−R680
R800+R680 (6)

SRI = R900
R680 (7)

EVI = 2.5× (R800−R680)
[(R800+6×R680)−(7.5×R450−1)]

(8)

ARVI = R800−(2×R680−R450)
R800+(2×R680−R450)

(9)

Narrowband greenness Red edge NDVI = R750−R705
R750+R705 (10)

Modified red edge NDVI = R750−R705
R750+R705−(2×R445) (11)

Modified red edge SRI = R750−R445
R705−R445 (12)

VOG REI 1 = R740
R720 (13)

VOG REI 2 = R734−R747
R715+R720 (14)

VOG REI 3 = R734−R747
R715+R720 (15)

Light use efficiency PRI = R531−R570
R531+R570 (16)

Dry or senescent carbon PSRI = R680−R500
R750 (17)

Canopy water content WI = R900
R970 (18)

* Note: NDVI = normalized difference vegetation index; SRI = simple ratio index; EVI = enhanced vegetation index;
ARVI = atmospherically resistant vegetation index; VOG REI = Vogelmann red edge index; PRI = photochemical
reflectance index; PSRI = plant senescence reflectance index; and WI = water index.
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6. Conclusions

Hyperspectral (HS) imaging and multispectral (MS) imaging are promising measure-
ment techniques to monitor the growth status of plants. Their feasibility, nondestructive
nature, and rapid inspections make HSI/MSI suitable for large-scale plant factories. Ad-
ditionally, monitoring using a manual technique, i.e., cutting, can damage the plant body,
causing physical or mechanical stress, and resulting in a lower yield production. Further-
more, HSI/MSI can be used to observe plant features that cannot be detected with naked
human eye, such as chemical compounds. Most of the research studies emphasized that
crops were affected by the controlled surrounding conditions, such as abiotic and biotic
stresses. Subsequently, HSI/MSI were utilized to monitor the plant growth status.

The spectral data acquired using HSI/MSI were then coupled with chemometric
analyses. However, to remove noises from the observation, several preprocessing methods
could be performed. Chemometric techniques were used for predicting plant chemical
composition and classification, among many other functions. Most researchers used VIs
to distinguish plants’ response in a given controlled environment. In recent years, deep
learning analysis methods have been widely used to assist HSI/MSI. Further, the input
variables (spectral information) are then convoluted and pooled to obtain the results.
Moreover, an obtained image can also be processed (image processing) to identify plant
symptoms during the growth period.

The applications of HSI and MSI for monitoring crops’ growth status may also vary
depending on the aim. Firstly, applications, such as detection of heavy metals in plant
tissues as a side effect of pollution, can also be conducted to safeguard human health
and food safety. Secondly, the effects of biotic infection during growth season can also
be observed. Various types of plant stresses can impact on the subsequent agri-food
production lines, such as storage time. However, there is still limitation in research on
the use of HSI/MSI for detecting changes in specific chemical compounds under a given
stress treatment. Furthermore, a spectral selection algorithm needs to be developed and
employed to choose the most representative waveband and increase model robustness
and performance.
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