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Abstract: The ever-evolving construction sector demands technological developments to provide
consumers with products that meet stringent technical, environmental, and economic requirements.
Self-compacting cementitious mixtures have garnered significance in the construction market due to
their enhanced compaction, workability, fluidity, and mechanical properties. This study aimed to
harness the potential of statistical response surface methodology (RSM) to optimize the fresh proper-
ties and strength development of self-compacting mortars. A self-compacting mortar repository was
used to build meaningful and robust models describing D-Flow and T-Funnel results, as well as the
compressive strength development after 24 h (CS24h) and 28 days (CS28d) of curing. The quantitative
input factors considered were A (water/cement), B (superplasticizer/powder), C (water/powder),
and D (sand/mortar), and the output variables were Y1 (D-Flow), Y2 (T-Funnel), Y3 (CS24h), and
Y4 (CS28d). The results found adjusted response models, with significant R2 values of 87.4% for the
D-Flow, 93.3% for the T-Funnel, and 79.1% for the CS24h. However, for the CS28d model, a low R2 of
39.9% was found. Variable A had the greatest influence on the response models. The best correlations
found were between inputs A and C and outputs Y1 and Y2, as well as input factors A and D for
responses Y3 and Y4. The resulting model was enhanced, thereby resulting in a global desirability of
approximately 60%, which showcases the potential for the further refinement and optimization of
RSM models applied to self-compacting mortars.

Keywords: self-compacting mortars; design of experiments; fresh properties; compressive strength; ANOVA

1. Introduction

Concrete is one of the main elements used in civil construction, due to its variability
in use, which only intensifies with urban development. However, concrete production
heavily relies on natural resource consumption, including the fundamental constituents
for cement production and the extraction of coarse and fine aggregates, thereby causing
deleterious environmental impacts [1,2].

Self-compacting concrete (SCC) was developed to improve concrete fluidity and
self- consolidation properties, thus obviating the requirement for external compaction
elements while also fostering enhanced mechanical properties [3–6]. When producing
self-compacting cement-based products, it is recommended to reduce the proportion of
coarse aggregates and to increase the amount of fine aggregates and cement to reduce the
risk of segregation and increasing properties such as viscosity, void filling, and stability, in
addition to mechanical properties [7]. However, such a mix design approach may be prone
to cracking and shrinkage, in addition to increased production costs [5,8].

The use of mineral and chemical additives in SCC aims to increase durability and
workability while reducing production costs [9,10]. Moreover, contemporary architecture
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demands slender structures of highly intricate and complex geometry, which increase
the demand for innovative self-leveling mortars and concrete with a high strength de-
velopment [10–12]. However, the design of high-strength cement-based materials with
self-compacting attributes is challenges due to inherent contradictions in mixture design
requirements. For instance, achieving a high early strength typically requires low wa-
ter/binder ratios (w/b), which, conversely, reduce the mixture’s self-compacting ability.
Therefore, traditional mixed design approaches may prove inadequate when addressing the
demanding requirements of self-compacting mortars. Data-driven mixed design method-
ologies may offer a promising alternative method to gain valuable insights on how to
enhance the fresh properties of self-compacting mortars while maximize their strength
development. Design of experiments (DoE) is a statistical tool that has been used in the
optimization of materials, and its advantages include correlating the investigated vari-
ables, finding an optimal response within an investigation region, reducing the number
of required experimental trials, and even defining optimized models according to prede-
fined parameters [13,14]. The response surface methodology (RSM) can be used to find
relationships between input and output variables and to define the optimization criteria
among variables [15–18].

In recent decades, investigations using statistical tools in concrete and mortar mix
design have been intensified. Research has applied the RSM to maximize the replacement
of cement or aggregates with—among others—pumice stone [1], foundry sand [18], plastic
waste and silica fume [19], and hybrid steel fibers [20]. The authors developed high-
significance models, thereby making it possible to optimize the performance of cementitious
mixtures while reducing the use of prime raw materials. Other studies were undertaken
with the primary objective of improving the environmental and economic performance of
cementitious materials [21–38].

More recently, the use of statistical methodologies has gained attention in the realm of
self-compacting cementitious materials. Its application extends to various domains, thus
encompassing the assessments of rheological effects and mechanical properties, as well as
the mitigation of early-stage cracking. Li et al. [39] employed regression models, utilizing
central composite design (CCD), to examine the influence of four mixed design variables (fly
ash content (FA), silica fume content (SF), sand–binder ratio (s/b), and water–binder ratio
(w/b)) on the rheological and mechanical properties of concrete. The responses measured
included mini slump flow, mini V-funnel results, and compressive strength after 28 days of
curing. The authors applied multiresponse optimization to determine the optimal ranges
for each compositional variable (FA: 10–20 wt%, SF: 6–10 wt%, s/b: 1.1–1.2, w/b: 0.35–0.36).
Similarly, Safhi et al. [40] investigated the feasibility of using treated marine sediments
as cement replacements in self-compacting mortars. The authors’ findings indicated that
treated marine sediments led to reductions in the mechanical performance (the elastic
modulus and compressive strength) while having no significant deleterious effects on
the rheological properties. The authors prescribed a sediment-to-cement ratio ranging
from 0.0703 to 0.3462 to maintain acceptable levels of mechanical performance loss while
benefiting from the reduced environmental impact and production costs.

Conversely, Matos et al. [28] focused on addressing the early-stage cracking proclivity
of self-compacting ternary white mortars. The authors found that quadratic models were
suitable for adequately describing the mortar’s properties, and subsequent mix design
optimization steps allowed for reductions in segregation (the T-Funnel time increased from
8.5 to 9.8 s) and yearly shrinkage (which reduced from 558 × 10−6 to 540 × 10−6) that
significantly minimized the risk of cracking.

In a prior publication [41], the authors comprehensively characterized the performance
of self-compacting mortars, which they made publicly available in a substantial dataset
encompassing a wide array of rheological and mechanical properties.

The objective of the study herein is to advance the data analysis leveraging the sta-
tistical tool of RSM through a central composite design to define, adjust, and optimize
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models for high-performance self-compacting mortars a based upon the aforementioned
experimental dataset.

2. Materials and Methods

The performance of self-compacting mortars was evaluated using published datasets,
which were collected during the authors’ previous experimental studies [41].

The mortar specimens were produced using CEM I 42.5 R cement, limestone filler,
normalized sand, and a polycarboxylate-based superplasticizer. The cement was purchased
from Secil Portugal (Outão, Portugal) and was compliant with EN 197-1 specifications.
Limestone filler with specific gravity of 2.68 g/cm3 was provided by Omya S.A under
the commercial reference of Betocarb 10 HP—OU. Normalized sand compliant with EN
196-1 was used in all experiments, with a water absorption of 0.30% and specific gravity of
2.63 g/cm3. The selected superplasticizer (ViscoCrete®-20 HE, from SIKA, Vila Nova de
Gaia, Portugal) was characterized by a density of 1.08 g/cm3 and a solid content of 40%.

The dataset includes a total of thirty formulations of self-compacting mortars with
four quantitative input variables. A central composite design was defined using Design–
Expert software (Stat-Ease, Inc., Minneapolis, MN 55413-2561, USA—Design–Expert®

Software, version 13.0.9.0 64-bit; Serial Number 0964-0841-3719-3394) consisting of a facto-
rial design of four factors in two levels (24) representing 8 axial and 6 central realizations.
The four input variables analyzed included the following—A: water-to-cement ratio (w/c);
B: superplasticizer-to-powder (CEM I 42.5 R + limestone filler) ratio (Sp/p); C: water-to-
powder (CEM I 42.5 R + limestone filler) ratio (w/p); and D: sand-to-mortar ratio (s/m).
All ratios refer to volumetric relations. The evaluation levels were −∞, −1, 0, +1, and +∞,
with ∞ being equal to 2. Table 1 shows the relation between coded points and real values.

Table 1. Equivalence of coded and real values (reproduced from [41]).

Levels A: w/c B: Sp/p C: w/p D: s/m

−2 0.78741 0.02069 0.46929 0.42240
−1 0.84110 0.02210 0.50129 0.45120
0 0.89478 0.02351 0.53328 0.48000

+1 0.94847 0.02492 0.56528 0.50880
+2 1.00216 0.02633 0.59728 0.53760

Workability and strength development were evaluated as outputs. Four response
variables were defined and examined, namely, these included the following: Y1: D-Flow
results (in mm); Y2: T-Funnel (in seconds); and compressive strength measured after 1
and 28 days of curing (Y3 and Y4, respectively, both expressed in MPa). The D-Flow
and T-Funnel testing were conducted following EFNARC specifications and guidelines
for self-compacting concrete, whereas compressive strength was determined as per EN
196-1. The detailed description of the testing protocols can be found elsewhere [41]. For
compressive strength measurements, a minimum of four specimens was tested with respect
to formulation and curing age. The average strength values were considered representa-
tive, and only those values are reported here. All experiments have been conducted in
randomized order. Table 2 shows the coded input values (A–D) and the average result of
each individual response (Y1–Y4).
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Table 2. Coded input variables and results for response factors (adapted from [41]).

Std Run
Coded Values Results

A B C D Y1 Y2 Y3 Y4
1 11 −1 −1 −1 −1 325 22 62.7 115.8
2 29 1 −1 −1 −1 341 18 55.7 108.0
3 21 −1 1 −1 −1 325 21 62.7 112.1
4 26 1 1 −1 −1 359 15 57.7 114.6
5 9 −1 −1 1 −1 361 16 60.6 114.5
6 1 1 −1 1 −1 377 12 53.4 109.0
7 27 −1 1 1 −1 368 13 58.2 115.8
8 23 1 1 1 −1 370 13 55.6 105.1
9 22 −1 −1 −1 1 229 108 61.4 104.1

10 18 1 −1 −1 1 318 31 55.5 106.4
11 6 −1 1 −1 1 309 162 62.9 111.2
12 30 1 1 −1 1 308 30 53.9 101.8
13 2 −1 −1 1 1 304 29 62.0 112.5
14 5 1 −1 1 1 344 19 54.6 106.9
15 17 −1 1 1 1 328 24 61.7 111.4
16 8 1 1 1 1 342 18 56.9 112.2
17 25 −2 0 0 0 270 45 62.9 103.9
18 20 2 0 0 0 345 16 51.3 106.0
19 10 0 −2 0 0 329 21 58.4 117.7
20 24 0 2 0 0 349 17 56.7 115.4
21 15 0 0 −2 0 306 40 60.4 113.5
22 16 0 0 2 0 358 13 57.4 114.0
23 14 0 0 0 −2 370 12 57.5 114.6
24 19 0 0 0 2 282 52 58.8 110.0
25 4 0 0 0 0 342 18 60.2 108.2
26 7 0 0 0 0 339 21 58.7 107.2
27 13 0 0 0 0 332 19 58.5 111.7
28 12 0 0 0 0 348 17 56.1 113.8
29 3 0 0 0 0 338 19 59.2 117.7
30 28 0 0 0 0 338 24 61.7 *

*—Not possible to be measured.

3. Results
3.1. Preliminary Data Analysis

Table 3 shows the minimum, maximum, mean, standard deviation, and coefficient of
variation values of the investigated response variables. The collected data was homogenous
and presented low standard deviation and coefficients of variation that indicate concentra-
tion around the mean values. However, this pattern was not observed in the flow results
obtained through the T-Funnel test, which displayed a more dispersed distribution, which
was reflected through a higher coefficient of variability (CV = 106%).

Table 3. Responses of 30 self-compacting concrete mixes.

Levels
Y1 Y2 Y3 Y4

D-Flow (mm) T-Funnel (s) CS24h * (MPa) CS28d * (MPa)

Minimum 229 12 51.3 101.8
Maximum 377 162 62.9 117.7

Mean 332 29 58.4 110.9
Std. Dev. 32 31 3.1 4.4
CV (%) 10 106 5.3 4.0

* CS24h and CS28d stand for compressive strength after 1 and 28 days of curing, respectively.

Figure 1 shows the heatmap of the correlations between the input and output variables.
The degree of interaction between the variables is shown according to color. Positive
correlations are indicated in shades of red, whereas negative correlations are indicated in
shades of blue. Strong correlations can be observed between A and Y3 (−0.878), Y1 and
Y2 (0.642), and D and Y2 (−0.618). However, a significant number of moderate positive
correlations, ranging between ±0.363 and ±0.465, primarily existed and comprised Y1 and
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Y2 variables. It is crucial to assess whether these correlations have an impact on the behavior
of the self-compacting mortars, and therefore should be reflected in response models.
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3.2. Fresh Properties of Self-Compacting Mortars
Regression Model for D-Flow

The regression analysis has shown that the quadratic models exhibited a superior
fit. Notably, they presented an adjusted R2 of 84.2% and a predicted R2 of 76.0%, both
of which had discrepancy values of less than 20%. However, the analysis of variance
(ANOVA) revealed a “Lack of fit F-value” of 7.04, along with an associated p-value of 0.02.
Consequently, there was only a 2% calculated likelihood that the lack of fit F-value could be
attributed to random noise; it was more likely a result of the overall model’s shortcomings.
Hence, these findings highlighted the necessity for refinement of the polynomial model to
ensure its soundness and validity. Figure 2 shows the normal probability of the residuals
(a) and the residuals versus the run plot (b) as part of the data diagnostic analysis. These
graphical representations provide valuable insights into the behavior of the residuals from
the regression model. Notably, an evident outlier was observed in data point Std 9, Run
22, which exhibited significant deviations in the Y1 results compared to the remaining
realizations. Similar outlier patterns were also noticed in relation to the Y2 output variable.
In addition, Cook’s distance, DFFITS, and DFBETAS, which are commonly used measures
to assess the influence of individual data points on regression models (not shown here for
the sake of brevity), indicate that this particular realization significantly departed from
the majority of data points, thereby demonstrating its status as an outlier. The exact cause
for such behavior remains unknown; however, it is most likely attributed to experimental
variability during the preparation or testing of the mortar specimens. As a consequence, to
ensure the robustness of the analysis, this outlier data point was excluded from the dataset,
and a subsequent run was conducted that considered the revised dataset.

After excluding the outlier data point, a second run was conducted that demonstrated
that the linear regression models presented better fitting than the quadratic models.

The analysis of variance (ANOVA) yielded adjusted R2 values of 78.6% and a predicted
R2 of 71.3%, which can be considered to be fairly reasonable results, with differences being
smaller than 20%. Despite its significance, the linear model F-value (6.16) indicated a
suboptimal fitting. Therefore, the data diagnostic analysis was repeated to ensure the
reliability of the analysis and identify any remaining outliers.

Figure 3 displays that the Std 17, Run 25 data point exhibited an outlier profile similar
to the previously excluded Std 9 data point. The Cook’s distance, DFFITS, and DFBETAS
plots further confirmed the classification of Std 17, Run 25 as an outlier, although they are
not shown here for the sake of brevity.
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Analogously to the previous case, the outlier was also excluded, and a new analysis
was conducted, wherein the linear model yielded satisfactory results. The key performance
indicators of the model are presented in Table 4. The model proved to be statistically
significant, as evidenced by a p-value of less than 0.0001 and an F-value of 47.70. Further-
more, terms A, B, C, and D were also significant, with values lower than 0.1. Particularly
noteworthy are the superior outcomes observed for terms C and D, which corroborates
the model’s nonreduction. The F-value was 2.74, thus implying that the associated error
was not statistically significant. The probability of such an error being attributed to noise
surpassed 13.45%, thereby confirming the model’s suitability for use.

The model’s statistical fitting demonstrated enhanced performance, with the predicted
R2 value reaching 83.15% and the adjusted R2 reaching 87.37%. The adequate precision
value was found to be 24.03 (>>4.0), thus further indicating a robust relationship between
the signal and noise and the model discrimination. In addition, the standard deviation was
reduced to 8.14, which was accompanied by a coefficient of variation of 2.41%. Therefore,
the model effectively described the design space, and Table 5 shows the estimated coef-
ficients that were obtained. These coefficients were derived from fits around the overall
average of all the runs in an orthogonal design, and the variance inflation factor (VIF)
exceeding 1.0 demonstrates that the factors A, B, C, and D were found to be multicollinear.
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Table 4. Fitting results for D-Flow fitted models.

Source Sum of Squares Mean Square F-Value p-Value

Model 12,633.5 3158.4 47.7 <0.0001
A-w/c 1266.9 1266.9 19.1 0.0002
B-Sp/p 314.3 314.3 4.8 0.0399
C-w/p 4079.9 4079.9 61.6 <0.0001
D-s/m 8303.5 8303.5 125.4 <0.0001

Residual 1523.0 66.2
Lack of Fit 1382.7 76.8 2.74 0.135
Pure Error 140.4 28.1
Cor Total 14,156.5 -

Table 5. Coefficients of coded factors—D-Flow.

Factor Intercept A—w/c B—Sp/p C—w/p D—s/m

Coefficient
Estimate 335.32 8.27 3.71 13.38 −19.09

Standard Error 1.56 1.89 1.70 1.70 1.70
95% CI Low 332.10 4.36 0.19 9.85 −22.62
95% CI High 338.54 12.19 7.24 16.91 −15.56

VIF - 1.01 1.01 1.01 1.01

Figure 4 shows the normal probability of the residuals (a), the Residuals versus Run
plot (b), and the Predicted versus Actual plot (c). The normal probability of the residuals
exhibited a linear trend, thereby suggesting a favorable model fit. In addition, a desirable
random dispersion pattern is observed, with all data points falling within the specified
limits (±3.55) (Figure 4b). A strong correlation can be observed between the predicted and
actual values, with the data points exhibiting a clear tendency to align in a preferential
direction. Also located are the excluded points (Std 9, Run 15 and Std 17, Run 25) in the
RSM (Figure 4c).
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3.3. Regression Model for T-Funnel

The best response model for the T-Funnel was the 2FI (two-factor interaction), which
obtained a predicted R2 of 15.58% and an adjusted R2 of 69.72%, which are values that
are considered significant. The percentage difference between the predicted and adjusted
values was 54.14% (a value well above 20%), which is not recommended, as the errors are
expected to be significant.

The model, despite being considered significant in its best response, had a significant
lack of fit, which is not ideal, as there are high chances of errors. An inverse transform was
recommended by the Box–Cox plot diagnostic to improve the overall model fit. A lambda
(λ) equal to −1 was considered within the 95% confidence interval, with its limits ranging
between of −1.55 and −0.93.

After applying the inverse transform (λ= −1), the linear model yielded the most
significant fit (Table 6). The F-value of 101.78 indicates that there is only a 0.01% probability
of such a result being attributed to random noise. Furthermore, the terms A, B, C, and
D were statistically significant, as their p-values were less than 0.05. The lack of fit was
not significant, thus further demonstrating the well-fitting property of the model. The
F-value for the lack of fit was 0.77, and there was a 69.49% chance that the lack of fit could
be attributed to noise. The predicted R2 was 91.79%, while the adjusted R2 was slightly
higher at 93.29% (ANOVA analysis). These results show a strong correlation between the
predicted and actual values. The low standard deviation of 0.0054 reinforces the model’s
significance. A precision value of 36.02 further supports the model’s efficacy. Table 7 shows
the estimated coefficients for the T-Funnel linear model. All of the input variables exhibited
a standard error of 0.0011, thereby indicating the precision of the estimates. Moreover,
the variance inflation factor (VIF) has been calculated to be 1.00, thus corroborating the
orthogonality of the factors studied here.

Table 6. Fitting results for T-Funnel linear model (inverse).

Source Sum of Squares Mean Square F-Value p-Value

Model 0.0117 0.0029 101.78 <0.0001
A-w/c 0.0019 0.0019 65.19 <0.0001
B-Sp/p 0.0001 0.0001 4.70 0.0398
C-w/p 0.0037 0.0037 128.64 <0.0001
D-s/m 0.0060 0.0060 208.57 <0.0001

Residual 0.0007 0.0000
Lack of Fit 0.0005 0.0000 0.7718 0.6949
Pure Error 0.0002 0.0000
Cor Total 0.0124 -

Table 7. Coefficients in terms of coded factors—D-Flow.

Factor Intercept A–w/c B–Sp/p C–w/p D–s/m

Coefficient Estimate 0.0499 0.0088 0.0024 0.0124 −0.0158
Standard Error 0.0010 0.0011 0.0011 0.0011 0.0011

95% CI Low 0.0479 0.0066 0.0001 0.0102 −0.0181
95% CI High 0.0519 0.0111 0.0046 0.0147 −0.0136

VIF 1.00 1.00 1.00 1.00

The residual normal probability plot in Figure 5a reveals that the data points were
closely aligned with the straight line, despite adopting an S-shaped pattern, which indicates
a satisfactory distribution of the residuals. The Residuals versus Run plot demonstrates
random dispersion, thus lacking any discernible trend. Notably, the scattered data points
fell well within the specified limits of ±3.54047. Figure 5c shows lambda (λ) values of −1,
which lie within the confidence interval (CI) of −1.55 to −0.93. Figure 5d illustrates the
relationship between the predicted and actual points, thereby providing an intuitive visual
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insight into the model’s good predictive performance and accuracy. Complementary
analyses, such as the Residuals versus Predicted, Residuals versus Water/Cement, Cook’s
Distance, Leverage, DFFITS, and DFBETAS, yielded results within the established limits in
good agreement with such observations.
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3.4. Regression Model for 24-Hour Compressive Strength

For the 24 h compressive strength (CS24h) measurements, regression analysis was
performed in order to define the polynomial model. The reduced linear model (removing
factor B) was the one that best presented satisfactory results. The B term was removed
from the model due to its considerably high p-value (0.9491), which aimed at enhancing the
model performance. Due to the linear nature of the model, the removal of the B term did not
influence the other terms. Table 8 shows the model’s F-value of 37.54 and p-values below
0.05, thereby providing evidence of the model’s statistical significance after removing term
B. The terms A and C were also deemed to be statistically significant, as was supported by
their high sum of squares values and p-value less than 0.05 (0.001 for A and 0.0351 for C).
The F-value was calculated to be 0.4778, thereby surpassing the significance level of 0.05
and indicating that the lack of fit was not statistically significant concerning pure error. The
possibility of a misfit F-value occurring due to noise only stood at approximately 89.34%.

The results of the regression model revealed a predicted R2 value of 0.7607, which
agreed well with an adjusted R2 value of 0.7908. The difference between the predicted
and adjusted R2 values being less than 20% indicates the model’s statistical significance.
Moreover, the model demonstrated an adequate precision of 23.1254, thereby showcasing
its ability to accurately describe the modeled data space. The standard deviation of the
regression model was calculated to be 1.42, with a coefficient of variation (CV) of 2.43%.
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Table 8. Fitting results for compressive strength results after 24 h of curing.

Source Sum of Squares Mean Square F-Value p-Value

Model 227.36 75.79 37.54 <0.0001
A—w/c 215.95 215.95 106.96 <0.0001
C—w/p 10.42 10.42 5.16 0.0316
D—s/m 0.9928 0.9928 0.4917 0.4894
Residual 52.49 2.02

Lack of Fit 35.04 1.67 0.4778 0.8934
Pure Error 17.46 3.49
Cor Total 279.86 -

Table 9 presents the coefficients of the coded factors for a 95% confidence interval and
are considered fits around the average response of all the runs. The standard errors for
factors A, C, and D were 0.29, with VIFs equal to 1, thus confirming the orthogonality of
the factors. For the VIF, values less than 10 were deemed acceptable.

Table 9. Coefficients in terms of coded factors—compressive strength after 24 h of curing.

Factor Intercept A—w/c C—w/p D—s/m

Coefficient Estimate 58.44 −3.00 −0.6589 0.2034
Standard Error 0.2594 0.290 0.2900 0.2900

95% CI Low 57.91 −3.60 −1.26 −0.3928
95% CI High 58.97 −2.40 −0.0628 0.7996

VIF - 1 1 1

Figure 6 presents the normal plot of the studentized residuals (a) and the relationship
between the predicted and actual values (b). Notably, the data points exhibited a close-to-
linear dispersion. However, the adjusted coefficient of determination (R2) was determined
to be 79.08%, and some exceptions can be seen in Figure 6b.
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3.5. Regression Model for 28-Day Compressive Strength

The regression analysis seemed to suggest that quadratic models were the most
promising candidates. However, upon ANOVA analysis, the quadratic model was found
to be nonsignificant, as the p-value was 0.2889 and therefore under the recommended
threshold of 0.05. Among the terms examined, only A2 exhibited statistical significance,
with a p-value of 0.0252, while all the other terms (A, B, C, D, AB, AD, BC, BD, CD, B2,
C2, and D2) were found to be not significant. Moreover, the predicted R2 was found to



Appl. Sci. 2023, 13, 10428 11 of 17

be −0.8825, with an adjusted R2 of 0.1506. This substantial discrepancy suggests that the
quadratic model’s efficacy was low. Graphic diagnosis was conducted and revealed a
potential outlier at Std 18, Run 20, which was clearly shown by the distribution in the
Predicted versus Actual plot, the Residual versus Predicted plot, the Residual versus Factor
plot, and the Cook’s distance relationships (not show here for the sake clarity). This data
point exceeded the DFFITS limit and was consequently excluded from subsequent analysis.
Still, these results suggested that the quadratic model could be reduced (by removing some
terms) to enhance its significance. Table 10 shows the fitting results for the regression
model compressive strength after removing the terms B, C, AB, AC, AD, BC, BD, CD, B2,
C2, and D2.

Table 10. Fitting results for compressive strength results after 28 days of curing.

Source Sum of Squares Mean Square F-Value p-Value

Model 239.43 79.81 6.99 <0.0015
A—w/c 72.33 72.33 6.33 <0.0189
D—s/m 59.12 59.12 5.18 0.0321

A2 161.61 161.61 14.15 0.0010
Residual 274.10 11.42

Lack of Fit 201.81 10.09 0.5584 0.8297
Pure Error 72.29 18.07
Cor Total 513.53 -

The likelihood of such a high F-value occurring due to noise was only 0.15%. Therefore,
the quadratic model was directionally reduced to address the presence of insignificant
terms and to ensure statistical significance. The significant terms A, D, and A2 were
retained. The newly built model had a nonsignificant lack of fit, with an 82.97% probability
that misfit could be attributable to noise. The predicted R2 value of 30.89% exhibited
reasonable agreement with the adjusted R2 value of 39.95%, with a difference of less than
20%. Adequate precision was measured, with a value of 9.366, which indicates that the
signal was sufficiently strong and the model was well-suited to describe the design space.
Table 11 presents the estimated coefficients for compressive strength after 28 days of curing,
which all lay within the 95% confidence interval. The variance inflation factor (VIF) for the
factors A and A2 was 1.14, thereby indicating multicollinearity, while the variable D had a
VIF of 1.0, thereby demonstrating orthogonality.

Table 11. Coefficients in terms of coded factors—compressive strength after 28 days of curing.

Factor Intercept A-w/c D-s/m A2

Coefficient
Estimate 113.19 −2.04 −1.57 −3.22

Standard Error 0.8726 0.8097 0.6898 0.8573
95% CI Low 111.39 −3.71 −2.99 −4.99
95% CI High 114.99 −0.3665 −0.1457 −1.46

VIF - 1.14 1.00 1.14

Figure 7a shows the normal plot of the residuals for the compressive strength model
after excluding the data point Std 18, Run 20. One can observe that the data points appear
distributed across a line, but a fully linear distribution is not entirely perceived. Figure 7b
shows the Predicted versus Actual relationship plot. The data point that was excluded is
clearly noticeable in the lower quadrant of Figure 7b. In Figure 7b, one can also observe
that the data points tended to distribute along a straight line; however, they exhibited some
dispersion due to the moderate/low coefficient of determination (R2).
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4. Discussion
4.1. Model Optimization

After finding the ideal models for each of the self-compacting mortar variables,
through a central composite design, the model was optimized in order to find the best
solutions based on certain criteria. Targets were set for each input and output variable,
thereby encompassing maximization, minimization, achieving specific values, or falling
within delimited intervals. The established limits for each variable were based on the
database comprising 30 mixtures. In addition, weights ranging from 0.1 to 10 were defined
(with the default being 1), along with a degree of importance ranging from 1 plus (+) to
5 plus (+++++). This approach adheres to the methodology proposed by Myers, Mont-
gomery, and Anderson-Cook [42], who aimed to maximize global desirability across a set
of output variables.

This study sought to identify mortar compositions that met the following criteria:
(i) developed a higher compressive strength at 28 days with the lowest possible cement
content to reduce production costs and environmental impacts and (ii) featured a high
workability in order to facilitate the flow and ease of consolidation of the mixtures in
slender structures and/or in highly reinforced arrangements. Table 12 presents the criteria
for optimizing high-strength self-compacting mortars. For the input variable A (w/c), the
objective was to minimize cement consumption; hence, a maximization goal was defined,
with a weight of one and a maximum importance (factor 5 = +++++). For the input variable
C (w/p), the objective was to maximize the water content over the powder content, and it
was also assigned the same importance as factor A but with a weight of one. As for the
variable D (s/m), maximizing it allowed for reducing the consumption of mortar in relation
to sand, thus further contributing to reducing costs and the environmental impacts.

To increase the flowability of the self-compacting mortars and to optimize their per-
formance during the concreting of slender elements with high reinforcement rates, the
response variable Y1 (D-Flow) needed to be maximized and was ascribed a degree of im-
portance of four. However, the maximum degree of importance was attributed to variable
Y4, thereby aiming to maximize the compressive strength after 28 days with a minimum
acceptance criterion of 110 MPa. The establishment of a minimum compressive strength cri-
terion was envisioned to attain values surpassing the sample’s average. Variables B (Sp/p),
Y2 (T-Funnel), and Y3 (compressive strength after 24 h) were deemed to remain within
acceptable value ranges, with a moderate degree of importance being attributed. After
computing, a comprehensive set of 85 candidate solutions was found. Table 13 summarizes
the top five optimized mixtures ranked based on their global desirability scores.
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Table 12. Determined criteria to optimize the mix.

Factor Goal Lower
Limit Upper Limit Weight Importance

A: w/c To be maximized 0.8411 0.9485 1 +++++
B: Sp/p To be in range 0.0221 0.0249 1 +++
C: w/p To be maximized 0.5013 0.5653 1 +++++
D: s/m To be maximized 0.4512 0.5088 1 +++++

Y1: D-Flow (mm) To be maximized 282 377 1 ++++
Y2: T-Funnel (s) To be in range 11.78 162.22 1 +++
Y3: CS24h (MPa) To be in range 51.3066 62.88 1 +++
Y4: CS28d (MPa) To be maximized 110.00 117.69 1 +++++

Table 13. The top five optimized mortar formulations according to global desirability scores.

Factor 1 2 3 4 5

A: w/c 0.897 0.904 0.889 0.889 0.878
B: Sp/p 0.024 0.023 0.024 0.024 0.023
C: w/p 0.564 0.563 0.561 0.555 0.564
D: s/m 0.481 0.4894 0.499 0.495 0.485

Y1: D-Flow (mm) 350.05 342.67 336.12 334.94 341.24
Y2: T-Funnel (s) 15.95 17.46 19.79 20.22 18.10
Y3: CS24h (MPa) 57.68 57.37 58.32 58.44 58.80
Y4: CS28d (MPa) 113.06 112.27 112.35 112.57 113.27

Desirability 0.591 0.586 0.570 0.555 0.549

Figure 8 shows the desirability ramps of the different factors and responses for the
candidate solution 1. It is observed that the input factors A, C, and D can be maximized
without compromising the main objective of increasing the output variable Y4 (CS28d).
Variable Y1 (D-Flow) attained its highest value of 343.3 mm, yet it still remained within the
specified range of 282 to 377 mm. Factor B and output variables Y2 and Y3 adhered to the
designated intervals, thereby aligning with the predefined criteria.
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4.2. Optimization of Self-Compacting Mortars Using Response Surface Methodology

Response surface methodology (RSM) is a valuable tool that enables the establishment
of relationships between independent variables and corresponding responses, thereby facil-
itating the optimization of mixed designs to achieve envisioned target features. Through
RSM, plots are generated to visually illustrate the influence of each variable, which are
represented by slopes or curvatures. Figure 9 shows the relationship between each output
response and two of its key governing input variables.
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Figure 9a shows the influence of A (w/c) and B (Sp/p) on Y1 (D-Flow). It is clear that
increasing the w/c and Sp/p led to higher fluidity. This can be attributed to the higher
amount of water in the system and the lower cement content when variable A increased,
in addition to the greater amount of superplasticizer used in relation to powder, thus
contributing to greater fluidity. Figure 9b shows how variables A (w/c) and D (s/m) are
related to the response variable Y2 (T-Funnel). The reduction of the w/c factor (A) increased
the funnel time due to the decrease in the amount of water in relation to the cement. In
addition, with the increase in the D factor (s/m), the amount of sand increased in relation
to the mortar, thus increasing the T-Funnel.

Figure 9c shows Y3 as a function of A and D. A strong inverse relationship can be
observed between variable A and response Y3, thereby demonstrating that decreasing the
w/c enhanced the compressive strength at 24 h of curing. However, for variable D, there
was a minor increase in the s/m factor when the response variable was increased. Never-
theless, only variables A and D were shown to be related; the other variables promoted
the following influences: regardless of the variation in B (Sp/p), there were insignificant
changes in the Y3 response (CS24h), while, as there was an increase in the variable C (s/m),
the CS24h also increased.
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The temporal evolution of the strength development as a function of A and D can be
depicted by observing the difference between Figures 9c and 9d. The previously straight
surface became curved. The curvature occurred mainly in A, as decreasing the w/c resulted
in an increased compressive strength at 28 days (Y4). However, the observed growth was
not continuous, as the highest values of the CS28d were present in the third quadrant,
which is shown in Figure 9 (between 0.86794 and 0.894784). In addition, an upward slope
can be observed on the D axis, thereby indicating that decreasing the variable D resulted in
a higher compressive strength at 28 days, especially at low w/c ratios.

These results suggest that, as curing time increases, the relationship between the two
input variables A (w/c) and D (s/m) with the output Y4 (CS28d) also increases, most
notably with variable D (s/m). Variables B (Sp/p) and C (w/p) were not tested here, since
they did not show relevant interference for the response factor Y4 (CS28d).

5. Conclusions

The studies conducted in this work aimed to identify significant models that were
capable of optimizing the performance of self-compacting mortars and to evaluate the
influence of different model parameters on the prediction accuracy. Response surface
methodology (RSM) and central composite design were employed as effective tools for
modeling the fresh state properties and strength development, thereby resulting in the
following conclusions:

Following refinements, the D-Flow linear model emerged as a commendably well-
fitted model, which was characterized by an elevated adjusted determination coefficient of
87.4%. In addition, the residual normal and predicted versus actual plots revealed good
correlations, thereby demonstrating the model’s statistical significance.

Of note, an inverse transform was applied to the T-Funnel model, which yielded an
enhanced adjusted determination coefficient of 93.3%. The coherence between the predicted
and empirical outcomes testifies to the model’s precision and validity.

The outlier exclusion yielded a well-fitted CS24h model with an adjusted R2 of 79.1%,
a low standard deviation, and good correction coefficients. The ideal model was found to
be a linear reduction with the omission of variable B, which was dictated by its negligible
significance. The CS28d model was found to be statistically significant despite a moderated
adjusted R2 of 39.9%, thus showcasing the potential actions for future improvements. The
expeditions in model determination and material optimization have shown the pivotal
roles of the variables A and C in shaping the D-Flow and T-Funnel responses, thus further
demonstrating the relevance of the w/c ratio, which is an influencer that transcended the
response categories.

This pioneering research advances the comprehension of the statistical methodologies
within the scope of civil engineering and construction materials, and it is particularly
relevant in the development of advanced self-compacting cement-based products. The
successful exploration of the proposed models further elucidates a roadmap for forthcoming
explorations, with the potential to reduce production costs, curtail environmental impacts,
and increase the technical performance of advanced self-compacting mortars.
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