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Abstract: In this paper, we introduce an efficient approach to multi-label image classification that
is particularly suited for scenarios requiring rapid adaptation to new classes with minimal training
data. Unlike conventional methods that rely solely on neural networks trained on known classes,
our model integrates object detection and embedding techniques to allow for the fast and accurate
classification of novel classes based on as few as one sample image. During training, we use either
Convolutional Neural Network (CNN)- or Vision Transformer-based algorithms to convert the
provided sample images of new classes into feature vectors. At inference, a multi-object image is
analyzed using low-threshold object detection algorithms, such as YOLOS or CutLER, identifying
virtually all object-containing regions. These regions are subsequently converted into candidate
vectors using embedding techniques. The k-nearest neighbors are identified for each candidate vector,
and labels are assigned accordingly. Our empirical evaluation, using custom multi-label datasets
featuring random objects and backgrounds, reveals that our approach substantially outperforms
traditional methods lacking object detection. Notably, unsupervised object detection exhibited
higher speed and accuracy than its supervised counterpart. Furthermore, lightweight CNN-based
embeddings were found to be both faster and more accurate than Vision Transformer-based methods.
Our approach holds significant promise for applications where classes are either rarely represented
or continuously evolving.

Keywords: multi-label image classification; one-shot learning; object detection; embedding

1. Introduction

Multi-label image classification is a task in which multiple classes are identified from a
given image. For instance, when presented with an image that contains both a cat and a dog,
the task is to predict the presence of both these classes (cat and dog) in the image. This task
has applications in various domains, including autonomous vehicles [1], fashion [2], medi-
cal imaging [3], visual content tagging [4], and education [5]. Many different approaches
have been proposed for this task. Recent methods, in particular, emphasize enhancing
multi-label classification accuracy, especially by leveraging semantic label relationships or
consistencies [6–9]. Clearly, these strategies have significantly improved multi-label image
classification accuracy, especially on well-known datasets, such as MS-COCO [10], Pascal
VOC [11], and Fashion550K [2].

In specific application domains, one-shot learning [12] and class-incremental learning [13]
are essential for multi-label image classification. In this context, “one-shot” means that only
a single sample is used to train each class, while “class-incremental” indicates that new
classes are added to the model over time. A common example is in smartphone gallery
applications, where users annotate images of new acquaintances. In this situation, it is
natural for users to annotate just one image for each new acquaintance, illustrating the
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“one-shot” approach. Additionally, as new acquaintances are added as new classes, “class-
incremental” learning becomes necessary. Despite the limited annotated data available
for these emerging classes, such as new acquaintances, the gallery application must still
effectively perform multi-label image classification. Another example can be found in
primary school computer science and machine learning education. Here, young students
update their machine learning models by adding or removing classes based on just one or
a few samples [5,14].

Unfortunately, most of the existing approaches do not focus on one-shot learning
or class-incremental learning for multi-label image classification. Instead, many existing
methods concentrate on classifying widely recognized datasets, such as MS-COCO. Al-
though there has been a recent paper introducing the term “few-shot class-incremental
learning [15]”, it does not consider situations where the total number of data is very limited
or when entirely new types of datasets are used. As a result, there is a need for a novel
approach. We delineate our unique requirements for one-shot class-incremental multi-label
image classification as follows:

• Requirement 1: Our model must be capable of rapid adaptation when new classes of
images are added, a process we refer to as “class-incremental learning”. Conversely, it
should also be equipped with the ability to forget specific classes, a concept opposite to
class-incremental learning, which we denote in this paper as “class-decremental learning”.

• Requirement 2: Our model must perform multi-label classification effectively, even
when presented with a limited number of data. Furthermore, it should allow for easy
insertion or deletion of a small number of training samples.

• Requirement 3: Our model should be able to manage unpopular or unexpected image
combinations that do not reflect the real world. For instance, even when our input images
contain elements like dolphins and grass together, which is an unnatural and unexpected
combination, our model should still perform well on these unconventional datasets.

• Requirement 4: Our model must be lightweight to ensure that it runs efficiently on
low-performance computers, including laptops with basic GPUs. This is a critical
requirement for certain application domains where only low-end hardware is available.
For instance, in K-12 education settings, low-performance computers are commonly
used. Despite these constraints, our model should still deliver fast performance.

In this paper, we present a straightforward yet effective approach to satisfying the
aforementioned requirements. Our primary strategy involves employing object detection
and embedding techniques for multi-label image classification. Initially, we use existing
supervised or unsupervised object detection algorithms to identify objects within the
composite image approximately. These identified objects are subsequently embedded
into vectors using CNN- or Vision Transformer-based models. Then, we execute nearest-
neighbor search algorithms on these embedding vectors to derive the predicted labels. In
greater detail, the main contributions of this paper include the following:

• In Section 3, we construct a novel dataset for one-shot multi-label image classification
using random characters and background images. This dataset can be used to evaluate
a model’s performance on unseen and novel datasets.

• In Section 4, we introduce a simple yet powerful approach to one-shot class-incremental
multi-label classification. This is achieved by leveraging object detection and image-
embedding techniques, eliminating the need for fine-tuning the model on new data.
Additionally, we examine various types of object detection and image-embedding
models to identify those that best meet our requirements.

• In Section 5, we conduct extensive experiments to test our approach and thoroughly
analyze the experimental results.

2. Related Work

There are many multi-label image classification approaches, with many focusing on
improving accuracy by using the semantic relationships among labels. Zhou et al. [6]
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proposed an effective method to find correlations between semantic labels and visual spaces
using an auto-encoder. Nguyen et al. [7] presented modular graph transformer networks
for this task, exploiting both semantic information and topological label information.
Lanchantin et al. [8] proposed a classification transformer that leverages dependencies
among labels and visual features, and it is based on predicting a set of masked labels.
Guo et al. [9] introduced a way to preserve “attention consistency” even when various
types of spatial transforms are present. While these approaches perform well, they focus
on traditional multi-class label classification datasets such as MS-COCO [10], without
considering one-shot class-incremental multi-label classification.

To the best of our knowledge, research by Tao et al. [15] offers the approach most
similar to the one in our paper. However, they concentrate on fine tuning and still utilize a
significant number of data for training, a major distinction from our research. There is also
research using k-nearest-neighbor algorithms for multi-label image classification [16], but
as it does not exploit neural network models or object detection models, it substantially
differs from our approach.

Traditional approaches for calculating similarities among images include SSIM (struc-
tural similarity index measure) [17], which detects similarity using luminance, contrast,
and structure. However, we omitted the results using this method in our experiments
because it did not perform well on our dataset. More advanced approaches embed an
image into a vector to calculate similarities, with ResNet-18 [18] and VGG-16 [19] being two
of the most popular CNN-based techniques. Recently, even more sophisticated methods
have been developed, such as embedding vectors based on Vision Transformers [20]. One
notable example is the CLIP model [21] developed by OpenAI, and other popular Vision
Transformer-based models have been developed by companies like Google and Facebook.

3. Dataset Construction

In this section, we build a dataset for one-shot multi-label image classification. To
meet the requirements introduced earlier, our goal is to construct a dataset comprising
many classes, with a very limited number of samples within each class.

Recall that one of the application domains for this task is computer science education
for children. Therefore, we decided to collect data from Scratch [22,23], one of the world’s
most popular children’s programming environments. Within Scratch, there are two main
types of images: backdrop images and character images. The characters are referred to as
“sprites” in Scratch terminology.

Our idea for constructing the dataset for this task involves randomly placing multiple
sprites on random backdrops. These arbitrary placements result in very noisy merged im-
ages, making the task challenging for multi-label image classification algorithms. However,
such noisy images are commonly found in children’s Scratch programs.

We collected all of the backdrop images from Scratch, a total of 85 images. These
collected backdrop images are represented in Figure 1.

In Scratch, there are hundreds of sprite images, but some images are nearly identical,
as one sprite can have multiple images with slight modifications to represent character
movements in animations. To clarify the problem, we randomly selected 100 sprite images
and left only one image for each sprite. We also deleted sprite images that had copyright
issues when distributed. As a result, we obtained 69 sprite images, as shown in Figure 2.



Appl. Sci. 2023, 13, 10468 4 of 18

Figure 1. A total of 85 backdrop images collected from the Scratch programming environment.

Figure 2. A total of 69 sprite images selected from the Scratch programming environment.

The next step was to place the sprites randomly on random backdrops. However, the
sizes of the sprite images vary widely, and they may overlap, causing one image to be
hidden in the merged image. To prevent this, we imposed a restriction that the width and
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height of any sprite should not exceed 200 pixels. Additionally, we ensured that the x or
y coordinates of any two sprite images were not less than 200 pixels apart. Within these
constraints, we randomly varied the size of each sprite image from 100% to 200%.

The constructed dataset includes three types of merged images, with three, six, or
nine sprite images placed on each backdrop, respectively. For example, the first column of
subfigures in Figure 3 represents the randomly selected backdrop images, and the second
column of subfigures in Figure 3 represents the nine sprite images placed on each backdrop.
In this figure, our task is to find only the nine sprites we randomly placed. Obviously, this
is challenging because there are other objects that the backdrop already has. For example,
in the second row of subfigures, what we want to do is not find objects like a bed, a pillow,
a mirror, or a monitor but find items such as a drum, a hat, a skeleton, etc. The constructed
dataset can be downloaded at https://github.com/tooeeworld/mlic_dataset (accessed on
19 September 2023.).

In summary, we constructed a new dataset that is fundamentally different from any
existing datasets. As a result, this new dataset can be considered “unseen” or “novel”,
making it ideal for evaluating one-shot class-incremental approaches without overlapping
with the data used to train existing neural network models.

Backdrops Backdrops + Sprites
Object Detection

(YOLOS-Ti, threshold: 0.1)
Object Detection

(YOLOS-Ti, threshold: 0.01)

Figure 3. Examples of generated data are shown in the first- and second-column subfigures, along
with object detection results using YOLOS-Ti in the third- and fourth-column subfigures. In these
examples, we added nine sprites to randomly selected backdrops. The object detection model was
neither trained nor fine-tuned on our datasets, so it could not detect our sprites effectively. By
lowering the threshold of the pre-trained model, more sprites could be detected, albeit with a larger
number of false positives.

4. Proposed One-Shot Multi-Label Image Classification Approach
4.1. Overview

Figure 4 provides an overview of our approach, which consists of four main steps:

1. Initially, we take samples from unseen classes, one sample or more per class. These
samples are embedded into vectors using image-embedding models based on either
Convolutional Neural Networks (CNN) or Vision Transformers.

2. Next, for an image that includes both background and objects, we employ either
supervised or unsupervised object detection pre-trained models like YOLOS-Ti and
CutLER. Because these models have not been fine-tuned on unseen data, their object
detection accuracy may be limited. To compensate, we adjust the detection thresholds

https://github.com/tooeeworld/mlic_dataset
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appropriately, aiming to capture all objects from unseen classes, even if this results in
a higher rate of false positives.

3. The objects detected are then embedded into vectors using pre-trained CNN- or Vision
Transformer-based embedding models.

4. Finally, we compare these embedded vectors to the vectors of previously embedded
unseen class samples using k-nearest-neighbor search algorithms such as Faiss [24] or
HNSW [25]. By considering all the k-nearest neighbors, we determine the predicted
multiple labels for each object.

Note that our methodology relies on pre-trained models without the need for any fine
tuning tailored to our specific datasets. This approach affords us considerable flexibility
and aligns well with the objectives set forth in the introduction. Even though the data used
to train these pre-existing models differ substantially from our own datasets, we observed
that utilizing them effectively reduces the incidence of false positives.

Embedded Objects
(Using CNN/Transformers)

......

Given Images
Supervised/Unsupervised

Object Detection

Unseen Class 1 Unseen Class 2

Unseen Class 3 Unseen Class 4

Unseen Class 5 Unseen Class 6

......

Unseen Class Samples (One for Each Class)

Embedded Samples
(Using CNN/Transformers)

k-Nearest Neighbors Search
(Faiss, HNSW, etc.)

Figure 4. Overview of our approach. Assuming that the embedded sprite vectors have been prepared,
we (1) perform supervised or unsupervised object detection on the given images, (2) embed the
detected objects using CNN- or Vision Transformer-based embedding techniques, and (3) find the
corresponding multi-labels using k-nearest-neighbor search algorithms.

4.2. Object Detection

One of our primary ideas for multi-label image classification is to first leverage existing
object detection models. It is important to note that we do not fine-tune these object detec-
tion models; instead, we use pre-trained ones. Clearly, these pre-trained object detection
models may not identify specific sprite images, such as aliens, skeletons, characterized
frogs, etc. However, our hypothesis is that even when the model cannot identify our sprites,
we can detect most of them by adjusting the threshold of the object detection model. This
approach might lead to finding a large number of false positives (objects but not our sprites),
but these false positives can be effectively removed using our embedding techniques.

Figure 3 shows the example results of a popular object detection model named YOLOS-
Ti [26]. Since this object detection model was pre-trained on ImageNet [27] and fine-tuned
on COCO 2017 [10], it rarely has knowledge about our sprite images. Thus, even when the
threshold is set very low, to 0.1, as shown in the third-column subfigures of Figure 3, the
model seldom finds our sprite images. However, when we further lower the threshold, to
0.01, as shown in the fourth-column subfigures of Figure 3, we can detect almost all of our
sprites, albeit with a large number of false positives.

Our alternative idea for improving object detection accuracy is to use unsupervised
object detection algorithms, such as CutLER [28], instead of supervised object detection
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algorithms. Because these algorithms are not trained on specific target labels, they are
expected to produce more true positives with fewer false positives. However, they might
take more time to perform object detection, so the tradeoff between time and accuracy
should be considered.

4.3. Embedding Techniques

The next step in our approach is to embed the detected objects, including the false pos-
itives, into vectors. To accomplish this, we can use various types of pre-trained embedding
models, such as CNN-based models or Vision Transformer-based models. It is natural to
expect a tradeoff between CNN-based models and Transformer-based models in terms of
time and accuracy.

Note that in this process, we do not fine-tune the models for our specific data; we
simply use pre-trained models, just as we did during object detection, to fulfill our require-
ments. Also, it should be noted that the same embedding techniques must be used for
embedding our sprites in order to effectively find the k-nearest neighbors in the final step.

4.4. k-Nearest-Neighbor Search

The final step is to compare embedded objects and embedded sprites. The process is
as follows:

• For each embedded object, find the m-nearest neighbors based on their cosine similari-
ties. This process can be significantly faster when using approximate nearest-neighbor
search algorithms, such as Faiss [24] or HNSW [25].

• Store all of the m-nearest neighbors along with the corresponding similarities in a
sorted list.

• Retrieve the distinct k-nearest neighbors from the sorted list.

For example, let m = 69 and k = 9. In our dataset, there are a total of 69 sprite images, so
there are 69 embedded sprites. Assuming that there are a total of 100 detected objects given
in an image, there are 100 embedded objects. In this case, because m = 69, we compare all
of the cosine similarities between embedded objects and embedded sprites. Then, the most
similar and distinct embedded sprites are retrieved as results.

If the embedding models are effective, then the false positives generated by the object
detection models are eliminated in this process. In the next section, we will present the
corresponding experimental results.

5. Experiments
5.1. Experimental Setup

In our approach, various types of pre-training models can be utilized. As shown in
Table 1, we selected nine pre-trained models for our experiments:

• We chose ResNet-18 [18] and VGG-16 [19] for embedding, due to their popularity in
CNN-based models.

• For Vision Transformer-based embedding models, we selected five pre-trained models
that are the most recent and popular embedding models found on Hugging Face
(https://huggingface.co/ (accessed on 19 September 2023.)). Among them, one was
developed by OpenAI; two were developed by Google [29]; and two were developed
by Facebook [30]. Here, the model “clip-ViT-B-32” was developed for mapping texts
and images into the same embedding space. All of the models from Google and
Facebook utilize Vision Transformers [20] and ImageNet [27].

• As a supervised object detection model, we used YOLOS-Ti [26], which is the most
trending model on Hugging Face at the time of writing. The characteristics of this
model include its lightweight design; its model size is only 25 MB, allowing for easy
use even on low-performance computers.

• For unsupervised object detection, we employed CutLER [28]. Known as the most
efficient unsupervised object detection model at the time of writing, it is slower than

https://huggingface.co/
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the lightweight supervised object detection model, YOLOS-Ti, but it is expected to
significantly enhance accuracy in object detection.

It is important to note that we did not compare our approach with methods that do
not use neural networks. For example, we did not compare it with ML-KNN [16], which
uses k-nearest-neighbor algorithms but not neural networks. Additionally, we did not
report the results obtained with SSIM (structural similarity index measure) [17], as it did
not perform well in our experiments.

We conducted three types of experiments to demonstrate the effectiveness of our approach:

• As a baseline approach, we only use embedding techniques without the use of object
detection models. Because no objects are detected with this approach, the entire image
(backdrops with added sprites) is embedded into vectors using various types of CNN-
or Vision Transformer-based models.

• In addition to this baseline approach, we also experimented with our approaches that
employ either supervised or unsupervised object detection models, as well as either
CNN- or Vision Transformer-based embedding models.

We do not compare our method with existing approaches for multi-label image classifi-
cation, because these approaches do not satisfy the requirements defined in the Introduction
section. Thus, in our experiments, we established a new baseline and compared our meth-
ods with this baseline approach.

The hyperparameters were configured as follows: First, we set parameter “m” to 69,
which allowed us to find the exact k-nearest neighbors for each query; recall that there
are 69 sprites in our dataset. Given that the number of samples in our experiments was
relatively low, we believe that using exact k-nearest-neighbor search is one of the best
options, although there may be room for improvement in terms of computational time with
the use of approximate k-nearest-neighbor search. Second, for object detection, we used
thresholds of 0.01 for supervised object detection with YOLOS-Ti and 0.35 for unsupervised
object detection with CutLER. The threshold for YOLOS-Ti was set particularly low because
the sprites in our dataset are not highly relevant to the classes on which the object detection
model was originally trained. Therefore, we needed to lower the threshold to maximize
the identification of our sprites, as illustrated in Figure 3.

We performed the experiments using a low-performance laptop computer (11th Gen
Intelr CoreTM (Intel, Santa Clara, CA, USA) i7-11800H @ 2.30 GHz, 16 GB RAM, RTX 3080
Laptop GPU). This aligns with Requirement 4, as our aim is to present an efficient and
lightweight approach.

In our experiments, we used four evaluation measures as follows:

• “E. Sprites (sec)”: The average elapsed time for embedding all 69 sprite images,
measured in seconds.

• “E. Backdrops (sec)”: The average elapsed time for embedding all of the detected
objects in a given backdrop image with added sprites, measured in seconds.

• “Finding kNN (sec)”: The average elapsed time for finding all of the k-nearest neigh-
bors for a given backdrop, measured in seconds. Note that we did not use any
techniques for faster computation, such as Faiss or HNSW.

• “Accuracy (%)”: We utilize an “accuracy” evaluation metric instead of the mAP (mean
Average Precision) metric. This choice is driven by the observation that the frequency
of false positives can differ substantially depending on the object detection model
used, complicating the task of equitably assessing our techniques. Let S be the set of
all sprites added to backdrops, and let C ⊂ S be the set of correctly identified sprites
among the top-|S| predicted sprites. Then, accuracy (A) is defined as

A =
|C|
|S|
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Table 1. Models used in our experiments and their corresponding statistics.

Type Model Model Size (MB) Dimension

CNN-based embedding ResNet-18 45 512
VGG-16 528 512

Transformer-based embedding

clip-ViT-B-32 577 512
google/vit-base-patch16-224-in21k 330 768
google/vit-base-patch32-224-in21k 336 768
facebook/dino-vits8 83 384
facebook/dino-vitb16 327 768

Supervised object detection YOLOS-Ti 25 n/a

Unsupervised object detection CutLER 548 n/a

5.2. Experimental Results

Recall that the baseline approaches do not use object detection models. That is to say,
they embed the entire backdrop images, along with their added sprites, into vectors. Table 2
shows the experimental results of these baseline approaches using various CNN-/Vision
Transformer-based embedding models.

Table 2. Experimental results of the baseline approaches that do not use object detection models but
use CNN- or Vision Transformer-based embedding models.

Baseline Model (No Object Detection) # Objects E. Sprites
(sec)

E. Backdrops
(sec)

Finding kNN
(sec)

Accuracy (%)

ResNet-18
3 0.00392 0.01194 0.00091 9.07
6 0.00394 0.01268 0.00105 13.38
9 0.00395 0.01278 0.00091 16.07

VGG-16
3 0.00598 0.00751 0.00057 8.63
6 0.00616 0.00823 0.00034 12.27
9 0.00626 0.00830 0.00033 15.52

clip-ViT-B-32
3 0.01899 0.02922 0.00111 23.80
6 0.01823 0.03004 0.00125 23.48
9 0.01688 0.03070 0.00128 24.74

google/vit-base-patch16-224-in21k
3 0.12293 0.12377 0.00052 13.03
6 0.12042 0.12344 0.00071 15.75
9 0.12167 0.12510 0.00060 19.73

google/vit-base-patch32-224-in21k
3 0.04717 0.05188 0.00068 11.67
6 0.04744 0.05056 0.00051 15.42
9 0.04645 0.05224 0.00079 18.86

facebook/dino-vits8
3 0.16925 0.17861 0.00027 15.73
6 0.16584 0.17353 0.00033 17.62
9 0.17505 0.17824 0.00029 19.02

facebook/dino-vitb16
3 0.11947 0.12290 0.00081 12.40
6 0.11988 0.12233 0.00049 15.82
9 0.11897 0.12344 0.00076 17.93

As expected, since the CNN-based model ResNet-18 is the most lightweight among
our embedding models, it performed the fastest, but its accuracy values were the lowest.
Additionally, the model that showed the best accuracy is the clip-ViT-B-32 model. This
result could be attributed to the fact that only this model uses different types of image data
for training, instead of ImageNet.

The overall results are quite surprising, as they show very low accuracy across all
models. This finding seems to contradict the results in [5], where a similar approach
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was effectively used to educate children about machine learning. In that study, children
prepared their own images and used models that did not include object detection, yet there
were no complaints about the models’ performance. These results suggest that our dataset
is likely more complex, potentially due to the presence of colorful and distracting objects in
the background images.

Table 3 shows the experimental results of our approaches based on the supervised
object detection model, named YOLOS-Ti. The results demonstrate that the accuracy of
our approaches greatly improved, approximately tripling from the baseline (maximum
accuracy for the nine-sprite-added datasets increased from 24.74 to 75.84). In this case,
one of the Google models outperformed the other models in terms of accuracy, which is
different from the baseline result. Also, surprisingly, the lightweight model (ResNet-18) is
comparable to the best Vision Transformer-based model in terms of accuracy. This may be
interpreted as the Vision Transformer models we use not exploiting large enough datasets
for their training.

Table 3. Experimental results of our approaches that utilize both the supervised object detection
model named YOLOS-Ti and embedding models based on CNNs or Vision Transformers.

Our Model (with YOLOS-Ti) # Objects E. Sprites
(sec)

E. Backdrops
(sec)

Finding kNN
(sec)

Accuracy (%)

ResNet-18
3 0.00435 0.21694 0.25879 75.27
6 0.00383 0.23732 0.28784 74.12
9 0.00357 0.27198 0.32854 73.84

VGG-16
3 0.00715 0.26346 0.26026 70.27
6 0.00975 0.28967 0.29331 69.83
9 0.00703 0.33154 0.32995 70.40

clip-ViT-B-32
3 0.02960 0.84996 0.26091 59.10
6 0.02942 0.93125 0.28929 61.43
9 0.02990 1.10837 0.32836 64.10

google/vit-base-patch16-224-in21k
3 0.09293 6.62304 0.36970 75.43
6 0.10465 7.58749 0.40287 75.03
9 0.09675 8.46929 0.45842 75.84

google/vit-base-patch32-224-in21k
3 0.04208 2.57006 0.36277 70.30
6 0.03495 2.86321 0.41135 71.88
9 0.04234 3.28558 0.46758 72.87

facebook/dino-vits8
3 0.14997 9.52359 0.19336 69.80
6 0.14184 10.62992 0.21481 64.65
9 0.14475 12.46685 0.25093 64.38

facebook/dino-vitb16
3 0.10165 7.12740 0.36584 71.17
6 0.10426 7.87116 0.41065 66.82
9 0.10952 8.45760 0.45791 66.59

The results also show that the elapsed times are significantly different from the baseline
approach. Although the elapsed time for embedding the 69 sprites does not change
substantially, the elapsed time for embedding detected objects of backdrops and the elapsed
time for finding the k-nearest neighbors are significantly higher than the baseline. This
means that there are many detected objects in the backdrops when using YOLOS-Ti;
therefore, we must spend a lot of time embedding objects and finding the nearest neighbors
for each embedded object. Obviously, most of the detected objects were false positives.
However, by performing the process of finding the k-nearest neighbors, most of the false
positives were removed, allowing us to achieve high accuracy. Also, even with the many
false positives occurring in these results, when using a lightweight CNN-based embedding
model, the elapsed time is affordable even when using a laptop computer. Especially if
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we used the approximate k-nearest-neighbor search algorithm, the elapsed time could be
much shortened.

Table 4 illustrates the results of our approach when utilizing the unsupervised object
detection model, CutLER. The findings reveal that our approach with the unsupervised
object detection model consistently outperformed the supervised object detection model
across all tested cases in terms of accuracy. For instance, within a dataset of three sprites, the
baseline accuracy was 9.07, while our approach’s accuracy reached 75.27 with YOLOS-Ti
and an even higher value, 80.57, with CutLER. The benefits are not confined to accuracy
alone; we also observed substantial reductions in the elapsed times required for embedding
detected objects and finding the k-nearest neighbors. In the nine-sprite dataset, the times
recorded for “E. Backdrops” and “Finding kNN” were 0.27198 and 0.32854 with YOLOS-Ti,
and mere values of 0.03610 and 0.04508 with CutLER, respectively. This indicates that the
use of the unsupervised model significantly reduces the false positives of the detected
objects when employing CutLER while simultaneously increasing the true positives.

Table 4. Experimental results of our approaches that utilize both the unsupervised object detection
model named CutLER and embedding models based on CNNs or Vision Transformers.

Our Model (With CutLER) # Objects E. Sprites
(sec)

E. Backdrops
(sec)

Finding kNN
(sec)

Accuracy (%)

ResNet-18
3 0.00325 0.03610 0.04508 80.57
6 0.00328 0.04564 0.05653 79.85
9 0.00322 0.05744 0.07224 78.71

VGG-16
3 0.00860 0.04320 0.04765 74.67
6 0.00896 0.05575 0.06140 74.50
9 0.00980 0.07135 0.07719 74.81

clip-ViT-B-32
3 0.03090 0.12947 0.04445 72.57
6 0.02920 0.16371 0.05634 73.60
9 0.03044 0.20680 0.07236 75.22

google/vit-base-patch16-224-in21k
3 0.07387 0.94674 0.05959 77.97
6 0.08900 1.13765 0.07898 77.10
9 0.08695 1.52456 0.09990 78.19

google/vit-base-patch32-224-in21k
3 0.04069 0.42205 0.06110 73.07
6 0.03170 0.54028 0.07988 74.87
9 0.03496 0.67661 0.09998 75.77

facebook/dino-vits8
3 0.13350 1.37116 0.03289 75.07
6 0.11385 1.79386 0.04229 70.70
9 0.11850 2.38555 0.05328 69.26

facebook/dino-vitb16
3 0.10889 1.07077 0.06116 75.03
6 0.06842 1.13841 0.07899 71.40
9 0.06783 1.42612 0.09981 70.61

In summary, our experimental results underscore that the combination of ResNet-
18 and CutLER yields the best performance on our dataset, excelling in both speed and
accuracy. For scenarios where a small model size is prioritized, pairing ResNet-18 with
YOLOS-Ti could prove beneficial, especially when further optimized with techniques such
as Faiss or HNSW. Unfortunately, existing Vision Transformer-based embedding models
fell short of expectations on our dataset. This might be attributed to the Transformer models’
need for substantial data volumes to attain high accuracy, suggesting that further training
on more extensive datasets could enhance their performance.

5.3. Analysis of Results

In our initial experiments, we set the threshold values to 0.01 for YOLOS-Ti and 0.35 for
CutLER. To further investigate the impact of different thresholds, we conducted additional
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tests using a wider range of values: 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, and 0.9.
Figure 5 provides a comparative analysis of the accuracy of YOLOS-Ti and CutLER under
these different settings, while Figure 6 presents the time elapsed for each algorithm at
these thresholds. In subsequent analyses, we employ ResNet-18 as our image-embedding
algorithm due to its superior performance in earlier experiments. The dataset we used
contains nine objects (sprites) in each input image.

Figures 5 and 6 indicate that higher object detection thresholds lead to lower accuracy
but faster elapsed times for embedding backdrops. This finding is intuitive, as a higher
threshold reduces the number of objects detected, thereby requiring fewer image embed-
dings. The figures also show that CutLER, being an unsupervised model, is significantly
more effective than YOLOS-Ti on our dataset, which contains unseen class data. For Cut-
LER, a moderate threshold suffices to achieve high accuracy, making a threshold of 0.3
suitable for multi-label classification. This closely aligns with the default threshold set in
the original CutLER code. For YOLOS-Ti, however, even a low threshold of 0.1 does not
yield accuracy higher than 70%. To make YOLOS-Ti applicable for our tasks, a very low
threshold, such as 0.01, would be required.

To examine the results in greater detail, we present visualizations of object detection
outcomes at varying thresholds—0.01, 0.05, 0.10, and 0.50—for both YOLOS-Ti (Figure 7)
and CutLER (Figure 8). Figure 7 reveals that at a threshold of 0.50, YOLOS-Ti fails to detect
any objects in the image. Even when the threshold is lowered to 0.10, it only accurately
identifies four out of the nine objects present. To achieve comprehensive object detection
using YOLOS-Ti, the threshold needs to be set as low as 0.01. Conversely, CutLER manages
to identify seven out of the nine objects even at the relatively high threshold of 0.50.
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Figure 5. Comparison of accuracy between YOLOS-Ti and CutLER using ResNet-18 across varying
thresholds.
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Figure 6. Comparison of elapsed time for embedding backdrops between YOLOS-Ti and CutLER
Using ResNet-18 across varying thresholds.

YOLOS-Ti, threshold: 0.01 YOLOS-Ti, threshold: 0.05

YOLOS-Ti, threshold: 0.10 YOLOS-Ti, threshold: 0.50

Figure 7. Examples of results obtained with the YOLOS-Ti model at various threshold levels. Because
the model was not trained on our new dataset, it failed to detect the newly introduced objects even at
a threshold of 0.5.
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CutLER, threshold: 0.01 CutLER, threshold: 0.05

CutLER, threshold: 0.10 CutLER, threshold: 0.50

Figure 8. Examples of results obtained with the CutLER model at various threshold levels. Although
the model was not trained on our new dataset, it still showed relative success in detecting newly
introduced objects.

In our experiments, we found that ResNet-18 performed relatively well when object
detection techniques were used, but its performance declined when they were not applied.
To further investigate these findings, we conducted a small, supplementary experiment.
First, we selected ten object images cropped from our dataset, which we referred to as
“cropped data samples”. We then added a white background to each of these images to
create “not cropped data samples.” Both sets of data samples are displayed in Figure 9.

Next, we embedded these images and identified the nearest neighbor for each. The
results, shown in Figure 10, were consistent with our initial observations. Specifically,
ResNet-18 performed well on the cropped data samples but was less effective with the not
cropped data samples. In contrast, the CLIP-ViT-B-32 model maintained high accuracy
across both types of data samples, confirming our earlier findings that this model performs
relatively well when no object detection techniques are used.

Figure 9. Ten cropped data samples (top) and ten not cropped data samples (bottom).
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Figure 10. Accuracy comparison using the ten data samples, with and without object cropping.

5.4. Discussion

Our approach, though simple, successfully fulfills the four requirements outlined in
the Introduction section:

• Firstly, the requirement concerning both “class-incremental learning” and “class-
decremental learning” is met with our strategy. By exclusively utilizing pre-trained
models without fine-tuning them on our specific dataset, our approach naturally
excels at class-incremental/-decremental learning. In fact, we do not train the neural
networks ourselves but harness the complexity of existing models by leveraging their
pre-trained capabilities. For example, let us assume that 10 additional objects are
added to our dataset, bringing the total to 79 objects. In this scenario, our approach
allows us to perform multi-class image classification without the need for fine-tuning
the model.

• Secondly, the requirement for “one-shot learning” is addressed effectively. Within
our dataset, each class (or sprite) is represented by only one sprite image. Despite
this limitation, experimental results have shown that our method performs admirably
even with sparse data.

• Thirdly, our approach succeeds on unnatural datasets where the semantic relationships
among labels are either non-existent or difficult to utilize. The random generation
of our dataset precludes the use of semantic label relationships, yet our method still
yields strong performance.

• Lastly, the need for compatibility with low-performance computers is also met. We
demonstrate that our approach can be efficiently run on a standard laptop computer.
Moreover, the use of lightweight models like ResNet-18 and YOLOS-Ti ensures that
we can execute our tasks with both effectiveness and efficiency.

However, we also found one main limitation of our approaches, which we will address
in future work: As shown in Figure 11, the unsupervised object detection model (CutLER) is
very effective on transformed images (e.g., rotated images). However, even complex Vision
Transformer-based pre-trained embedding models do not handle transformed images
effectively. To address this problem with image transformations, we either need to embed
more sprite images with transformations or train a more robust pre-trained model capable
of handling image transformations.
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Backdrops Backdrops + Sprites
Object Detection

(CutLER, threshold: 0.35)

Figure 11. Example datasets with rotated sprites on the backdrops. Although the unsupervised object
detection model (CutLER) excels at finding transformed sprites, the existing state-of-the-art Vision
Transformer-based model struggles to capture the similarity between rotated images.

6. Conclusions

In this paper, we introduced a simple yet effective approach to one-shot class-incremental
multi-class image classification. The core idea of our method involves utilizing pre-
trained supervised or unsupervised object detection models, along with CNN- or Vision
Transformer-based embedding models, to predict multiple labels. Notably, our approach
does not require any fine tuning of the models, making it highly suitable for one-shot
class-incremental learning. For our experiments, we devised a novel and complex dataset
that existing methods, based on semantic relatedness among labels, could not handle.
The results reveal that our approach achieves remarkable performance on this dataset.
Although we identified an occurrence of false positives during object detection, especially
when utilizing supervised object detection, we also discovered that these false positives
could be substantially reduced by employing embedding techniques and identifying the
k-nearest neighbors. Furthermore, our analysis showed that unsupervised object detection
outperforms its supervised counterpart and that even lightweight model combinations
(such as ResNet-18 and YOLOS-Ti) can perform well in this task.

One of the main barriers to achieving even more accurate results is the limitation of the
embedding model, rather than the object detection model. Despite the fact that the current
state-of-the-art unsupervised object detection model (CutLER) performs admirably, even
with significant image transformations, the Vision Transformer-based embedding models
did not meet our expectations. Consequently, our future work will focus on implementing
a more robust Vision Transformer-based embedding model. We plan to explore the use
of larger datasets and more efficient network structures to accommodate increasingly
complex datasets.
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