Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank
Abstract
:1. Introduction
2. About the Residue Number System and Akushsky Core Function
3. A Probabilistic Approach to Determining the Optimal Weight of the Akushsky Core Function
4. Method for Determining Optimal Weights
- The main modulo includes connections to all moduli. RNS initialization (Algorithm 1);
- Constant calculation modulo calculates the constants of the selected RNS. For example, the basis of a set of moduli, multiplicative inversions, etc. (Algorithm 2);
- Core function processing modulo calculates core function variables such as basis cores, orthogonal basis cores, etc. (Algorithm 3);
- Monte Carlo modulo—searches for the optimal weight (Algorithm 4).
Algorithm 1 |
Input: |
Output: |
3. print end |
Algorithm 2 |
Input: , |
Output: , |
do: do: end |
—performed according to the extended Euclid algorithm |
Algorithm 3 |
Input: |
Output: |
do: do: do: end |
Algorithm 4 |
Input: |
Output: |
do: do: do: do: them: 5.1.3 break end |
. |
- CPU: frequency: 2.90 GHz, cores—6, process technology: 14 nm;
- GPU: video memory 6144 MB, memory frequency 14000 MHz, GPU frequency 1680 MHz, TDP 500 W;
- RAM: 16 GB, frequency 3200 MHz;
- OS: Windows 11.
- The experiment is carried out in two stages:
- Stage A—performance study of 9 sets, 8 moduli, and dimensions from 8 to 1024 bits;
- Stage B—performance study of 20 sets, from 3 to 20 moduli, and a dimension of 32 bits.
- Positional characteristics are obtained based on optimal weights;
- Positional characteristics are obtained based on the calculated weights with the measurement of the time of their calculation;
- Positional characteristics are obtained based on the calculated weights without measuring the time of their calculation.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shiriaev, E.; Kucherov, N.; Babenko, M.; Nazarov, A. Fast Operation of Determining the Sign of a Number in RNS Using the Akushsky Core Function. Computation 2023, 11, 124. [Google Scholar] [CrossRef]
- Babenko, M.; Tchernykh, A.; Pulido-Gaytan, B.; Avetisyan, A.; Nesmachnow, S.; Wang, X.; Granelli, F. Towards the Sign Function Best Approximation for Secure Outsourced Computations and Control. Mathematics 2022, 10, 2006. [Google Scholar] [CrossRef]
- Tchernykh, A.; Babenko, M.; Avetisyan, A.; Drozdov, A.Y. En-AR-PRNS: Entropy-Based Reliability for Configurable and Scalable Distributed Storage Systems. Mathematics 2021, 10, 84. [Google Scholar] [CrossRef]
- Babenko, M.; Golimblevskaia, E. About One Property of Number Rank in RNS. In Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, Russia, 26–29 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 212–216. [Google Scholar]
- Anawar, M.R.; Wang, S.; Azam Zia, M.; Jadoon, A.K.; Akram, U.; Raza, S. Fog Computing: An Overview of Big IoT Data Analytics. Wirel. Commun. Mob. Comput. 2018, 2018, 7157192. [Google Scholar] [CrossRef]
- Deakin, M.; Al Waer, H. From Intelligent to Smart Cities. Intell. Build. Int. 2011, 3, 140–152. [Google Scholar] [CrossRef]
- Ahmed, E.; Rehmani, M.H. Introduction to the Special Section on Social Collaborative Internet of Things. Comput. Electr. Eng. 2017, 58, 382–384. [Google Scholar] [CrossRef]
- Challenges and Solutions in Fog Computing Orchestration|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/abstract/document/8121864?casa_token=emXdvLOG3pIAAAAA:tHZXQba5P9akxxpRNNeGqtImVtRWoU34WXvwqyzLZuf7_60-AEisOkB_lcgrWI92rxb5bTav72I0yA (accessed on 10 July 2023).
- Hoque, S.; De Brito, M.S.; Willner, A.; Keil, O.; Magedanz, T. Towards Container Orchestration in Fog Computing Infrastructures. In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Torino, Italy, 4–8 July 2017; Volume 2, pp. 294–299. [Google Scholar]
- Costa, B.; Bachiega Jr, J.; de Carvalho, L.R.; Araujo, A.P. Orchestration in Fog Computing: A Comprehensive Survey. ACM Comput. Surv. (CSUR) 2022, 55, 1–34. [Google Scholar] [CrossRef]
- Chandak, A.; Ray, N.K. A Review of Load Balancing in Fog Computing. In Proceedings of the 2019 International Conference on Information Technology (ICIT), Odisha, India, 19–21 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 460–465. [Google Scholar]
- Kashani, M.H.; Ahmadzadeh, A.; Mahdipour, E. Load Balancing Mechanisms in Fog Computing: A Systematic Review. arXiv 2020, arXiv:2011.14706. [Google Scholar]
- Kashani, M.H.; Mahdipour, E. Load Balancing Algorithms in Fog Computing. IEEE Trans. Serv. Comput. 2022, 16, 1505–1521. [Google Scholar] [CrossRef]
- Ningning, S.; Chao, G.; Xingshuo, A.; Qiang, Z. Fog Computing Dynamic Load Balancing Mechanism Based on Graph Repartitioning. China Commun. 2016, 13, 156–164. [Google Scholar] [CrossRef]
- Wan, J.; Chen, B.; Wang, S.; Xia, M.; Li, D.; Liu, C. Fog Computing for Energy-Aware Load Balancing and Scheduling in Smart Factory. IEEE Trans. Ind. Inform. 2018, 14, 4548–4556. [Google Scholar] [CrossRef]
- Garner, H.L. The Residue Number System. In Proceedings of the Papers presented at the the March 3–5, 1959, western joint computer conference, San Francisco, CA, USA, 3–5 March 1959; pp. 146–153. [Google Scholar]
- Pei, D.; Salomaa, A.; Ding, C. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography; World Scientific: Singapore, 1996. [Google Scholar]
- Akushsky, I.Y.; Yuditsky, D.I. Machine Arithmetic in Residue Classes; Sov. Radio; Sov. Radio: Moscow, Russis, 1968. [Google Scholar]
- Akushsky, I.Y.; Akushsky, V.M.; Pak, I.T. About the New Positional Characteristic of the Non-Positional Code and Its Application. In Theory of Coding and Optimization of Complex Systems; Alma-Ata: Nauka, Kazakhstan, 1977; pp. 8–16. [Google Scholar]
- Akushsky, I.Y.; Burtsev, V.M.; Park, N.T. Calculation of Positional Characteristics (Kernel) of Non-Positional Code. In Theory of Coding and Optimization of Complex Systems; Alma-Ata: Nauka, Kazakhstan, 1977; pp. 17–25. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: Berlin/Heidelberg, Germany, 1993; Volume 107. [Google Scholar]
- Akushsky, I.Y.; Yuditsky, D.I. Weak Position System. Quest. Spec. Electron. Ser. Microelectron. 1967, 7, 10–17. [Google Scholar]
- Shmelev, V.E. Principles of Non-Redundant Polynomial Digital Coding of Measurement Information. In Science, Education, Innovation: Topical Issues and Modern Aspects; 2021; pp. 88–90. [Google Scholar]
- Miller, D.D.; Altschul, R.E.; King, J.R.; Polky, J.N. Analysis of the Residue Class Core Function of Akushskii, Burcev, and Pak. In Residue Number System Arithmetic: Modern Applications in Digital Signal Processing; Association for Computing Machinery: New York, NY, USA, 1986; pp. 390–401. [Google Scholar]
- Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic Encryption for Arithmetic of Approximate Numbers. In Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security, Hong Kong, China, 3–7 December 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 409–437. [Google Scholar]
- Al Badawi, A.; Polyakov, Y.; Aung, K.M.M.; Veeravalli, B.; Rohloff, K. Implementation and Performance Evaluation of RNS Variants of the BFV Homomorphic Encryption Scheme. IEEE Trans. Emerg. Top. Comput. 2021, 9, 941–956. [Google Scholar] [CrossRef]
- Gomathisankaran, M.; Tyagi, A.; Namuduri, K. HORNS: A Homomorphic Encryption Scheme for Cloud Computing Using Residue Number System. In Proceedings of the 2011 45th Annual Conference on Information Sciences and Systems, Baltimore, MA, USA, 23–25 March 2011; pp. 1–5. [Google Scholar]
Length of Modulo | With Calculation Weight | Without Calculation Weight | With Optimal Weight |
---|---|---|---|
8 | |||
16 | |||
32 | |||
64 | |||
128 | |||
256 | |||
512 | |||
1024 |
Numbers in Set | With Calculation Weight | Without Calculation Weight | With Optimal Weight |
---|---|---|---|
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 | |||
11 | |||
12 | |||
13 | |||
14 | |||
15 | |||
16 | |||
17 | |||
18 | |||
19 | |||
20 |
Number of Moduli | Modulo Size, Bit | Set of Optimal Weights | Absolute Error | |
---|---|---|---|---|
4 | 8 | 175.097276 | (257, 70, 171, 222) | |
4 | 16 | 45992.000091 | (52568, 29656, 26707, 65548) | |
4 | 32 | 3924937701.831088 | (2657113367, 4294721947, 1752687387, 729149879) | |
4 | 64 | 16095638220240922233.627427 | (18444693828608548770, 11556647366118817625, 12170730014670266392, 18387437696418261637) | |
4 | 128 | 2497169411772991202446841153047335967 24.351813 | (340275175060926886165304188096319514004, 301020633665331798271476810118958979515, 336510905909786319187393834122600353777, 99612995849147588614905459610625716040) | |
4 | 256 | 846380475636402321226958149328072593 288597515865074329930973307110037476 65237.217685 | (1157908361929757651664517735050588125551 03554725275435478021644406706452852642, 11384840556211506774718234676701921531 5787742518548679960714055806362839975028, 1048976990497638497932505819479506145344 37641870821417673690586136930726447933, 98923094989414098966296758255814077133551 266392072068398016455637357261600806) | |
4 | 512 | 113953975696041101526761682084879863 212642311387838517699902399278365448 099778104077095536414038143497251059 165116665607660088231059134150766785 88202679077.659230 | (1307379244356929620555957580182196503736 664036227780907313385448381344149979018205 855844166646873007363243247346391152622109 823078619220482381715286142326, 554316440928670271657260146562203258588284 557182694432308509840061990432132560512292 462586421365955435616243246758046600624498 2571591123246118185797630700, 134076070316718623981837937193396281868600 798045300349056754960848934881509072297516 244238486375714475215395703895548383263627 22714909449872398349270086553, 638325415687188403262431483587542085732706 237832897015095684137130251257947650255142 941524569524358882705633870825453557853910 937588069767174410797637892) | |
4 | 1024 | 17390386487631557568771933569114495 34797022649742650820875279939219721 53368415498724475285244090921676645 64199202174827787854208393787105401 51839149324588766900832748708691225 92931606933916146527259690778373305 22822414425161846327261070088644807 27244708996046146205461812573141795 55871200198967252690396525188.328312 | (63671267529045939176782891807597164779330 268199956543267364059858815426517192415527 888751878361965987088021377634357435656840 078061207715717709351178991647694721817028 847289870083432365650336968494534407212371 617155735472146154620756431111765526437519 455533696878348787266959037481180284373151 658835319232651, 442472548071303067784062271118714693029555 958016918932640878856358488838825647036753 262241309741690835137278721708712765965827 153215805131700924844053524448947823981492 582592947297107287118473732837109986912937 437269990827752644601820503739197649926454 720957316137571675890330750814515039714270 82800912256343, 179766120845700727769235813661981360140887 804560759723012786354441178092413793236878 864506017795612020779621713172819656884659 459971537103218335246165021703558837399335 545006425174142144942717705542008919767347 790879619910489640082914328259563779358224 376662886767659247506099747141422184308331 619563700807401, 142601023892529348692836223171335226264919 772235731226363440967200738053328128603186 683921762374795519794208008522994508516100 471629894809907768831591019555964856820924 572490471283932626475102107022108843426426 778025198809114047631745504328467163232132 797372534385677526604483471234849002200519 138695152264587) | |
3 | 32 | 3568024123.214328 | (3837237931, 4294762609, 917896556) | |
4 | 32 | 3924937701.830790 | (2692113808, 4294901084, 2570217672, 1022682509) | |
5 | 32 | 3908695829.805370 | (4294390329, 3868346871, 2264663547, 928155071, 774470313) | |
6 | 32 | 3886001215.047813 | (3932482126, 4115409466, 1216882072, 1716628707, 4293640252, 2871721103) | |
7 | 32 | 4018445179.076804 | (4294885006, 2466465469, 391837946, 1166816806, 2142066795, 931058054, 3767377016) | |
8 | 32 | 3779516627.758768 | (3457587344, 1948271198, 4294064264, 3496188834, 736551483, 3109143057, 1682604, 2979033662) | |
9 | 32 | 3648257309.749618 | (3945387719, 3611636576, 3234580145, 3992778927, 1011101864, 1426654729, 4294456583, 696798307, 1248346682) | |
10 | 32 | 3319015825.455541 | (1812568780, 1744305376, 2879177275, 2704532353, 740106217, 2133216454, 142907793, 1628758167, 4294755744, 3005613165) | |
11 | 32 | 3887252925.495630 | (4294843612, 4072774593, 3479907851, 298939644, 473835803, 2964747990, 567788892, 2441223305, 1589870977, 3410254302, 4125735668) | |
12 | 32 | 4116388674.763324 | (1505892188, 381403895, 2944743037, 1468923292, 872170926, 2727127099, 4294523003, 518813601, 2447761796, 2093868838, 642628657, 2306588867) | |
13 | 32 | 3839483959.395721 | (939171569, 3907368894, 64568480, 2218303052, 4293911622, 2393109237, 4186379519, 864348774, 2385043194, 2111471880, 1805406759, 1171095431, 1559353300) | |
14 | 32 | 3986159380.261221 | (616709959, 519448438, 477811205, 2399023990, 2083266316, 3919260116, 388017825, 2029968915, 3059987793, 4294573350, 2810153157, 3174088871, 2569069222, 285202218) | |
15 | 32 | 4033445816.904042 | (3720535967, 601463582, 555133089, 2930592128, 2232245455, 679510902, 108449824, 411127992, 3007487310, 1296564010, 612933647, 1775883604, 4294791549, 931800587, 3264057027) | |
16 | 32 | 3936456732.318885 | (187085904, 862570694, 3452682697, 768183615, 4209428887, 2440805784, 3193371456, 4294555286, 2837902995, 3705505493, 3771021744, 2723759171, 3695499094, 158931980, 2021526104, 348223685) | |
17 | 32 | 4252663218.916533 | (2119312200, 564715578, 18835399, 3613263029, 3832444712, 1661175387, 1545638111, 4294254100, 3133195295, 265247941, 3881549301, 1930557313, 1735739591, 1946257665, 103142023, 3119952405, 3245461581) | |
18 | 32 | 4277036539.883138 | (1721834367, 2312277614, 3273045534, 46432728, 1237032121, 1827774096, 1132197392, 2143658973, 3445768340, 1287239420, 2019238334, 1369430968, 1205953584, 1356879283, 1822651576, 3603025026, 4294935763, 2378100982) | |
19 | 32 | 4158164430.897782 | (1274653369, 2956041026, 1966664630, 3073660627, 409387091, 1296327460, 3559335394, 1490335973, 2302687431, 3834698696, 3180769032, 1210931162, 2414378075, 170084862, 4294240447, 3462515808, 3698892625, 1052828145, 3082019895) | |
20 | 32 | 4087064891.159399 | (2194625932, 3749491636, 738164928, 895890692, 1588777698, 3280055887, 1343047423, 3435587145, 1491029095, 2514950023, 2947973241, 4294680200, 3817426302, 659655741, 803902988, 4230645408, 638024259, 904912493, 1800410366, 1427397790) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiriaev, E.; Kucherov, N.; Babenko, M.; Lutsenko, V.; Al-Galda, S. Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank. Appl. Sci. 2023, 13, 10495. https://doi.org/10.3390/app131810495
Shiriaev E, Kucherov N, Babenko M, Lutsenko V, Al-Galda S. Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank. Applied Sciences. 2023; 13(18):10495. https://doi.org/10.3390/app131810495
Chicago/Turabian StyleShiriaev, Egor, Nikolay Kucherov, Mikhail Babenko, Vladislav Lutsenko, and Safwat Al-Galda. 2023. "Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank" Applied Sciences 13, no. 18: 10495. https://doi.org/10.3390/app131810495
APA StyleShiriaev, E., Kucherov, N., Babenko, M., Lutsenko, V., & Al-Galda, S. (2023). Algorithm for Determining the Optimal Weights for the Akushsky Core Function with an Approximate Rank. Applied Sciences, 13(18), 10495. https://doi.org/10.3390/app131810495