
Citation: Kaliberda, M.E.; Pogarsky,

S.A. Tunability of Radiation Pattern

of the H-Polarized Natural Waves of

Dielectric Waveguide with Infinite

Graphene Plane and Finite Number

of Graphene Strips at THz. Appl. Sci.

2023, 13, 10563. https://doi.org/

10.3390/app131910563

Academic Editors: Mario Lucido,

Kazuya Kobayashi, Francisco

Medina, Alexander I. Nosich and

Elena D. Vinogradova

Received: 21 August 2023

Revised: 15 September 2023

Accepted: 20 September 2023

Published: 22 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Tunability of Radiation Pattern of the H-Polarized Natural
Waves of Dielectric Waveguide with Infinite Graphene Plane
and Finite Number of Graphene Strips at THz
Mstyslav E. Kaliberda * and Sergey A. Pogarsky

School of Radiophysics, Biomedical Electronics and Computer Systems, V.N. Karazin Kharkiv National
University, 61022 Kharkiv, Ukraine; spogarsky@gmail.com
* Correspondence: kaliberdame@gmail.com

Abstract: We investigate the radiation of the THz natural waves of the dielectric waveguide with
graphene plane scattered by finite number of graphene strips. Our mathematically accurate analysis
uses the singular integral equations method. The discretization scheme employs the Nystrom-type
algorithm. The complex-valued propagation constants of the natural waves and corresponding
fields are determined numerically from the equation, which also involves the kernel-function of
the singular integral equation. The method we use is meshless and full-wave. The convergence is
provided by the mathematical theorems. By varying the chemical potential of graphene and structural
geometrical parameters, we examine the elevation angle of the main lobe of the radiation pattern and
the radiated power.
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1. Introduction

The ability to tune an antenna’s main lobe angle is a desirable property. In leaky-wave
antennas, which use the dielectric waveguide as a guiding element and incorporate periodic
grating as a scattering object, the period and parameters of the waveguide significantly
affect the angle of the main lobe at a certain frequency [1]. The variation of the wavelength
of the natural wave (eigenwave) of the waveguide can lead to the variation of the angle
of the main lobe. This can be achieved by changing the structural parameters. Another
approach is to leave the geometrical parameters unchangeable, but to use material with
dynamically controllable properties [2–5]. Graphene is one such material, which has
an almost infinitely thin resistive surface with complex-valued conductivity, denoted as
σ = σ( f , µc, τ, T). The conductivity is a function of four parameters: the frequency f ,
chemical potential µc, electron relaxation time τ and temperature T. The conductivity σ
can be controlled dynamically by the application of electrostatic or magnetostatic doping
and by changing the chemical potential µc. Graphene strips are capable of supporting
plasmon-polariton waves and corresponding plasmon resonances in the low THz range.
Together with the extraordinary hardness and flexibility of graphene, these properties open
up wide opportunities for its inclusion in the construction of tunable antennas, absorbers,
sensors, polarizers, lasers, etc. [6–11]. In [12], dynamic single- and dual-channel graphene
Q-switching in an Yb:YAG waveguide with controlled power-splitting ratios for application
in lasers is demonstrated.

A commonly employed technique for studying the graphene structures is the finite-
difference time-domain (FDTD) method with modifications [8,9]. The modifications are
proposed due to the mesh size dependency on the size of the scatterers, particularly
the thickness of the graphene elements. Given that the graphene is ideally monolayer,
extremely dense mesh is need. The finite element method (FEM) is used in [11] to study
the graphene-based sensor. FDTD or commercial packages based on FEM use approximate
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radiation conditions and do not take into account the edge condition, which limits the
accuracy of the results. In [13], a graphene antenna at frequencies up to 0.8 THz is proposed.
CST microwave studio analysis software is used for the modelling. In this frequency range,
the resonance frequency is only slightly influenced by the chemical potential and almost
cannot be controlled by electrostatic or magnetostatic biasing.

Approximate methods allow a solution to be obtained in much less computation
time, and some physical effects to be studied analytically, but at the cost of accuracy.
In [14], the graphene patch antenna is considered with the use of the equivalent circuit.
The omnidirectional radiation pattern is comparable to that of the conventional metal
implementations. However, the resonance frequency is controlled by variation of the
chemical potential. In [15], the authors study the graphene bowtie antenna properties for
different values of chemical potential, arm length, relaxation time and substrate thickness
based on the equivalent circuit. In [16], the leaky-wave antennas based on a single dielectric
slab and a double dielectric slab, with an infinite graphene plane or infinite graphene strips
excited by dipole, are investigated. An approximate solution is obtained. The radiation
patterns demonstrate a controllable elevation angle of the main lobe that depends on the
chemical potential of the graphene, accompanied by a noticeable reduction in the maximum
of the main lobe. Plasmon wave propagation along the infinite graphene strip is considered
in [17]. The authors achieved a change in the elevation angle by modulating the value of
the chemical potential of the strip according to a sinusoidal law.

Meshless full-wave methods, such as methods of analytical regularization or integral
equations, have guaranteed convergence and offer controlled accuracy, limited, in principle,
only by the precision of the corresponding programming language, where the home-made
code is created. Employing the functional approach of the Riemann–Hilbert problem,
in [18] the authors effectively inverse the static part of the scattering operator, which
arises in the H-polarized electromagnetic wave diffraction by graphene grating with the
dielectric substrate. In [19], after regularization, the set of the integral equations with
additional conditions is obtained for the pre-fractal grating of impedance strips. The
approach involving the Helmholtz decomposition and the Galerkin method is applied
in [20,21] to both single graphene disks and several layers of graphene disks. As a result,
second kind Fredholm equations are obtained.

The method of singular integral equations (SIEs) with Nystrom-type discretization
schemes is proposed in [22–26] to study the scattering of waves emitted by the magnetic
line source by the dielectric cylinder of circular cross section with graphene strips, and
of the H-polarized waves by the graphene grating inside the dielectric waveguide. The
Nystrom-type algorithms of discretization can be considered as a numerical regularization.

The H-polarization case is of interest (vector
→
H is parallel to the edges of the strips), because

here, unlike in the E-polarization case, plasmon resonances can arise. In this situation,
where natural waves are radiated from the dielectric waveguide due to the scattering by
graphene strips, as in the case of PEC (perfectly electric conducting) analogs, the elevation
angle of the main lobe strongly depends on the excitation frequency and the period. By
varying the chemical potential, it is possible to control a number of characteristics, including
the radiated power and the side-lobes level at a fixed frequency, as well as to change the
plasmon resonance frequency.

In this paper, we consider the radiation of the natural waves of the planar dielectric
waveguide with the infinite graphene plane and with the graphene strip grating. The
propagation constant characterizing the natural wave directly depends on the conductivity
of the graphene plane. Thus, manipulating the chemical potential of this plane will allow
us to regulate the main lobe elevation angle of the radiation pattern. Furthermore, by
manipulating the chemical potential of graphene strips forming the grating, the radiated
power and maximum of the main lobe can be controlled. We should mention that THz
generators are piecemeal and not available on an industrial scale. Our purpose is the
theoretical study of the influence of the chemical potential on the radiation characteristics
with the use of the developed full-wave meshless method.
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Here we have two sub-problems. One is determining the propagation constants of the
natural waves (eigenwaves) of the dielectric waveguide backed by the infinite graphene
plane, which gives a transcendent complex-valued equation. Another is the scattering
problem of these natural waves by the system of finite number of graphene strips placed
on the waveguide. The solution gives a singular integral equation [27].

For graphene, the following boundary conditions can be used [10]:

E+
τ =

1
σ
(H+

τ − H−τ ), (1)

E+
τ = E−τ , (2)

where symbols “±” denote the limit values of the field components above (for “+”) or
below (for “−”) the interfaces. The conductivity of graphene σ can be determined using
the Kubo formalism [28,29].

Spatial dispersion can be neglected for surface waves propagating along the graphene
plane for the considered frequency range and graphene parameters. When spatial disper-
sion is taken into account, one more type of mode appears. However it is extremely lossy
in the band of interest, which greatly limits its use in practical applications and it is not
considered in our paper [30].

2. Solution to the Scattering Problem

Let us consider a planar dielectric waveguide characterized by a width h, with infinite
graphene plane at z = −h and finite number of graphene strips at z = 0. The finite set of

infinite graphene along the x-axis strips we denote as L =
N
∪

n=1
Ln, where N is the number of

strips and Ln is the nth strip. The relative permittivity of the dielectric is ε. The scattering
geometry and notations are presented in Figure 1. The time dependence exp(−iωt) is
omitted, where ω is the angular frequency.
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Figure 1. Structure geometry.

We consider the H-polarized incident natural waves of the waveguide, which propa-
gate from the domain y < 0 to y = +∞. The total field is a superposition of the incident
field, denoted as Hi, and scattered field, denoted as Hs:

Ht = Hi + Hs. (3)

The field is the solution of the Helmholtz equation, with boundary conditions on and
outside graphene (1) and (2), and
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H+
x = H−x , outside ographene, (4)

the radiation and the edge conditions. It is important to mention that this boundary-value
problem has a unique solution.

Both the incident field and the scattered field are currently unknown. We use the decom-
position of the scattered field with the help of Fourier integrals with unknown amplitudes

Hs =



∞∫
−∞

A(θ) exp(ikyθ + ikzγ(θ))dθ, z > 0,

∞∫
−∞

(B(θ) exp(ik1yθ + ik1zγ(θ)) +C(θ) exp(ik1yθ − ik1zγ(θ)))dθ, −h < z < 0,

∞∫
−∞

D(θ) exp(ikθy− ikγ(θ)z)dθ, z < −h,

(5)

where k = 2π/λ and k1 =
√

εk are wave numbers in vacuum and inside the dielectric,
γ(θ) =

√
1− θ2 with the following branch: if Imγ = 0 then Reγ ≥ 0; if Reγ = 0 then

Imγ ≥ 0. The field expressed by (5) satisfies the radiation condition. Inside the waveguide,
the field can be expressed with the help of the sum of its natural waves. From the mathemat-
ical point of view, it means that functions A(θ), B(θ), C(θ) and D(θ) have singularities in
the form of poles. The poles are located at the points, which coincide with the propagation
constants of the natural waves.

Enforcement of the boundary conditions (1), (2) and (4), if z = −h and z = 0, gives the
following dual integral equation

∞∫
−∞

C1(θ) exp(ik1yθ)dθ = 0, y /∈ L, (6)

ik1

∞∫
−∞

Γ(θ)C1(θ) exp(ik1yθ)dξ +
ik(ε + 1)

σZ

∞∫
−∞

C1(θ) exp(ik1yθ)dξ = − (ε + 1)
ε

∂Hinc

∂z
, y ∈ L, (7)

where

Γ(θ) =
ε + 1

ε
γ(θ)

b(θ)− 1
a(θ)− b(θ)− 1

, (8)

A(θ) =
a(θ1)C1(θ1)/

√
ε

a(θ1)− b(θ1)− 1
, (9)

B(θ) =
b(θ)C1(θ)

a(θ)− b(θ)− 1
, (10)

C(θ) =
C1(θ)

a(θ)− b(θ)− 1
, (11)

D(θ) =
d(θ1)C1(θ1)/

√
ε

a(θ1)− b(θ1)− 1
, (12)

a(θ) = 2γ(θ)
γ(θ
√

ε)
√

εΘ(θ)

×
(
ik1γ(θ)(1 + γ(θ

√
ε)σZ) sin(k1hγ(θ)))− k1γ(θ

√
ε)
√

ε cos(k1hγ(θ))
)
,

(13)

b(θ) =
exp(ik1hγ(θ))k1(γ(θ) + γ(θ)γ(θ

√
ε)σZ− γ(θ

√
ε)
√

ε)

Θ(θ)
, (14)

d(θ) =
2k1γ(θ) exp(−ik1hγ(θ

√
ε))

Θ(θ)
, (15)
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Θ(θ) = exp(−ik1hγ(θ))k1(γ(θ) + γ(θ)γ(θ
√

ε)σZ + γ(θ
√

ε)
√

ε), (16)

θ1 = θ/
√

ε, C1(θ) is an unknown function and Z = 120πΩ is the impedance of free space.
To find C1(θ), we reduce (6) and (7) to an SIE.

We should note that Γ(θ) possesses the following asymptotic relation: Γ(θ) ∼ i|θ| −
i

2|θ|
(1+ε+ε2+ε3)

ε(1+ε)2 +O(|θ|−3), if θ → ∞ . As one can see, the first term is increasing and all oth-

ers are decreasing. To the increasing integrand in (6), we use the parametric representation
of the Hilbert pseudo-differential operator [31] and reduce it to the singular integral. For
all non-increasing terms, we collect to the regular part of the kernel-function K(y, ξ). As a
result, the following SIE of the first kind with additional conditions can be obtained:

1
π

PV
∫
L

K(y, θ)G(θ)dξ = − (ε + 1)
ε

∂Hinc

∂z
, y ∈ L, (17)

1
π

∫
Lm

G(θ)dθ = 0, m = 1, 2, . . . , N, (18)

where G(y) = ik1

∞∫
−∞

θC1(ξ) exp(ik1θy)dξ is Fourier transform of C1(θ) with factor ik1θ.

F(y) is up to the constant the currents density on graphene strips. The kernel-function is

K(y, θ) =
1

θ − y
+ ik1

∞∫
0

(η + iΓ(η)) sin(k1η(y− θ))

η
dη +

{
ik(ε + 1)π(σZ0)

−1, i f ξ ≤ y,
0, i f ξ > y,

(19)

and the first term in (19) is singular one. All other terms are regular. We should note that
the second term in (7) equals G(y) (with the constant factor). However, we collect to the
kernel-function as the third term in (19) to obtain an SIE of the first kind rather than the
second kind.

Based on the corresponding theorems, we can state that the solution of (17) and
(18) is unique [32]. To carry out the discretization process, the Nystrom-type method is
employed [26]. From the edge condition it follows that unknown function G(θ) has inverse
square root singularities at the edges of the strips. Thus, the appropriate quadrature rule
with nodes at the zeros of the Chebyshev polynomials of the first kind is applied, while
the collocation points are the zeros of the Chebyshev polynomials of the second kind.
Theorems formulated in [32] confirm the convergence.

3. Solution to the Natural Waves Problem

Let us consider natural waves, which propagate from the region y = −∞ in the
direction of y = +∞. The y-dependence is exp(ikβ|y|) . Reβ > 0 and Imβ > 0, β are
unknown propagation constants of the natural wave. As the graphene conductivity is a
complex-valued function, the graphene plane absorbs the electromagnetic field and the
propagation constants are complex values.

To obtain the field of natural wave, one can represent it as plane waves in each domain
z > 0, 0 > z > −h and z < −h [33]:

Hx =


e exp(ikzγ(β)), z > 0,
f cos(k1zγ(β/

√
ε)) + sin(ik1zγ(β/

√
ε)), 0 > z > −h,

g exp(−ikzγ(β)), z < −h.
(20)
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The term exp(ikβ|y|) is omitted. For the square root, we take the branch Reγ < 0 or
Imγ > 0. Then the amplitude of the field vanishes if y→ ∞ or |z|→ ∞ .

After enforcement of the boundary conditions on the graphene plane (1) and (2), as
well as at the vacuum-dielectric interface (2) and (4), one can obtain relationships between
amplitudes in each domain and the transcendental equation relatively propagation constant.

As mentioned above, the Fourier amplitudes in (5) and, consequently, the terms within
the integral in (19), have poles at the points, which we denoted as β. Thus the equation
relatively propagation constant is

(η + iΓ(η)) sin(k1η(y− θ))

η
= ∞ (21)

or
a(θ)− b(θ)− 1 = 0. (22)

4. Numerical Results
4.1. Study of Natural Waves

The numerical solution of (22) and the transcendental equation obtained from (20)
after application of the boundary conditions are identical. This can be considered as
numerical validation.

The studied waveguide consists of two sub-structures, which support natural waves.
One is a dielectric waveguide. The other is an infinite graphene plane. The set of natural
waves splits into two families, which correspond to each sub-structure. We denote them as
H1 and P1. Such splitting is also observed in other types of dielectric structures covered
with graphene (see, for example, [34]). Figures 2 and 3 show propagation constants of
the dominant (in the H-polarization case) natural waves H1 and P1 vs. the frequency for
various values of the chemical potential and two values of the width of the dielectric slab,
which forms the waveguide. Wave H1 is the natural wave of the dielectric waveguide,
which experiences slight perturbation because of the presence of the graphene plane. Wave
P1 is a plasmon natural wave. Its propagation constant significantly depends on the value
of the chemical potential and is almost independent on the width of the dielectric slab.
Field distribution of these two waves is represented in Figure 4. The waveguide walls are
shown as vertical green lines. The electric and magnetic fields of plasmon wave P1 have
visible maximum near the graphene plane; this is surface wave, which propagates along
the graphene sheet. Magnetic field of H1 has maximum approximately at the center of
the waveguide.
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The strong dependence of the plasmon wave propagation constant on the chemical po-
tential makes it preferable in our further analysis of the tunable properties of the waveguide
loaded with graphene strips.

4.2. Scattering of the Natural Waves

Let us consider the scattering of the natural wave P1. The maximum of the fields of
plasmon wave is concentrated near the graphene plane. The amplitude vanishes exponen-
tially when moving away from the graphene plane. To obtain effective coupling of this
wave with graphene strips, the width of the dielectric waveguide should be minimal.

The graphene is able to absorb the electromagnetic field. The amplitude of the natural
waves of the waveguide decreases if y increases. We suppose that incident natural wave
has unit power at the edge of the first graphene strip.

Let us denote the chemical potential of the strips as µcs. The chemical potential of the
graphene plane is, as before, µc. Figures 5–7 show dependences of the radiated power on
the frequency in the case of P1 natural wave incidence. The number of strips is taken so that
the incident wave is almost attenuated along the length of the structure at the frequency
band of interest, N = 5. In periodic gratings with dielectric substrate, the grating-mode
(or lattice-mode) resonances can arise [18,23–26]. Their frequency depends on material
parameters of the substance of the waveguide and the period. Near these resonances,
minima of the radiation are observed. The current distribution is in-phase on the strips.
The maximum of radiation is at ϕ = 90◦. At the frequencies higher than the frequency of
the grating-mode resonance, the second lobe appears. We denote the first such resonance
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as G1. Graphene strips are capable of maintaining plasmon resonances within the THz
range. Their frequency is influenced by the parameters of graphene strips, including width
and conductivity. Near plasmon resonances, the maxima of the radiation are observed. As
one can see in Figures 5–7, in the case of simultaneous excitation of the plasmon and G1
resonances, the radiation level still significantly decreases. Thus, the preferable frequency
band is near the plasmon resonances but up to G1.
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value of the frequency for which the radiation patters will be presented.
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If we change the value of the chemical potential of the infinite graphene plane, the
propagation constant and, as a result, the resonance frequency of G1 is also changed. With
the decrease in the chemical potential of infinite graphene plane, the attenuation constant
of plasmon mode and the absorption of the transferred power increases. The chemical
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potential of graphene can be manipulated by electrostatic field application. However,
for thin dielectric slab, the field applied to the infinite graphene plane can also affect
chemical potential of graphene strips. At present, realistic values of the chemical potential
of graphene are from 0 eV up to 1 eV. These considerations prompted us to take the chemical
potential of the infinite graphene plane in the interval 0.6 . . . 1 eV.

Figures 8–10 show normalized radiation patterns (in amplitude) for different values of
the chemical potential of graphene. For clarity, in Figure 10, we also show the polar plot.
The value ϕ = 0◦ corresponds to the direction of the incidence of the wave. The values of
the frequency are taken so that the radiated power is almost the same for µc = 0.6 eV and
µc = 1 eV (see Figures 5–7, marked as circles). By manipulating the chemical potential of
the strips, we control the radiated power, as in the case without graphene plane [23,24].
However, manipulating the chemical potential of the infinite graphene plane enables us to
change the main lobe elevation angle of the radiation patterns. In the considered case, the
width of the interval of variation of the elevation angle is about 35◦. A further decrease in
the graphene plane chemical potential µc results in the noticeable decrease in the radiated
power because of absorption of the natural wave during its propagation.
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In Figures 8–10, for 0◦ < ϕ < 180◦ (in the domain above the waveguide), the increase
in the chemical potential of graphene plane leads to a leftward shift of the left peak.
For 180◦ < ϕ < 360◦ (in the domain below the waveguide), the increase in the chemical
potential leads to a rightward shift of the peak. It can be explained if one considers Re(β)
at a fixed frequency for different values of the chemical potential of the graphene plane
(see Figure 3a). Re(β) decreases monotonically as µc increases. Additionally, as one can
observe from Figures 5–7, the position of the grating-mode resonance, for which the current
distribution is in-phase on the strips and the elevation angle of the main lobe is 90◦, tends
to be at the higher values of the frequency.

Rotation angle value can be increased if we consider a frequency greater than the
frequency of the resonance G1. Figure 11 shows normalized radiation patterns (in ampli-
tude) for a relatively small width of the waveguide, h = 10 µm. Here, the width of the
variation interval of the main lobe is about 46◦ for µc = 0.6 . . . 1 eV. For such value of the
slab width, the decrease in the amplitude of the main lobe is not significant near resonance
G1. Resonance G1 rises for µc ≈ 0.77 eV.
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d = 10 µm, l = 50 µm, N = 5, ε = 2.25 and P1 natural wave incidence.

Finally, in Figure 12 we presented normalized radiation patterns (in amplitude) for the
case of the natural wave H1 incidence. As the attenuation of this wave is much lower than
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that of wave P1, it makes sense to choose a larger number of strips, N = 20. The propagation
constant of the wave H1 slightly depends on the chemical potential of graphene plane. As a
result, the elevation angle of the main lobe is nearly independent of the chemical potential.
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Figure 12. Normalized radiation patterns (in amplitude) for h = 40 µm, f = 3.7 THz, µcs = 1 eV,
d = 10 µm, l = 50 µm, N = 20, ε = 2.25 and H1 natural wave incidence.

Our study shows that the influence of the temperature T on the scattering characteris-
tics is negligible.

5. Conclusions

The scattering of the H-polarized natural waves of the dielectric waveguide with
graphene plane by finite number of graphene strips and complex-valued eigenvalue prob-
lem is considered. The Nystrom-type method of discretization of the singular integral
equation is used. Our solution is full-wave and meshless. The convergence is guaranteed
by the corresponding theorems.

The ensemble of natural waves of the considered waveguide divides into two distinct
categories: plasmon waves, which exhibit the fields compressed to the infinite graphene
plane, and waves of dielectric waveguide, which experience slight perturbation by the
graphene plane. The propagation constant of the plasmon wave demonstrates significant
dependence on the chemical potential. This wave, scattered by the finite number of
graphene strips, forms a tunable radiation pattern. The manipulation of the chemical
potential of the graphene strips enables us to control the radiated power. The variation
of the chemical potential of the infinite graphene plane allows us to control the main lobe
elevation angle. Depending on the width of the dielectric slab, in the considered cases
the width of the interval of variation of the main lobe elevation angle is about 35◦ or 46◦.
Taking into account the exponential decay of the field of the plasmon natural wave in the
transverse direction, it is desirable to use a thin dielectric substrate. The frequency band
should be chosen near the first plasmon resonance arising on the graphene strips, as this is
where the radiation is maximal.

The further analysis can focus on the multilayer system. Considering that unbiased
graphene is almost transparent and that the elevation angle of the main lobe depends on
the period, graphene layers of strip gratings with different periods can be considered to
further increase the range of angle variation.
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