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Abstract: Remotely operated vehicles (ROVs) and unmanned aerial vehicles (UAVs) provide a
solution for dam and bridges structural health information acquisition, but problems like effective
damage-related information extraction also occur. Vision-based crack detection methods can replace
traditional manual inspection and achieve fast and accurate crack detection. This paper thereby
proposes a lightweight, real-time, pixel-level crack detection method based on an improved instance
segmentation model. A lightweight backbone and a novel efficient prototype mask branch are
proposed to decrease the complexity of the model and maintain the accuracy of the model. The
proposed method attains an accuracy of 0.945 at 129 frames per second (FPS). Moreover, our model
has smaller volume, lower computational requirements and is suitable for low-performance devices.

Keywords: crack detection; instance segmentation; underwater crack detection; YOLOv8

1. Introduction

The rapid development of the water industry has seen more and more bridges and
dams being constructed. These buildings are susceptible to cracks in their structures due to
adverse factors such as ageing materials, hydraulic fracturing and water chemical corrosion,
which in turn accelerate the damage to the buildings [1,2]. Reliable and effective detection
of cracks in buildings, as well as reinforcement and repair of buildings, is essential to ensure
their proper use [3]. Manual inspection has become the traditional solution for detecting
cracks in dams, but with a large number of bridges and dams, detecting cracks in the main
structure of bridges requires aerial work, and detecting underwater cracks in dams requires
emptying the reservoir, making traditional manual inspection methods time consuming
and a security risk.

The need for aerial and underwater operations has led to the development of remotely
operated vehicles (ROVs) and unmanned aerial vehicles (UAVs) [4–6]. ROVs and UAVs are
often equipped with high resolution visible light cameras, self-contained light sources and
some data storage. They are capable of replacing manual inspection for a wide range of
underwater operations and aerial operations in harsh environments. Figure 1 shows a re-
motely operated vehicle in operation. During a complete ROVs or UAVs inspection mission,
numerous images and videos related to structural damage to buildings can be obtained.
However, relying solely on manual observation to extract damage-related information
from this video data is a costly method. In addition, the accuracy of manual observation
results depends on subjective human judgement. Manual observations have a high rate of
misjudgment due to the complex underwater filming environment. Combining ROVs and
UAVs with computer vision-based crack detection methods can replace traditional manual
inspection and achieve fast and accurate crack detection.

Vision-based crack detection methods fall into two routes, one based on image pro-
cessing techniques and the other on deep learning techniques. Image-processing-based
crack detection techniques often binarize image pixels according to specific rules in order to
distinguish cracked areas and non-cracked areas. Reference [7] summarises the history and
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implementation of image-processing-based crack detection methods and divides traditional
rule-driven crack detection methods into threshold-based crack detection methods and
edge-based crack detection methods. Traditional crack detection algorithms usually require
pre-processing of images such as denoising, and it is difficult for a single algorithm to accu-
rately extract crack features, often requiring a combination of multiple algorithms, which is
computationally expensive, slow to detect and does not have real-time detection capability.
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Figure 1. A remotely operated vehicle (ROV).

The rapid development of deep learning techniques has led to the rapid develop-
ment of computer vision tasks such as object detection [8], semantic segmentation [9]
and instance segmentation [10,11]. Deep-learning-based crack detection methods have
also gained rapid development. Deep-learning-based crack detection algorithms achieve
accurate detection of cracks in buildings by learning crack features from a large number
of crack images and capturing the features of cracks in different forms and different con-
texts. This method has the advantages of high accuracy and good real-time performance.
Reference [12] proposed an automatic concrete defect identification method based on con-
volutional neural network models and interpreted the obtained results in a form that is
humanly explainable. Reference [13] proposed a concrete defect identification method
based on a one-stage object detection model, which had high accuracy and real-time de-
tection capabilities. References [14,15] provide detailed evaluations of the performance
of object detection models and semantic segmentation models for automated detection.
Reference [16] proposed a crack detection method based on frequency-domain images
and one-dimensional convolutional neural networks, which is based on sliding window
extraction of images, classification of cracks in a single image within the window and then
final stitching of the output image, but this method has a slow detection speed of 5–7 s per
image. Reference [17] designed a crack detection method based on a semantic segmentation
algorithm, which enables pixel-level detection of cracked regions. Their method performs
pixel classification of the full image, which loses background information of images, and it
does not have real-time detection capabilities. References [18,19] proposed crack detection
methods based on you only look once (YOLO). Their method has some improvements to the
algorithms and is able to label cracks using a bounding box in real-time. The introduction
of a transformer [20] into YOLOv5 can improve the performance of the model, however,
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the transformer based on the self-attention mechanism is computationally intensive and its
introduction into the model will increase the size of the model, increase the model inference
time and is not cost-effective. Reference [21] proposed crack detection methods based
on object detection and semantic segmentation, respectively. Using the dense annotation
method for labelling leads to dense target boxes in the predicted result image, which affects
the presentation of cracked regions in the image. The semantic segmentation-based crack
detection method is able to detect cracked regions at the pixel level, but classifying the full
image pixels leads to the loss of image background information. Since cracks usually have
different degrees of cracking and random shapes, and many cracks have small degrees of
cracking and long crack trajectories, simply using a bounding box to frame the cracks has
a weak detection effect, which is not enough to display the size and track of the cracks.
The instance segmentation algorithm combines the features of both object detection and
semantic segmentation and is able to box out objects and classify object class at the pixel
level, which is more suitable for the surface crack detection task. Reference [22] proposed
a crack detection method based on Mask R-CNN [23], but the Mask R-CNN model is
complex, computationally intensive and does not have the capability of real-time detection
on low performance devices.

To address the above issues, this study proposes a crack detection method based on an
improved instance segmentation model: LCA-YOLOv8-seg. With high accuracy, low com-
putation and small size, our model is friendly to hardware devices with low performance
and our model facilitates further deployment to mobile devices. Our model uses a lighter
LCANet backbone, which is based on a depthwise separable convolution and efficient
channel attention (ECA) [24] mechanism, with the advantages of light weight and high
accuracy. In addition, this study optimises the head structure of YOLOv8-seg by adopting
a new module, ProtoC1, which reduces the computational cost of the model. It does not
affect the accuracy of the mask. Our model shows a slight decrease in the mAP0.5 metric
compared to the baseline model YOLOv8n-seg, while the parameters, weights and GFLOPs
of our model all decrease substantially. At the same time, to further improve the robustness
of the model and reduce training costs, transfer learning technology is introduced.

The contributions of this study can be summarised as follows:

• A crack detection method based on an improved one-stage instance segmentation
model LCA-YOLOv8n-seg is proposed. Our method is able to frame cracks and depict
crack regions at the pixel level. Our method is real-time, highly accurate, small in
volume and friendly to low performance devices.

• A new backbone network LCANet and a novel ProtoC1 module are proposed, which
reduces the model volume drastically and has high detection accuracy.

2. Method

Our proposed real-time crack detection method is based on an improved YOLOv8n-
seg model, LCA-YOLOv8n-seg, which enables real-time crack detection and accurately
depicts the crack area in pixel widths. The LCA-YOLOv8n-seg model has the advantages
of small size, high detection accuracy and low detection delay. Figure 2 shows the overall
structure of our method. As shown in Figure 2, the first step is to build a crack dataset,
which includes thousands of crack images of bridges and dams, and then divide the dataset
into training sets, validation sets and test sets. The training and validation datasets are
passed to a preprocessing stage that marks the cracked regions of the image and uses data
augmentation only on the training dataset. The pre-trained weights of the model were
obtained through transfer learning; then, the training and validation process of the crack
detection model LCA-YOLOv8-seg was carried out, and the performance of the method
was finally tested in the test dataset.
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2.1. Crack Detection Network Architecture
2.1.1. Overview of YOLOv8-Seg

The YOLO (you only look once) series algorithms are one-stage object detection
algorithms with the advantages of fast detection speed and high accuracy. The latest
algorithm of the YOLO series is YOLOv8 [25], which introduces a series of changes: the
C3 structure is replaced by the C2f structure with a richer gradient flow; the head part is
replaced by the current mainstream decoupling head structure, and it is changed from
anchor-based to anchor-free; task aligned assigner and distribution focal loss are introduced
in the loss calculation. The above changes have greatly improved the detection accuracy
of YOLOv8.

YOLOv8-seg is the instance segmentation model of yolov8. Compared with the object
detection model, the instance segmentation model has a prototype mask branch and mask
coefficients in the head structure, which are used to generate an instance mask. This method
was proposed by YOLACT [26]. YOLOv8-seg is divided into five models: YOLOv8n-seg,
YOLOv8s-seg, YOLOv8m-seg, YOLOv8l-seg, YOLOv8x-seg. We chose the smallest model,
YOLOv8n-seg, as the baseline.

2.1.2. LCA-YOLOv8-Seg

The specific structure of the LCA-YOLOv8n-seg model is shown in Figure 3. The LCA-
YOLOv8n-seg adopts a new lightweight backbone network, LCANet, combined with a path
aggregation feature fusion structure, to achieve effective extraction and fusion of multi-level
image features. Meanwhile, we designed a novel efficient prototype mask branch, ProtoC1,
which has fewer parameters and calculations. By using the new lightweight backbone
network and the more efficient ProtoC1 module, the volume and inference time of the
model were reduced.
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2.2. New Backbone: Lightweight Channel Attention Network (LCANet)

In order to reduce the model volume while maintaining high detection accuracy, we
designed a new lightweight backbone: LCANet. The structure of LCANet is shown in
Figure 3, which consists of 1 Conv module and 10 DWConv blocks. The Conv module
include a 2D convolution, batch norm and RELU activation function. The DWConv block
consists of a depthwise separable convolution, residual structure, efficient channel atten-
tion(ECA) module and RELU activation function. The specific structure of the DWConv
block is shown in Figure 4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 3. The structure of LCA-YOLOv8n-seg. 

2.2. New Backbone: Lightweight Channel Attention Network (LCANet) 

In order to reduce the model volume while maintaining high detection accuracy, we 

designed a new lightweight backbone: LCANet. The structure of LCANet is shown in 

Figure 3, which consists of 1 Conv module and 10 DWConv blocks. The Conv module 

include a 2D convolution, batch norm and RELU activation function. The DWConv block 

consists of a depthwise separable convolution, residual structure, efficient channel atten-

tion(ECA) module and RELU activation function. The specific structure of the DWConv 

block is shown in Figure 4. 

 

Figure 4. The structure of DWConv block. 

Standard convolution uses filters in the format of K × K × C. A single filter can per-

form feature extraction for each channel and feature fusion between multiple channels. 

Depthwise separable convolution consists of a depthwise convolution, which applies a 

one-dimensional convolution to each channel of the input tensor for feature extraction in 

a single channel, and a point convolution, which applies a 1 × 1 multi-dimensional convo-

lution to combine the feature maps extracted by the depthwise convolution. The using of 

depthwise separable convolution drastically reduced the computation and model size of 

the network. Figures 5 and 6 illustrate the implementation of standard convolution and 

depthwise separable convolution, respectively. 

Figure 4. The structure of DWConv block.

Standard convolution uses filters in the format of K × K × C. A single filter can
perform feature extraction for each channel and feature fusion between multiple channels.
Depthwise separable convolution consists of a depthwise convolution, which applies a
one-dimensional convolution to each channel of the input tensor for feature extraction
in a single channel, and a point convolution, which applies a 1 × 1 multi-dimensional
convolution to combine the feature maps extracted by the depthwise convolution. The
using of depthwise separable convolution drastically reduced the computation and model
size of the network. Figures 5 and 6 illustrate the implementation of standard convolution
and depthwise separable convolution, respectively.
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A standard convolutional layer takes as input a HA × WA × M feature map A and
produces a HB × WB × N feature map B, where HA, WA is the spatial height and width of
an input feature map, M is the number of input channels, HB, WB is the spatial height and
width of an output feature map and N is the number of output channels. The standard
convolutional layer is parameterized by filter K of the format HK × WK × M × N, where
HK, WK is the size of the convolving kernel, M is the number of input feature map channels
and N is the number of filters and output feature map channels. The output feature map of
standard convolution is usually calculated as:

Ok,l,n = ∑
i,j,m

Ki,j,m,n · Ak+i−1,l+j−1,m (1)

The computational cost of a standard convolution is:

DK · DK · M · N · HA · WA (2)

where the computational cost depends multiplicatively on the number of input channels
M, output channels N, the kernel size HK × WK and the feature map size HA × WA.

Depthwise convolution with one filter per input channel (input depth) can be written as:

Ô = ∑
i,j

K̂i,j,m · Ak+i−1,l+j−1,m (3)

where K̂ is the depthwise convolutional kernel of size HK × WK × M, where the mth filter
in K̂ is applied to the mth channel in A.

Depthwise convolution has a computational cost of:

HK · WK · M · HA · WA (4)
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The 1 × 1 (pointwise) convolution has a computational cost of:

1 · 1 · M · N · HA · WA (5)

The combination of depthwise convolution and 1 × 1 (pointwise) convolution is called
depthwise separable convolution, and the depthwise separable has a computational cost of:

HK · WK · M · HA · WA + M · N · HA · WA (6)

which is the sum of the depthwise and 1 × 1 pointwise convolutions.
By expressing convolution as a two-step process of filtering and combining we get a

reduction in computation of:

HK ·WK ·M·HA ·WA+M·N·HA ·WA
HK ·WK ·M·N·HA ·WA

= 1
N + 1

HK ·WK

(7)

In DWConv blocks, we use depthwise separable convolutions with kernel size 3 and
5, which results in 8–9 times less computation than standard convolutions. The specific
structure of LCANet is shown in Table 1. Replacing the backbone with LCANet, although
the accuracy of the model slightly decreases, the volume of model becomes smaller.

Table 1. The specification for LCANet. The dblock is DWConv block. RE means RELU function.

Module Input Output Mid k s NL

Conv 3 8 - 3 2 RE
dblock 8 8 12 3 2 RE
dblock 8 12 54 3 2 RE
dblock 12 12 66 3 1 RE
dblock 12 24 72 5 2 RE
dblock 24 24 180 5 1 RE
dblock 24 24 90 5 1 RE
dblock 24 24 108 5 1 RE
dblock 24 48 216 5 2 RE
dblock 48 48 432 5 1 RE
dblock 48 48 432 5 1 RE

2.3. More Efficient Prototype Mask Branch: ProtoC1

The prototype mask branch and mask coefficients are introduced to make the one-
stage object detection model into a one-stage instance segmentation model. In the baseline
model, the prototype mask branch is implemented with a fully convolutional network
(FCN), which include one upsampling module and three Conv modules, in which there are
two 2D convolutions with kernel size 3 and one 2D convolution with kernel size 1, named
Proto. The input feature map is scaled up to twice its original size, and a feature map with
k channel is outputted.

Although the addition of the prototype mask branch makes the one-stage object
detection model become a segmentation model, it also makes the detection speed decrease
and the model volume increase. In the LCA-YOLOv8-seg model, we redesign the prototype
mask branch.

According to the implementation of convolution, the larger the kernel size of convolu-
tion is, the smoother the image will be, but at the same time, the calculation of convolution
will increase. The same applies to the generation of an instance mask. In an experimental
study, we found that using a 2D convolution with kernel size 1, while significantly reducing
the parameters and calculations of the prototype mask branch, resulted in a big loss of
edge detail and accuracy in the instance mask. The use of 2D convolution with kernel size
3 does not result in a big loss of mask detail, but the parameters and calculation of the
branch is bigger than the branch using 2D convolution with kernel size 1. In order to strike
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a balance between the calculation cost of the prototype mask branch and the quality of the
instance mask, we proposed a new prototype mask branch structure, named ProtoC1, only
including an upsampling module and a Conv module with one 2D convolution with kernel
size 3. The new prototype mask branch ProtoC1 keeps the quality of the instance masks
the same as the original branch, significantly reduces the parameters and complexity in the
prototype mask branch and speeds up the processing speed of the prototype branch. The
specific structure of Proto and ProtoC1 is shown in Figure 7.
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2.4. The Transfer Learning Strategy

The introduction of a new backbone network and a novel prototype mask branch
requires training a new convolutional network architecture from scratch. This is a process
of iterative trial-and-error and finding the optimal parameters, which requires constant
iterative parameter adjustment of the network structure and hyperparameters. In addition,
unfavorable factors such as underwater shooting scenes make it difficult to obtain high-
quality images of underwater dam cracks. In order to solve these problems, transfer
learning (TL) technology was introduced, which utilizes prior knowledge and feature
transfer to reduce the training cost.

As shown in Figure 8, model pre-training is first performed on the public dataset,
feature learning is performed, and then feature migration is performed, and secondary
model training is performed on the crack dataset. Using the cross-domain transfer learning
strategy to adjust the model and transfer parameters can reduce the data dependence of
the model, improve the robustness of the model and reduce the training cost.
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3. Training and Testing Results
3.1. Crack Dataset
3.1.1. Underwater Dam Crack Images

The underwater concrete crack pictures come from the video taken by the ROVs in the
process of crack detection. Part of the pictures in the video are captured. There are a total
of 600 underwater concrete crack pictures, including irregular crack pictures with different
degrees of cracking. The image is 704 × 480 pixels. Some images of an underwater dam
concrete crack dataset are shown in Figure 9.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 18 
 

 

3. Training and Testing Results 

3.1. Crack Dataset 

3.1.1. Underwater Dam Crack Images 

The underwater concrete crack pictures come from the video taken by the ROVs in 

the process of crack detection. Part of the pictures in the video are captured. There are a 

total of 600 underwater concrete crack pictures, including irregular crack pictures with 

different degrees of cracking. The image is 704 × 480 pixels. Some images of an underwater 

dam concrete crack dataset are shown in Figure 9. 

 

Figure 9. Examples of underwater dam concrete crack. 

3.1.2. Concrete Crack Images for Classification [27] 

The concrete crack dataset contains a total of 10,000 images of concrete surface cracks 

with different degrees of cracking. The surface cracks are divided into three categories: 

more cracked, moderately cracked and less cracked. Also included in the dataset images 

are various disturbances that may be encountered in realistic scenes, such as cigarette 

butts, dust, etc. The resolution of the dataset images is 227 × 227. A total of 600 images 

were selected from this dataset in a balanced manner according to different degrees of 

cracking. Some images of the dataset are shown in Figure 10. 

 

Figure 10. Examples of crack images. 

3.2. Data Pre-Processing and Data Augmentation 

The locations of the cracks were manually labelled using the labelling software 

LabelMe (http://labelme.csail.mit.edu/Release3.0/) to form our training dataset. Figure 11 

shows the pixel-level labelling process for the crack images. As observed from Figure 11, 

the crack area of the picture is marked using LabelMe software and saved as a JSON file. 

Then, the JSON file is converted to a TXT file via a program for model training. 

Figure 9. Examples of underwater dam concrete crack.

3.1.2. Concrete Crack Images for Classification [27]

The concrete crack dataset contains a total of 10,000 images of concrete surface cracks
with different degrees of cracking. The surface cracks are divided into three categories:
more cracked, moderately cracked and less cracked. Also included in the dataset images
are various disturbances that may be encountered in realistic scenes, such as cigarette butts,
dust, etc. The resolution of the dataset images is 227 × 227. A total of 600 images were
selected from this dataset in a balanced manner according to different degrees of cracking.
Some images of the dataset are shown in Figure 10.
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3.2. Data Pre-Processing and Data Augmentation

The locations of the cracks were manually labelled using the labelling software La-
belMe (http://labelme.csail.mit.edu/Release3.0/) to form our training dataset. Figure 11
shows the pixel-level labelling process for the crack images. As observed from Figure 11,
the crack area of the picture is marked using LabelMe software and saved as a JSON file.
Then, the JSON file is converted to a TXT file via a program for model training.

http://labelme.csail.mit.edu/Release3.0/
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Figure 11. Flowchart of the labelling process.

To improve the diversity and richness of the data, several data augmentation strategies
are utilized in the implementation, including: Moasic, augment HSV, random affine with
0.5 of scale ratio and 0.1 translation ratio and random horizontal flip with 50% probabil-
ity. Meanwhile, the data augmentation is only applied during the model training phase,
no data augmentation is used on the validation set. Figure 12 shows the images after
data augmentation.
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3.3. Implementation Details

The model was trained for 800 epochs with pre-trained weights until the model
converged. The input image size is 448 × 448, and the training batch size is 8. As with the
hyperparameter settings of YOLOv8n-seg, we used an SGD optimiser with a momentum of
0.937 and a weight decay of 0.0005. For the learning rate, it was set to 0.001 for the first three
warm-up cycles and then reached 0.01 and kept shrinking to 0.0001 until the last epoch.

All tests in this paper were finished on the NVIDIA RTX3090 GPU.

3.4. Evaluations Metrics

During the experiments in this paper, we used mAP0.5 and mAP0.5−0.95 to measure the
box and mask accuracy of the model and inference time to measure the inference speed of
the model. mAP0.5 and mAP0.5−0.95 can be described as:

mAP0.5 =
1
nc

∫ 1

0
P(R)dR (8)

mAP0.5−0.95 = avg(mAPi), i = 0.5 : 0.05 : 0.95 (9)

where nc denotes the number of the classes, P represents precision and R represents the
recall, and they satisfy:

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

where TP is true positive, which represents the number of the prediction boxes whose
IoU > 0.5; FP is false positive, which represents the number of the prediction boxes
whose IoU ≤ 0.5; and FN is false negative, which represents the number of the labels
without prediction.

In addition, weights, parameters and GFLOPs were used to evaluate the complexity
of the model.

3.5. Experimental Results

The curves of the performance of the model during the experiment are shown in Figure 13.
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The final experimental results of our model are shown in Table 2. We used the same
dataset on YOLOv8n-seg, YOLOv8s-seg, YOLOv8m-seg, YOLOv7-seg and Mask R-CNN
as a comparison, and the experimental results are also shown in Table 2.

Table 2. Experimental results of different models.

Model Weight Parameters GFLOPs mAPbox
0.5 mAPmask

0.5 FPS

YOLOv8n-seg 7.15 M 3409 K 12.4 0.974 0.967 125
YOLOv8s-seg 23.62 M 11,863 K 41.9 0.992 0.989 113
YOLOv8m-seg 56.83 M 27,286 K 109.6 0.997 0.995 92
YOLOv7-seg 72.58 M 37,847 K 149 0.998 0.997 56
Mask R-CNN 169.45 M 43,970 K 134 0.996 0.998 39

LCA-Yolov8-seg 4.36 M 2045 K 6.1 0.945 0.933 129

In Table 1, the best result of each evaluation metrics is bolded.

As can be seen from the Table 2, all models perform well for the crack detection task,
and the larger the model size, the higher the detection accuracy. Compared with the large
model, our model has obvious advantages in size and calculation. Our model achieves a
large reduction in volume and calculation with a small performance reduction, which is
friendly to low-performance devices. Compared with the baseline model YOLOv8n-seg,
our model has a 3% drop in detection accuracy, a 39% drop in weight, a 40% drop in
parameters and a 51% drop in GFLOPs. Our model has the obvious advantage of small size,
while maintaining high crack detection accuracy, and has real-time detection capability.

3.6. Crack Detection Results

Four crack images with different crack degrees and different environments were input
into our model to verify the crack detection performance. The surface crack detection
results of our model are shown in Figure 14. Our model accurately identified the locations
and shapes of the cracks in all four images and detected surface cracks of varying degrees
with good results.
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4. Comparative Experiment and Ablation Study
4.1. Comparison of Different Crack Detection Method

Three crack images were input into crack detection methods with different algorithms,
and a comparison of the crack detection results of different algorithms is shown in Figure 15.
The Canny edge detector is able to detect and display the edges of cracked and non-cracked
areas, but its detection results are noisy and the detection speed is slow, so it is not suitable
for real-time crack detection. The crack detection method based on object detection shows
the confidence and labelling of the cracks and uses a target box to frame the entire crack,
but does not depict the exact crack area. When the trajectory of the crack is tilted, the target
box becomes large and its detection effect will appear weaker, such as in picture (a). Our
method is able to display the confidence and labelling of the detected cracks, as well as
being able to frame the cracks using a target box and depict the entire area of the crack at
pixel level. It is clear that our method is better suited to the task of crack detection.

4.2. Comparison of Performance and Instance Mask of Different Prototype Branches

We respectively replaced the Proto module of YOLOv8n-seg and YOLOv8m-seg with
ProtoC1 for comparison. The comparison of performance and instance mask is shown in
this section.

4.2.1. Comparison of Performance of Different Proto Modules

As shown in the Table 3, after the YOLOv8m-seg model (using the standard Proto mod-
ule with 256 channels of feature maps) used our proposed protoc1 structure, the GFLOPs
of the model decreased by 18.8, a 17% decrease, while the mAP0.5 of the mask decreased
by 0.3%, almost no drop, and the mAP0.5−0.95 of the mask decreased by 1.2%. With the
smallest model YOLOv8n-seg using our proposed ProtoC1 structure, the model almost has
the same performance, but the GFLOPs of the model decreased by 14%, and the model
complexity is reduced. Compared with the Proto module used by YOLOv8n-seg (with
64 channels in the middle feature maps), our proposed ProtoC1 module reduces the depth
and width of the network structure, which makes the prototype branch more lightweight.
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Table 3. The comparison of YOLOv8n-seg and YOLOv8m-seg model using different Proto modules.

Module Layer Weight Parameters GFLOPs mAPmask
0.5 mAPmask

0.5−0.95

YOLOv8m-seg(Proto) 331 41.82 M 27,286 K 109.6 0.995 0.785
+ProtoC1 325 40.51 M 26,671 K 90.8 0.993 0.778

YOLOv8n-seg(Proto) 261 7.15 M 3409 K 12.4 0.967 0.716
+ProtoC1 255 7.04 M 3352 K 10.7 0.966 0.713

+ProtoC1(k = 1) 255 7.01 M 3336 K 9.9 0.928 0.638

4.2.2. Comparison of Instance Mask of Different Proto Modules

The ProtoC1 (k = 1) structure is able to further reduce the parameters and computation
of the model, but in our experiments, we found that using a 2D convolution of kernel size 1
reduces the accuracy of the instance mask, the mAP0.5−0.95 of the mask decreased 7.5%, so
we discarded this structure and used this structure as a comparison.

The comparison of crack detection results of the YOLOv8n-seg model using the default
Proto module, ProtoC1 module, and ProtoC1 (k = 1) module is shown in Figure 16. We can
see that using the ProtoC1 (k = 1) structure results in roughness at the edges of the instance
mask and a decrease in mask accuracy. The YOLOv8n-seg model using the ProtoC1 module
generates an instance mask with smooth edges and the same mask accuracy as the Proto
model, while our proposed ProtoC1 module is more lightweight.
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4.3. Ablation Study

There are two improvement measures in our model, including: replacing the backbone
with LCANet and replacing Proto with a ProtoC1 module. To verify the effect of these
measures on our model, an ablation experiment is undertaken in this paper. The results
of the ablation study are shown in Table 4. It can be observed from the experimental
data that, by replacing the Proto module of YOLOv8n-seg with ProtoC1, the detection
accuracy is almost the same, while the model complexity and computation are reduced.
By replacing the backbone of YOLOv8n-seg with LCANet, since LCANet uses 10 dblocks
and reduces the channels of feature maps, the detection accuracy of the model is reduced
by 3% and the layers of the model are increased by 15, while the GFLOPs of the model
are reduced by 4.6, which is 37%, and the weights and parameters of the model are also
greatly reduced. Compared with the baseline model YOLOv8n-seg, our model reduces
the detection accuracy by 3% but greatly reduces the model volume, which is friendly to
low-performance devices. Furthermore, the introduction of transfer learning (TL) reduces
the model training cost and enhances its robustness, resulting in a slight increase in model
detection accuracy.
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Table 4. The experiment result of ablation study.

Module Layers Weight Parameters GFLOPs mAPbox
0.5 mAPmask

0.5 FPS

YOLOv8n-seg 261 7.15 M 3409 K 12.4 0.974 0.967 125
+ProtoC1 255 7.04 M 3352 K 10.7 0.974 0.966 125
+LCANet 276 4.48 M 2113 K 7.8 0.943 0.932 128

LCA-YOLOv8-seg 270 4.36 M 2045 K 6.1 0.942 0.929 129
+TL 270 4.36 M 2045 K 6.1 0.945 0.933 129

5. Conclusions

Accurate identification and quantification of cracks is important for understanding
structural damage in dam and bridge structures. This study proposes a pixel-level real-
time crack segmentation method based on the LCA-YOLOv8-seg model. A lightweight
LCANet backbone and a more lightweight prototype mask branch are proposed to reduce
the model complexity. A new lightweight prototype mask branch, ProtoC1, speeds up
the prototype mask branch while maintaining the quality of instance masks. Our method
achieves 0.945 mAP0.5 and 129 FPS on the concrete surface crack dataset, and our model has
significant advantages over YOLOv8n-seg in terms of weights, parameters and GFLOPs.
This shows that our model has good accuracy and real-time detection capability and light
volume, making it a practical algorithm for crack detection. In future research, we will
continue to optimize the size and accuracy of the model while expanding the dataset and
increasing the robustness of the model.
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