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Abstract: Artificial intelligence techniques have lately been used to estimate the mechanical properties
of concrete to reduce time and financial expenses, but these techniques differ in their processing time
and accuracy. This research aims to develop a new procedural binary particle swarm optimization
algorithm (NPBPSO) by making some modifications to the binary particle swarm optimization
algorithm (BPSO). The new software has been created based on some fresh state properties (slump,
temperature, and grade of cement) obtained from several ready-mix concrete plants located in
Aleppo, Syria to predict the density and compressive strength of the regional concrete mixtures.
The numerical results obtained from NPBPSO have been compared with the results from BPSO and
artificial neural network ANN. It has been found that BPSO and NPBPSO are both predicting the
compressive strength of concrete with less number of iterations and more accuracy than ANN (0.992
and 0.998 correlation coefficient in BPSO and NPBPSO successively and 0.875 in ANN). In addition,
NPBPSO is better than BPSO as it prevents the algorithm from falling into the problem of local
solutions and reaches the desired optimal solution faster than BPSO. Moreover, NPBPSO improves
the accuracy of obtained compressive strength values and density by 30% and 50% successively.

Keywords: concrete; binary particle swarm algorithm; artificial neural networks; compressive
strength; density

1. Introduction

To determine the strength of concrete mixtures using the traditional approach, the
following steps are required: (1) Identify the components of the mixture, such as the types
and amounts of sand, gravel, cement, and auxiliary materials. (2) Determine the correct
amount of water to add to the mix, considering local evaporation factors. (3) Implement
the mix using appropriate procedures and steps, considering ambient temperature and hu-
midity. (4) Fill molds with the mixture according to the prescribed shapes and dimensions.
(5) Allow the mixture to harden and form a concrete base by leaving it inside the mold for
7 to 28 days. (6) Extract the concrete beam from the mold and expose it to external forces
using special testing devices to determine its compressive strength. (7) After completing
the experiments, remove any waste resulting from the examination process [1–5].

Due to the speed of artificial intelligence (AI) techniques in solving engineering
problems, there has been a tendency to use these techniques in various fields of civil
engineering, including designing construction materials (concrete mixtures for example) or
estimating their properties. As it is hard to predict the compressive strength of concrete due
to the different nonlinearities inherent in the mixture designs, various concrete companies
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are continuously looking to use new methods and technologies to predict the compressive
strength. Such methods include numerical modelling and artificial intelligence due to
their advantages. These methods are efficient and environmentally friendly, as there is no
waste in the testing process. In addition, they are more economical since there is no need
for test means, test materials, or even laboratory employees. Moreover, these methods
are flexible since many parameters can be taken into consideration, along with the speed
of their implementation. It is crucial to accurately predict and evaluate the compressive
strength of concrete mixtures, as it is one of the most important features of concrete [6,7].

Several recent studies focused on evaluating compressive strength using machine
learning (ML) practices [8] which involve regular, big, and complete information. However,
collecting this information is restricted due to the lack of data corresponding to the diverse
input characteristics [9]. The concept of utilizing particle swarm optimization (PSO) begins
by resetting particles within the search space randomly. Then, the particles construct
upon their previous successful attempts and those of their neighbors to discover the
optimal particle state. This is achieved by resetting the particle’s location and updating
its velocity [10]. Furthermore, the parameters of PSO can be easily modified, making it
suitable for a wide range of practical problems [11]. In simpler terms, particle velocity in
each cycle is determined by three factors: (1) the particle’s current location, (2) the best
location it has ever been, and (3) the best location within the entire group. This concept is
explained in greater detail in reference [12]. PSO is a widely used procedure in the field of
Swarm Intelligence that relies on optimization [13]. The goal of the optimization process
is to find the best possible solutions to specific problems while taking into account any
relevant constraints [14].

For this paper, the binary particle swarm optimization (BPSO) algorithm was selected
due to its high level of adaptability and simplicity. Throughout the research, this algorithm
has faced some challenges, stemming from local solutions and time constraints. In order to
solve these issues, the BPSO algorithm was modified, and a new procedural binary particle
swarm (NPBPSO) algorithm was obtained, which was able to overcome the obstacle of
local solutions and is able to achieve a reduction in the required time to reach the optimal
solution.

2. Literature Review

Concrete has several advantageous characteristics, including high wear resistance,
low water permeability, and good compressive strength, and it is widely used in civil
structures [15–18]. To maintain resident safety and structure durability, construction engi-
neers are mainly concerned with the quality of building materials, notably the compressive
strength of concrete. One typical method of evaluating the concrete’s other physical and
mechanical characteristics is measuring its compressive strength, which acts as a significant
and trustworthy indicator of whether or not a concrete mixture conforms with engineering
design criteria [16,17]. The process of precisely measuring the compressive strength of con-
crete mixtures is difficult, time-consuming, and associated with multiple problems [18–20].
Although statistical and experimental models incorporate a lot of data from laboratory
tests, the results’ accuracy is still poor [20].

Artificial intelligence models (AIMs) have been proposed as an alternative method
to address the challenges of compressive strength prediction connected to the impact of
various mixed design parameters [21–26]. By predicting the compressive strength of the
concrete, a project’s time and expense can be reduced. As a result, AIMs can be used to
identify this important characteristic [27].

A mathematical model for estimating the compressive strength of concretes with
additives was developed by Kandiri et al. [28] using an artificial neural network (ANN)
technique. In the testing phase, the proposed model showed acceptable accuracy with a
mean absolute percentage error of 11.10%. Ngo et al. [29] used artificial neural networks
(ANNs), support vector regression (SVR), linear regression (LR), and M5P techniques for
the prediction of axial strength in circular steel tube confined concrete columns. The authors
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outlined key distinctions between the techniques and concluded that the M5P was the
best artificial intelligence (AI) model for predicting experimental results when compared
to others. Goutham and Singh [30] used support vector regression (SVR) to predict the
compressive strength of concrete. By comparing the analytical results with those of a
non-destructive test, the authors concluded that SVR can be successfully used to predict
the compressive strength of concrete.

Using four artificial intelligence models (AIMs), namely ICA-XGBoost, AIM ICA-
ANN, ICA-SVR, and ICA-ANFIS, Duan et al. [31] evaluated the compressive strength
of concrete made by recycled aggregates. The ICA-XGBoost model is the best one for
determining the compressive strength of concrete, according to the findings. According
to the authors, the proposed method can be used to verify that recycled concrete has the
required mechanical characteristics in structural engineering [31].

Another study by H. N. Muliauwan et al. [32] determined the most exact Input/Output
(I/O) connections between the components of concrete mixtures by employing many AIMs.
The three AIMs employed in this investigation were support vector machines, linear regres-
sion, and artificial neural networks. The simulation’s results using roughly 1030 compres-
sive strength test values demonstrated that AIMs can facilitate the development of precise
predictive models for concrete properties without the need for substantial expenditures on
costly laboratory experiments.

Using six different types of AIMs, Cihan [27] employed AI to forecast the compressive
strength of concrete. The adopted techniques were linear regression, classification and
regression trees, K-nearest neighbor and extreme learning machine, adaptive neuro-fuzzy
inference system (ANFIS), random forest, and SVR. The correlation factor, absolute mean
error, root mean squared, and mean were used as standards to evaluate the efficiency of
these approaches. Comparative results showed that the ANFIS outperforms the competition
as a prediction model. The findings of the random forest model were nearly identical to
those of the ANFIS, while the classification and regression tree had the lowest level of
correctness. To estimate compressive strengths, Nafees. et al. [33] used three models namely
genetic programming (GEP), ANFIS, and MLPNN that is a form of ANN. The results of the
study showed that GEP models for data predictions are more precise than machine learning
(ML) and that a new mathematical formula might be created and utilized to estimate
additional database properties. The strength of lightweight concrete was predicted by
Kumar et al. [25] using six machine learning algorithms: GPR, EL, SVMR, enhanced SVMR
and GPR, and ensemble learning (EL). The results of this study showed that the optimized
GPR model had the greatest accuracy. Furthermore, the improved GPR and SVMR models
showed excellent behavior. K. Nasrollahzadeh and E. Nouhi, 2016 [34], applied the fuzzy
inference model to improve a new precise procedure and to evaluate the square concrete
columns’ strength and strain subjected to a vertical load strengthened by fiber polymer
wraps. An experimental compressive strength of 261 and a crucial experimental strain of
112 were gathered from the previous studies. The outputs of the finally proposed (Takagi–
Sugeno) fuzzy inference models were well agreed with the experimental data of both strain
and strength [34].

In order to estimate the density and compressive strength of local concrete mixtures
based on the specific properties of their constituents, this work aims to develop the binary
particle swarm algorithm (BPSA) with a new procedure. Because the experimental data
currently available may be regarded as discrete space, and since the binary particle swarm
approach is quick to reach the best answer with fewer iterations than other algorithms, it
was chosen for this investigation.

Moreover, artificial swarm intelligence (ASI) may considerably improve prediction
accuracy and collective insights.
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3. New Procedural Binary Particle Swarm Optimization (NPBPSO)
3.1. Binary Particle Swarm Optimization

Binary particle swarm optimization was devised by Eberhart and Kennedy in 1995 [35,36].
This technique produces a swarm of particles through a random process, each of which
stands for a potential solution to the problem. Thus, to find the best particle, the approach
must search iteratively using two equations [37]. The first is the particle velocity equation
(speed equation)

Vt+1
ij = WVt

ij + c1r1j

(
pbestt

i − Xt
ij

)
+ c2r2j

(
gbestt

i − Xt
ij

)
(1)

where i denotes the particle number; j: the number of elements inside the particle; Vt
ij: the

velocity of the particle i in the previous instant t; Vt+1
ij : the velocity of the particle i in the

next instant t + 1; pbestt
i : the most appropriate value reached by the i-particle until the

iteration t; gbestt
i : the most appropriate value within the swarm has been reached up to

repetition t,
gbestt

i = max
(

pbestt
1 pbestt

2 . . . pbestt
55

)
r1j and r2j: random values to ensure diversity of investigation and fall within the range

[0, 1]; Xt
ij: the position of the particle i in the previous instant t; W: a variable representing a

percentage of the particle velocity at the previous moment; c1 and c2 acceleration variables
that control the speed of reaching the best solution. In applications that use this algorithm,
the variables c1 and c2 and W are calibrated experimentally [38,39].

W’s value is constrained to the range [0.3–0.9], while the fields for the two variables
c1 and c2 are [0.4–2]. As a result, a series of experiments were carried out to arrive at the
correct values. The probability of a change in the values of the constituent parts of the
particle is determined by Equation (1). Equation (2) represents the particle’s new state.

Xij(t + 1) =
{

1 if uij < sig
[
vij (t + 1)

]
0 if uij ≥ sig

[
vij (t + 1)

] (2)

uij: a random value within the interval [0, 1] generated according to an equal probabil-
ity function at the beginning of each iteration.

sig
(
vij(t)

)
=

1

1 + e−vij(t)
(3)

Sigma function sig(v) aims to narrow the numeric values into confined space [0, 1]
in order to improve the performance of the algorithm [40]. Figure 1 shows a systematic
diagram for working of the binary optimization particle swarm.

The algorithm used here operates differently than neural networks. It begins by
creating a swarm of potential solutions, referred to as “particles.” With the use of two
mathematical equations, the speed equation and the new state equation, the algorithm
continually enhances these solutions. Following each iteration, an evaluation function is
used to assess the resulting solutions and identify the most optimal one. For the particle,
after each iteration, all the resulting “particle” solutions are evaluated using a special
function called the evaluation function, by which the best particle “optimal solution” is
reached. The data in this algorithm are not divided into “training, checking, testing” groups
as it is in the neural networks’ algorithm. Rather, all the data are applied to the algorithm,
and through the evaluation function, we can identify the best particle, the “best solution”,
and ensure that the algorithm is able to reach the optimal solution.

Even though the binary particle swarm optimization algorithm shows good accuracy
regarding to other AI techniques such as ANN, it still suffers from the phenomenon of
immature convergence (falling into a local solution) in which the search process may get
stuck in a region that contains an optimal value, which results in a loss of diversity [41].
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In addition, the new procedural binary particle swarm optimization algorithm NPBPSO
provides the optimum solution with fewer iterations. 

Start 

, D= 0ijusing X 0ij, evaluate f0ijVelocity V2, ,C 1, C0ijInitialize position X
max,No of dimentions, P=max, on of Particles, N= Max, no of iterations 

t = 0 

ijt, and u2jt, r1jtChoose randomly r 

I = 1

J = 1  

]tijX – best[G 2j
tr 2] + Ct 

ijX –t 
best,i[ P 1j

tr 1+ C tij= V t+1
ijV 

𝑺𝒊𝒋𝒕 = 𝟏𝟏 + 𝒆ି𝑽𝒊𝒋𝒕శ𝟏 
ij

t< Sij 
tU

0=  t+1
ijX 1=  t+1

ijX  

J < D

I < P t
ijusing X tijEvaluate f 

best,if ≤ tijf t
ij= Xbest,I 

t, P tij= f best,if 
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ij= Xbest , G tij= f gestf 

J = J + 1  
Yes 

I = I + 1  
Yes 

t ≤ Nt = t + 1  
Yes 

Yes No 

No 

Yes 

Yes 
No 

No 

End 

No 

Figure 1. The flowchart of binary particle swarm optimization algorithm [42].

3.2. New Procedural Binary Particle Swarm Optimization (NPBPSO)

To address the issue of immature convergence in the binary particle swarm optimiza-
tion (BPSO) algorithm, a new approach called NPBPSO has been proposed in this research.
Immature convergence occurs when the search process becomes trapped in a local solution,
leading to a loss of diversity and optimal value. Figure 2 depicts the modifications made to
the procedural binary particle swarm optimization technique to prevent immature conver-
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gence. Figure 2 illustrates the modifications applied to the new procedural binary particle
swarm optimization technique to avoid immature convergence.
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3.3. Function of the Suggested Evaluation

The evaluation function was created using the target formula [43] since the constraints
of the problem of the compressive strength of the mixture are independent of one another
(slump, temperature, and cement grade). Whenever the value given by equation 4 is higher,
the solution is considered to be better, and the particles on the next iteration will move
towards that solution.

Fitness =
n

∑
j=1

(Q + CL + T)j (4)

where Q, CL, and T denotes the grade of cement, the slump, and the temperature, respec-
tively.

3.4. Piloting Tests

A total of 60 iterations of the particle swarms’ program were completed before the
mean value of those results was calculated and represented. Table 1 expresses the conven-
tions used during program piloting.

Table 1. Conditions adopted during the piloting of programs.

Processor 1.7–1.73 GHzCore

memory 12 G Byte

operating system Windows 7

4. Methodology and Materials

The database used for the investigation in this study contains 163 concrete mixtures.
Some of them were from the experimental works of the laboratories of the faculty of
civil engineering at the University of Aleppo, and the others were from the prefabricated
concrete factory of the industrial region of Aleppo City in Syria. These data include the
grade of cement, slump, temperature, density, and compressive strength at 7 and 28 days
where the density was between 2350 and 2550 kg/m3, cement grade values were N20, N25,
N32, and N40, fresh slump was within the range of 40–125 mm, the exterior temperature
was varying from 10 to 30 ◦C, the compressive strength at 7 days was between 10 and 40
MPa, and the compressive strength at 28 days was between 22 and 57 MPa. The statistical
distribution of the measurements is shown in Figure 3.

In the next step, the binary particle swarm optimization algorithm was developed
using cement grade, slump, and temperature as input to obtain the density and compressive
strength as output by means of the evaluation function.

Then, some modification to the binary particle swarm optimization algorithm was
made to improve the procedure of having results by avoiding local solutions of BPSO and
having the optimum solution with fewer iterations. The modified algorithm is named the
new procedural binary particle swarm optimization algorithm NPBPSO.

Later, the NPBPSO was run using the same inputs to get the density and compressive
strength at 7 and 28 days.

Finally, the results of BPSO and NPBPSO were compared with ANN and investigated
in order to know the best one to be used for estimating the density and compressive strength
of local concrete mixtures.
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5. Results and Discussion

In the previous research [44], the neural network algorithm was used to estimate the
compressive strength of cement concrete for each period of 28 days.

In that research, a neural network was designed consisting of three layers: the first
layer was the “input layer”, which contained twenty neurons; then, the second layer was
the “hidden layer”, which consisted of ten neurons; the third layer was the output layer,
which consisted of five neurons. The algorithm used in training the neural network was
the rapid deployment algorithm, and the number of training sessions for this network was
1000 training sessions, where in each training session, the weights of neurons within the
network layers were adjusted in order to reach the optimal solution and reduce errors to
the lowest possible extent.

The same data of experimental mixtures were entered into the network (163 mixtures
from the experimental works of the laboratories of the faculty of civil engineering at the
University of Aleppo and a prefabricated concrete factory of the industrial region of Aleppo
City in Syria). The used input data of the neural network were temperature, slump, and
cement grade, and the output was the density and the compressive strength at 7 and
28 days of concrete.

The data of experimental mixtures were divided into three groups: The first group,
containing 111 mixtures of data, was used to train the network. The second group, contain-
ing 25 mixtures of data, was used to audit the training results. The third group, containing
25 mixtures of data, was used to test and to ensure that the neural network received
sufficient training and was able to show satisfactory results.

As the correlation coefficient is quite low, R2 = 0.875 (even though it is acceptable
regarding other research [45–47]), the results presented in Figure 4 indicate that the selected
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ANN technique does not fit the experimental data well in terms of compressive strength;
there was a need to use different AI techniques, and as for the reason mentioned above, the
authors selected the BPSO and then improved it to NPBPSO.
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Figure 4. Comparison of the neural network results with the real values of the test data in the
resistance condition after 28 days.

The results of the neural networks algorithm, related to estimating the resistance of
concrete for 28 days, showed that there was a shift between the experimental values (in the
laboratory) and the values generated by the neural networks with a capacity of (1.91 Mpa).
We also notice that there is a large dispersion in the values generated by the neural network
algorithm.

Figure 5 presents experimental compressive strength measurements and BPSO results
obtained after 7 and 28 days, respectively. The predicted compressive strength values at
the age of 7 and 28 days have been found to be extremely close to those experimentally
achieved with a shift of (0.01112 MPa).
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Figure 6 shows the differences between experimental compressive strength values and
others resulting from applying the new procedural binary particle swarm optimization
NPBPSO after 7 and 28 days, respectively, where it has been noticed that most of the values
resulting from NPBPSO matched the experimental ones. As for the points that did not
match, the shift ratio reached (0.00798 MPa); in other words, the accuracy of the values
resulting from artificial intelligence has been improved by almost 30%.
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Figure 6. Experimental versus predicted compressive strength using NPBPSO (a) after 7 days,
(b) after 28 days.

Finally, Table 2 shows an improvement in the results after using the improved version
of the algorithm (NPBPSO), as shown in the last column of the table.

Figure 7 shows the differences between average density and others resulting from
applying the new procedural binary particle swarm optimization NPBPSO after 28 days,
where it has been noticed that most of the values resulting from NPBPSO matched the
experimental ones. As for the points that did not match, the shift ratio reached (1 Kg/m3),
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Table 2. Statistics evaluation of compressive strength results.

Standard
Deviation Variance R2 Experimental/

Predicted Average

7 days
BPSO 5.26 27.66 0.999451 1.0005

NPBPSO 5.26 27.66 0.999423 1.0004

28 days
BPSO 7.24 52.52 0.999653 1.0003

NPBPSO 7.24 52.52 0.999784 1.0002

Table 3 shows, through the fourth column, that the values resulting from the modified
algorithm (NPBPSO) are close to the experimental values, and therefore, the proposed
modification of the algorithm achieved the desired results, while the last column shows
significant improvement in the time to reach the results

Table 3. Statistics evaluation of density results.

Standard
Deviation Variance R2 Experimental/

Predicted Average
Execution

Time

BPSO 28.77 828.12 0.992211 1.0010 60 iterations

NPBPSO 28.79 829.36 0.998454 1.0004 25 iterations

6. Conclusions

By comparing the results shown by the neural networks algorithm to obtain the
compressive strength of concrete for 7 days and 28 days, respectively, (1.413 MPa—7 days
and 1.91 MPa—28 days) and the results shown by the binary particle swarm algorithm
BPSO (0.01112) MPa—7 and 28 days), the great superiority of the BPSO algorithm over the
neural networks algorithm appears in two main important points: the first is the number
of cycles or iterations that the algorithm needs to reach the results (i.e., the time to obtain
the results), and the second point is the accuracy of the results that the algorithm shows.

The binary particle swarm algorithm was developed with a new procedure (NPBPSO)
in order to estimate the strength of concrete and the compressive strength. Through this
development, we were able to achieve two goals. One is to prevent the algorithm from
falling into the problem of local solutions that the algorithm can fall into. The other is that
the speed of the algorithm reaches the desired optimal solution.

After that, the new algorithm (NPBPSO) was converted into a computer program
using a high-level programming language, where the data of the experimental compressive
strength tests of the concrete mixtures that were conducted in the laboratories of the Faculty
of Civil Engineering at the University of Aleppo and the ready-mixed concrete factory were
entered.

BPSO and NPBDSO compressive strength and density outputs were obtained.
With an average shift (0.01112 MPa) in compressive strength, it was discovered that the

solutions obtained using the binary particle swarm technique are close to the experimental
values. However, the new procedural binary particle swarm algorithm (0.00798 MPa)
shows a shift from the experimental values with approximately 30% improvement in
accuracy.

The density results for BPSO and NBPSO show a shift rate of 2.311 kg/m3 and
1.001 kg/m3, respectively, with an accuracy improvement of about 50%. As a result of this
research, it can be found that both BPSO and NBPSO techniques provide good results with
better accuracy than NPBPSO because of the modification made to avoid local solutions
and reduce the number of iterations.

The intensity results for both BPSO and NBPSO show a significant improvement in the
speed of Al-Khwarizmi’s access to optimal solutions, as the number of iterations needed
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to reach the optimal solution in the version (BPSO) decreased from (60 iterations) to (25
iterations) in the modified version of the algorithm (NPBPSO).

Finally, it can be found that BPSO and NBPSO AI techniques are good at predicting
some properties of concrete such as compressive strength and density, which means that
they can be highly recommended due to their speed, accuracy, and low cost.
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