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Featured Application: This article provides an analysis of the influence of the angular setting in a
hobbing mill on the modification of the gear profile. This solution provides valuable insights for
gear manufacturing professionals and engineers who seek to achieve higher accuracy, efficiency
and quality in the tooth manufacturing process.

Abstract: The presented contribution focuses its attention on the research on the influence of the
angular setting in a hobbing mill on the adjustment of the tooth profile created by this technology.
The aspect of influence from the angular settings in the hobbing mill on the final shape of the gears is
investigated. In this research, the effect of substituting the curvilinear profile of the cutting edges
with a straight profile is analyzed, observing how this approach affects the final geometry of the
gears. An important point of this research is also the comparison of different profiling methods using
the hobbing mill, specifically when using a normal cut, which is perpendicular to the helix of the
milling cutter, and also when cutting along the axial plane of the hobbing mill.

Keywords: teeth; profile; modification; hobbing mill; gearing accuracy

1. Introduction

Hobbing mills represent a special category of high-performance tools in the field of
engineering, with the main focus being on the production of gears and other complex
machine parts, such as splined shafts, sprockets and other components with special screw
surfaces. Their effectiveness lies in the combination of a number of cutting edges and
their continuous, smooth engagement, which significantly minimizes wasted time and
maximizes the productivity of the process. These tools are characterized by a high degree
of variability in their use, which means that with the same tool it is possible to produce
gear segments of different shapes and sizes, with a variable number of teeth and a variable
pitch, with or without gear correction, and also in relation to worm wheels. The method of
producing teeth using a shank or disc modular milling cutter is more expensive compared
to the hobbing mill method, because when using wheels with the same module and a
different number of teeth, the profile of the tooth gap changes, which also results in a
more complex profile for the modular milling cutter, which complicates the production
and grinding. Gears are essential components for the transmission and transformation
of mechanical motion and energy in machines and mechanisms. Their curved shapes
require specific mathematical tools for the design of production tools. Although they have
been around for centuries, they are constantly being improved. Publications dealing with
the development of efficient gear manufacturing tools remain relevant. This text deals
with the investigation of the basic shape of the tool in terms of kinematic schemes for
material separation. Analytical methods for determining the tool shape require knowledge
of analytical geometry in space and the differential geometry of curves and surfaces, which
are investigated using differential calculus.
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Within the framework of this topic, several studies have been published. Bouzakis
et al. [1] aimed their research at the experimental verification of the calculation algorithms,
taking into account the wear of the milling cutter teeth in individual generating positions.

The replacement of the classical analytical solution for the machining of involute gears
with a general mathematical model was dealt with by Jia et al. [2]. In their work, they dealt
with the creation of a general mathematical model by generating two parameters using
a discrete method to increase the robustness of the method. They designed a numerical
algorithm by transforming multiple cutting edges with respect to the workpiece of the gear
wheel based on generated motions. Subsequently, they introduced the derivation of instant
contact points using the implicit time sequences of the profile points.

In the article by Spitas et al. [3], the possibilities of gear design using the method
of discretization of the gear tooth flanks were analyzed, while instead of an analytical
approach, they proposed dividing the flank of the tooth into an infinite number of local
involute segments. As an advantage of this method, they presented its relative simplicity
compared to the analytical solution. The method was implemented and verified when
applied to both globoid and involute gears.

Vasilis et al. [4] contributed to the previously mentioned studies on this topic by
focusing on creating an algorithm suitable for CAE simulations, as in addition to the
produced gearing, they also monitored the shape and volume of the resulting chip. Within
the outputs, the authors present the developed algorithm that was embedded into a CAD
environment. They proved that the algorithm is suitable for predicting cutting forces, tool
stress and wear, as well as optimizing the parameters of the production process.

The production of gears using hobbing mills enables the production of gear segments
with a consistent profile, which reduces the difficulty in setting up and contributes to
the efficiency of the production process. Gears are an integral part of many mechanical
systems and devices. They are key components for the transmission and transformation
of mechanical motion and energy in various machines and mechanisms. However, their
shape is often complex and curvilinear, which requires a special approach in the design
of production tools. The development of these tools involves a deep understanding of
mathematical principles, especially in the field of analytical geometry in space and the
differential geometry of curves and surfaces [5]. This knowledge is essential for the design
of optimal cutting edges that can create complex gear shapes with high precision and
repeatability. Gears are among the most demanding engineering components when it comes
to the theoretical, design and manufacturing aspects. Despite the fact that their foundations
were laid many centuries ago, their development and improvement continue constantly.
Publications and studies focused on the design methods for the efficient production of
tools for gears remain current and relevant, because the need to optimize the production
process is ever present [6]. All in all, hobbing mills are a key tool in modern engineering,
enabling the efficient production of gears and similar machine parts. Their high variability,
combined with technical and mathematical know-how, makes it possible to contribute
to the improvement of production processes and the performance of mechanical systems
where gears are an integral part.

Tooth manufacturing in the case of the hob is accompanied by simulation of the
meshing of two-toothed wheels in an involute worm (of the hob) with the machined semi-
finished product, i.e., with the toothed wheel with straight or beveled teeth. If the hob is to
be identical with the involute worm, it must be profiled by the basic rack. In case of the
reverse process, the hob can generate the toothed rack with the basic profile. It means that
the meshing of the involute hob with the basic rack is feasible, and the hob meets the basic
rack along the straight line [7].

The manufacturing of the involute hob is demanding from the perspective of checking
and with regards to the option of undercutting. Therefore, approximate profiling is used,
i.e., the curve profile of the axial or of a reference cut by means of the involute screw plane is
replaced by the straight-line profile, which can be modified if needed. Further, the influence
of the hob adjustment on the modification of the tooth profile in a workpiece is focused on.
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Given the contemporary need to enhance the precision of functional surfaces in
manufacturing, the primary goal of the research presented in this article was to propose an
applicable analytical solution for optimizing the production of gear manufacturing tools.

2. Methodology

Firstly, the hob with the screw plane is selected, which is formed by means of hob
profiling in the reference plane (Figure 1), i.e., by replacing the curve profile with the
straight line in the cut perpendicular to the helix of the hob.
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Figure 1. Insertion of the hobbing mill in the basic rack.

The hob is inserted into the basic rack (Figure 1) and turned by an angle of gradient
with respect to the hob γf. It is evident that the contact with the basic rack did not reach
the character of a straight line, which means that the hob profiled in this way does not
correspond with the basic rack as to the profile, yet it will accord with any modified toothed
rack [8]. The negative shape of the modified rack consequently represents a tool which
can approximately replace the profiled hob. Subsequent rolling of such a basic rack (by
the tool) results in corresponding teeth profiles, which are identical to the teeth profiles
manufactured by means of the approximately profiled hob.

In case the hob is not set in the basic rack precisely, yet correction of its adjustment is
allowed (for example, turning by ±∆γ), the aforementioned procedure helps to detect the
influence of the corrections in the modification of the profile of the manufactured workpiece
toothing [9].

2.1. Position Vector of the Hob Profile

A description of the screw plane and of the planar areas of the teeth sides in the
basic rack is presented as follows: Figure 1 shows vectors r1, r2 andr3. Three coordinate
systems are defined in Figure 1, as follows: the fixed coordinate system O (x, y, z) with
the coordinate system O′(x′, y′, z′) turned at an angle of γf or γf ± ∆γ and the coordinate
system of the hob O′′(x′′, y′′, z′′).
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Transformation of the unit vectors of the coordinate axes in a dashed-line coordinate
system into a fixed one is as follows:

i’ = i cosγ f − j sinγ f ,
j’ = i sinγ f + j cosγ f ,

k’ = k .
(1)

The end point of vector r3 is point A in the pitch cylinder screw of the hob. At this point,
the moving trihedral A (t, n, b) (Figure 2) is defined in the coordinate system O′′(x′′, y′′, z′′)
as the following:

x′′ ‖ x′, y′′ ‖ y′, z′′ ‖ z′, i.e., i′′ = i′, j′′ = j′, k′′ = k′. (2)
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Based on Figure 2, the following can be expressed:

rt1 = −j′′R sinκ − k′′Rcosκ ,
rt2 = i′′Rκtg γ f ,

rt = rt1 + rt2 ,
(3)

In case of the first derivation of the position vector rt according to κ, the following
is applicable:

.
rt =

drt

dκ
= i′′Rtgγ f − j′′Rcosκ + k′′Rsinκ . (3a)

The absolute value of rt is as follows:

|rt| =
√

r2
t . (4)

Consequently, the unit vector t is expressed as follows:

t =
.
rt

|rt|
(5)
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When Equations (3), (3a) and (4) are substituted into Equation (5), and when Equation
(2) is modified and when Equation (2) is used, t is expressed as follows:

t = i′ sin γ f − j′ cos κ cos γ f + k′ sin κ cos γ f . (6)

The unit vector n is given as follows:

n = − rt1

|rt1 |
= − rt1√

r2
t1

, (7)

After substitution and modification of [10] the following is applicable:

n = j ′ sin κ + k′ cos κ. (8)

The unit vector b is the product of vector multiplication between n and t:

b = n× t, (9)

and after the substitution of Equations (6) and (8) with Equation (9), and after modification
the following is applicable:

b = i′ cos γ f + j′ sin γ f cos κ − k′ sin γ f sin κ. (10)

The individual partial vectors of the final position vector (Figures 1 and 3) r are
as follows:

r1 = k R,
r2 = i′R(2πi + κ) tgγ f ,
r3 = −n R,
r4 = n hn,
r5 = b hm = b

(
hn tgαn +

pn
4
)
.

(11)
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The final position vector r is given by the total, as follows:

r = r1 + r2 + r3 + r4 + r5. (12)
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After transformation and substitution, the following is applicable:

r = kR + R(2π i + κ)tgγ f

(
i cos γ f − j sin γ f

)
+

+R
(
−i sin γ f sin κ − j cos γ f sin κ − k cos χ

)
+

+hn

(
i sin γ f sin κ + j cos γ f sin κ + k cos κ

)
+

+hm

[
i cos2 γ f − j cos γ f sin γ f+

+ sin γ f cos κ
(

i sin γ f + j cos γ f

)
− k sin γ f sin κ

]
.

(13)

Position vector Equation (13) is described by the point in the screw plane of the hob in
the case its turning corresponds with the angle of gradient of the screw γf [11]. In the case
of the angular rotation of the hob in the basic rack by the angle of:

γh = γ f ± ∆γ, (14)

the final position vector will be given by the following:

r = i x + j y + k z, (15)

with
x = |rx| = R(2πi + κ) tgγ f cos γh − R sin κ sin γh+

+hn sin κ sin γh + hm

(
cos γ f cos γh + cos κ sin γ f sin γh

)
.

(15a)

y =
∣∣ry
∣∣ = −R(2πi + κ) tgγ f sin γh − R sin κ cos γh+

+hn sin κ cos γh + hm

(
cos κ sin γ f cos γh − cos γ f sin γh

)
.

(15b)

z = |rz| = R− R cos κ + hn cos κ − hm sin κ sin γ f , (15c)

In case of which x, y and z refer to the coordinates of the point in the screw plane of
the hob.

2.2. Position Vector of the Basic Rack Profile

In order to evaluate the penetration process of the screw plane of the “approximately
profiled” hob into the profile of the basic rack it is important to define the planar areas
forming the sides of the basic rack teeth [12]. The basic rack has straight teeth, so it is
sufficient to define its profile in the plane x–z (Figure 4).
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The partial vectors of the final vector rH are as follows:

rH1 = i
(

pni + pn
2
)
,

rH2 = k z,
rH3 = −i

( pn
4 − z tgαn

)
,

and the final vector is:
rH = rH1 + rH2 + rH3 . (16)

Then, the coordinate xH of the point in the basic rack profile in the plane z = const. is
as follows:

xH = |rHx | = pn

(
i +

1
4

)
+ z tgαn. (17)

2.3. Method for Determination of the Deviations in the Profiles of the Basic Rack and the Hob

The modified profile of the teeth in the toothed rack, which is formed when in the
reference plane into which the hob is located, will have the form of an envelope formed by
the lines.

These lines are formed when the set of axial cuts enters/runs through the screw plane
of the hob (Figures 5 and 6). To evaluate the deviations, it is important to apply the system
of cuts through the plane z = const. [13]. The reference plane is diverted by the angle γf
and, therefore, it is important to enter the value hn in such a manner so that the point of the
axial cut through the screw plane of the hob fits into the respective plane z = const.

The deviations in the profiles ∆pb is given by the following relation:

∆p = (xH − x)1000 [µm], (18)

with xH as the coordinate of the planar cut of the basic rack profile in the case of a particular
planar cut z = const. (mm), and

x as the coordinate of the axial cut through the screw plane of the hob in the case of an
identical planar cut z = const. (mm) [14].

The development of deviations in relation to the angular adjustment of the hob
is shown in Figure 7 for the module m = 10 mm, with a tip diameter of the hob of
RH = 67.5 mm.
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the reference plane.

2.4. Method for Determination of the Profile Deviations in the Workpiece Tooth

To evaluate the deviations, which will be projected in the manufacturing of the tooth
by the modified toothed rack, it is important to determine the theoretical profile of the tooth
(i.e., the involute profile). It can be achieved by rolling the basic rack [15]. If correction is
not taken into consideration, the pitch of the straight line in the rack rolls along the pitch
circle of the manufactured wheel (Figure 8).
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Mathematical notation is a combination of vectors. Figure 8 shows a definition of the
coordinate systems Ok (x, y), O′k(x′, y′), AH (nH, bH) and AK (n, b). The transformation
equations for the dashed-line coordinate system of the forming rack to transform into the
fixed coordinate system of the manufactured toothed wheel are as follows [16]:

i′ = i cos λ + j sin λ ,
j′ = j cos λ− i sin λ.

(19)

The unit vectors are nH = i′, bH = j′, n = −i′ and b = −j′.
After transformation, the final position vector of the basic rack rs is given by the total

of the partial vectors (Figure 8):

rs = rs1 + rs2 + rs3 + rs4 , (20)

and the individual partial vectors are as follows:

rs1 = i R1 cos λ + j R1 sin λ ,
rs2 = −j λ R1 cos λ + i λ R1 sin λ ,
rs3 = i hn cos λ + j hn sin λ ,
rs4 = −j hb cos λ + i hb sin λ ,

(20a)

and their absolute values are as follows:

|rs1 | = R1 , |rs2 | = λ R1 , |rs3 | = hn ,
|rs4 | = hb = pn

4 − hn tgαn.
(20b)

Parts of the vector rs in the direction of the coordinate axes x and y are as follows:

xK = |rsx | = R1 cos λ + λ R1 sin λ + hn cos λ + hb sin λ ,
yK =

∣∣∣rsy

∣∣∣ = R1 sin λ− λ R1 cos λ + hn sin λ− hb cos λ .
(21)

However, the tooth profile must relate to the coordinates n, b in the coordinate system
AK (n, b). The coordinates of the theoretical profile of the tooth are consequently given by
the following:

nteo = R1 − xK ,
bteo = −yK.

(22)



Appl. Sci. 2023, 13, 10646 10 of 14

These coordinates define the theoretical or actual profile. However, it is still unknown
for which of the values λ or hn is the point described by the position vector rs, simultane-
ously by the point in the tooth profile of the manufactured wheel. The toothed wheel profile
is formed by the envelope of the profiles in the basic rack. To determine the parameters, i.e.,
to determine the values λ and hn, the envelope method is used [17] and, in this case, there
is two parametric methods. The rack rolling results in the achievement of a set of lines for
the diverse value hn (Figure 9). A single point lies on each of the lines. At the same time, the
point represents the point in the tooth profile of the manufactured wheel. In the case of this
point, the determinant Equation (23), which is formed by means of the partial derivations of
the position vector sections rs, equals to zero according to parameters λ and hn.∣∣∣∣∣∣∣

∂ rsx

∂ λ

∂ rsx

∂ hn
∂ rsy

∂ λ

∂ rsy

∂ hn

∣∣∣∣∣∣∣ = 0 (23)
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To determine the parameters, it is important to use one of the iterative methods (for
example Regula Falsi, etc.).

This method is employed in order to determine the theoretical profile of the toothed
wheel tooth. The point of the actual profile is achieved by the rolling of the rack, the profile
of which is negative, to the modified profile of the rack [18]. To detect the actual tooth
profile, which is manufactured after the respective profiling, it is not possible to apply the
aforementioned envelope method as the point of the modified rack or its negative shape is
too complicated to be expressed implicitly [19].

The profile point in the modified rack is always set to the maximum value of ∆pi, for
example, the value of cut 2 is ∆p2 (see Figure 6).



Appl. Sci. 2023, 13, 10646 11 of 14

If in the coordinate system AK (Figure 8) the selected specific is n = const., for which
the respective bsk is to be determined, i.e., the point in the actual tooth profile, it is important
by means of the envelope method to detect n corresponding to bteo, i.e., the coordinate of the
point in the theoretical profile. To determine bsk it is not possible to use the envelope method
due to the aforementioned reasons and, therefore, the following procedure is applied [20].

It can be assumed that λ, for which the point in the theoretical profile was detected,
will be proximate to λs as the point in the actual profile. A particular interval is selected
(λ + ∆λ, λ − ∆λ) and the rack is rolled within the interval (the rack profile is negative
according to the modified profile and represents the hob profiled by the straight line). At
the same time, some small step ∆λ will be determined and for each λ from the interval the
value bsk will be calculated [21]. This value will always be compared with the previous
value and if bski > bski+1 the rack will be rolled further on. In the case of bski < bski+1, the rack
will not be rolled any further because bsk is the lowest out of the interval and represents the
coordinate of the actual profile of the tooth in the manufactured wheel [22]. All the values
of bski are calculated for the same n = const.

The deviation in the manufactured profile from the theoretical one for a particular
n = const is then given as follows:

∆sp = (bteo − bsk)1000 [µm]. (24)

3. Discussion

The study results on the influence of the angular adjustment of the hob within the
range from +10′ up to −10′ upon modification of the tooth profile in the workpiece is a
development of the deviations in the manufactured profile of the tooth from the theoretical
profile, which is produced during machining by the basic rack [23].

The development of these deviations for the angle of meshing α = 20◦, the module
m = 10 mm and the tip diameter of the hob RH = 67.5 mm is shown in Figure 10 for the
hob profiling by the straight-line profile in the reference plane, and in Figure 11 for the hob
profiling by the straight-line profile in the axial plane. Deviation of the profile ffr (Figure 9)
is defined as the perpendicular distance of the nominal profiles [24]. Therefore, when
compared with the standard referring to the fitting of toothed wheels, it is recommended
to calculate ∆sp in terms of the definition of ffr.
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Based on Figures 10 and 11, it is clear that development of toothing deviations is more
favorable for profiling in the axial plane. The values of the deviations are in accordance
with [15] or [25]. Adjusting the hob according to ∆γ = 0 enables ffr to be reached, which
approaches the deviation limit of ff for the sixth degree of precision [26].

4. Conclusions

This present paper provides a detailed view of the strategy and techniques for de-
scribing the tool profile that is optimal for use in the production of gears using a hobbing
mill. This highly efficient production process is used very often nowadays and, therefore,
measures aimed at increasing the accuracy of this technology are still a current and im-
portant topic [27]. The theoretical analysis of the geometry on the formation of connected
surfaces provides basic knowledge for a better understanding of this issue and enables the
application of this knowledge in a wider context.

The presented procedures provide the designers of hobbing mills with the advantage
of working with the initial deviations in the milling cutter profiles from the base ridge
profile, which simplifies the analysis [28]. The proposed methods make it possible to simul-
taneously investigate the influence of various factors that affect production accuracy [29].
In this way, for example, the influence of the diameter of the hobbing mill and the influence
of various movement aspects during the process are capable of being investigated, such as
throwing or deformations of the components in the production machine, or even torsional
and bending vibrations.

These methods make it possible to implement various modifications to tool profiles
and make adjustments to the construction of the tool itself. The impact of these changes
can be verified and evaluated immediately. The integration of the above processes with
computer technology leads to the creation of a complex system for designing these tools
intended for the production of gears [30]. The practical implementation of these methods
provides space for the creation of more effective tools and the optimization of production
processes with an emphasis on the resulting accuracy and quality [31].

The presented approaches are not limited to individual gear types, but can also be
applied to different gear geometries. In this way, we obtain a universal methodology
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that can be adapted to the needs of different production contexts. Overall, this contribu-
tion is a significant step in the direction to improve the accuracy and efficiency of gear
manufacturing using hobbing mills.

The next step in the research will involve a planned experiment focused on imple-
menting the proposed gear design method in real-world manufacturing conditions. The
expected outcome of the experiment will confirm the suitability of the proposed solution
and its impact on the qualitative parameters of gearing.
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Nomenclature

A (t, n, b) Coordinate system of the rolling mill profile
AH (nH, bH) Coordinate system of the base ridge profile
AK (n, b) Coordinate system of the tooth profile in the manufactured wheel
O (x, y, z) Fixed coordinate system
O′(x′, y′, z′) Coordinate system turned into it
O′′(x′′, y′′, z′′) Coordinate system of the hob
Ok (x, y) Coordinate systems
O′k (x′, y′) Coordinate systems
i, j, k, t, n, b Unit vectors
r1, r2, r3 Components of the position vector
bteo Coordinate of the theoretical tooth profile in the manufactured wheel (mm)
bsk Coordinate of the actual tooth profile in the manufactured wheel (mm)
hn, hm, hb Coordinate of the profile point in the basic ridge, or of the rolling mill in the

coordinate system AH, AK (mm)
x, y, z Coordinates of the point in the screw plane of the hob
rt Position vector
rH Final vector
rs Final position vector of the basic rack
r Final position vector
∆pi Deviation in the profile of the rolling cutter from the profile of the basic ridge in

section i (µm)
∆sp Deviation in the actual profile of the manufactured tooth (µm)
γf Angle of the gradient of the hob (deg)
∆γ Inaccuracy in the setting of the rolling mill (′),
λ Base ridge roll angle (deg)
κ Angle of rotation of the axial cut of the rolling cutter (rad)
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