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Abstract: The specific work presents an optical and thermal investigation of a hybrid thermo-
photovoltaic solar collector with an asymmetrical compound parabolic mirror. Such collectors
offer an innovative and sustainable approach to address both the thermal and electrical demands
of residents on islands using renewable sources of energy and thus reducing the dependency on
fossil fuels. The main goal of this investigation involves an analysis of the prementioned type
of solar collector, incorporating an innovative and cost-effective numerical modelling technique
aiming to enhance comprehension of its energy and exergy performance. The optical performance
of the collector was calculated first with ray tracing for the month of June, and the ideal slope was
determined for the same month. After the optical analysis, the energy and exergy performance were
both estimated by implementing a novel numerical method in both COMSOL and SolidWorks. Based
on the optical analysis, it was determined that the most favorable inclination angle for achieving
optimum optical efficiency on the mean day of June is 10◦. The thermal analysis, focusing on thermal
efficiency, showed a maximum deviation of 5.3% between the two solutions, which indicates the
reliability of the method. The collector achieved a maximum thermal efficiency of 58.55% and a
maximum exergy efficiency of 16.94%.

Keywords: photovoltaic/thermal collector; numerical simulation; optical analysis; thermal analysis;
exergy analysis

1. Introduction

Photovoltaic thermal solar collectors have gained attraction in renewable energy sys-
tems, as they allow the conversion of solar radiation into both electrical and thermal energy.
These collectors could be utilized for a variety of applications in the industrial and building
sectors, such as the provision of domestic hot water (DHW) [1], air-conditioning [2], desali-
nation [3], solar cooling [4], polygeneration systems [5] and industrial heat production [6–8].
The two main types of solar collectors are the concentrating and the non-concentrating col-
lectors [9]. Collectors from both types have been examined numerically and experimentally,
considering the thermal, the electrical and the optical operation.

The non-concentrating PV/T solar collectors have been studied and investigated in
various studies in the literature. Sun et al. [10] created a mathematical model regarding
the dynamic simulation of how a water system with a flat plane PV/T absorber works,
which was verified with regards to its validity via indoors empirical data from experiments.
They examined the slope effect and the effect of the collector’s connection on the electrical
and the thermal operation of this system, which was installed on a vertical façade in a
building. They found that the type of connection for the solar PV/T had a greater impact
on the thermal operation than on the electrical operation, and the optimum tilt angle was
40◦. Kallio and Siroux [11] performed an exergetic and energetic study of a PV/T system
in different locations and then optimized the design with regard to the exergy efficiencies.
Rejeb et al. [12] established a numerical simulation model for the analysis of hybrid solar
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collectors. With the developed model, they investigated the effect of a few parameters (solar
radiation, water temperature at the inlet and the glazing covers number) on the collector’s
thermal operation performance. Moreover, they studied the monthly thermal and electrical
operation of the collector considering the climatic conditions of Tunisia, where they found
that the maximum electrical power was 8119 kWh/m2 while the maximum thermal energy
was 49,440 kWh/m2. Lämmle et al. [13] researched the impact of low-emissivity coating,
based on silver, on the electrical and thermal performance of a flat plane PV/T collector. A
numerical model considering the energy balance was created and validated with results
coming from experiments. The study shows that the coating reduced the heat losses by 8%
with a minimal effect on the electric performance, compared with the same collector without
the coating. Aste et al. [14] developed a simulation model for an uncovered PV/T collector
which took into consideration the main parameters affecting the collector efficiency, a
model which was also validated using empirical results. Kazem et al. [15] created a
numerical model to investigate different geometries for the flow channels, which was then
studied experimentally and compared to a conventional PV module. The main conclusion
was that the spiral flow collector presented the highest electrical performance of 9.1%.
Herrando et al. [16] performed a 3-dimensional computational fluid dynamics analysis
(CFD) study on different absorber geometries. An absorber with rectangular channels
achieved better thermal performance than the reference case of a commercial hybrid
collector with flat elements.

While solar thermal concentrated collectors have been studied extensively [17,18],
few works in the literature have been found that consider hybrid concentrated collectors.
Bernardo et al. [19] proposed a methodology for the characterization, simulation and evalu-
ation of a concentrated hybrid collector. Then, they applied it to a collector with a parabolic
reflector and compared the results with conventional PV modules and a conventional solar
collector. A dynamic theoretical model was developed by Karathanassis et al. [20] for
the long-term performance evaluation of a concentrating thermo-photovoltaic collector
with a parabolic mirror. The model validity was verified using data from experiments
on a prototype system, and an exergetic optimization was performed. Rosell et al. [21]
designed a concentrating hybrid system consisting of a Fresnel mirror with a channel PV/T
collector which achieved a thermal performance of over 60%. An analytical model was
also developed and validated based on the data produced. A PV/T element with a Fresnel
mirror and a nanofluids-based optical filter was proposed by Wang et al. [22]. By using ray
tracing through the Monte Carlo method, the overall optical performance was estimated
to be 93.54%, while CFD analysis indicated 18.52% thermal efficiency. Nilsson et al. [23]
experimentally examined the effect of different materials used for the construction of an
asymmetric compound parabolic reflector. They constructed reflectors from anodized
aluminum and aluminum steel (laminated). The analysis conducted showed no difference
in the yearly output between the two materials. Koronaki and Nitsas [24] studied and
observed the performance of five asymmetric PV/T solar collectors equipped with flat
absorbers. The collectors were connected serially. A novel mathematical approach was
created, and the respective results were compared with experimental data and validated.
Nasseriyan et al. [25] created a two-dimensional CFD analysis of a hybrid asymmetric
compound parabolic collector (ACPC). The model was then validated with experimental
results, and the optimum tilt angle was determined for Gävle, Sweden. Several modifica-
tions, such as insulation for the back of the reflector and different material for the absorber,
were studied.

The referenced sources make it evident that although there is a substantial body of
work dedicated to examining solar collectors, the understanding of complete combined
3D optical and thermal simulations for asymmetrical concentrating hybrid solar collectors
remains relatively constrained. Although previous studies indicate the existence of 3D
simulations, this study offers a novel way to analyze these collectors and uses its results to
create equations to describe their thermal behavior.
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This paper presents a comprehensive analysis of an ACPC-PVT collector which is
suitable for applications in islands, as it combines electricity and thermal energy production.
The study encompasses several aspects, including an optical analysis based on the ray
tracing approach of Monte Carlo, to determine the ideal angle of inclination for the solar
unit to ensure maximum energy generation, as well as the development of a novel numerical
modeling technique for the thermal simulation. The method was established through two
simulating programs (COMSOL and SolidWorks), and the reliability of the method was
verified by comparing the results produced by the prementioned tools. The energetic and
the exergetic performance of the studied solar collector is presented and analyzed.

In summary, the objective of this work is to foster comprehension regarding the
thermal performance of the ACPC-PVT collector, employing the outcomes of both the
ray tracing analysis and the CFD simulations. The last ones employ a new methodology
developed by the authors, in which the air inside the cavity is taken into consideration for
the thermal simulation without including it in the computational domain, reducing the size
of the mesh grid and consequently the computational cost of the analysis. By conducting
the ray tracing analysis, a thorough comprehension of the limitations of the design is
obtained. Meanwhile, by linking the findings from the CFD simulations to different inlet
temperatures, the capacity to comprehend certain model outcomes without requiring a
fresh complete CFD simulation on every occasion is provided.

2. Materials and Methods
2.1. Description of Solar Collector

An asymmetric compound parabolic collector with a double flat plate PV/T absorber
was examined. The reflector’s profile consists of a sequence of a circular and a parabolic
line. The center of the circular part of the collector is equivalent to the parabola focal point.

The absorber material is aluminum and the heat transfer fluid flows through eight
conduits of an elliptical cross section. PV cells are located on both the upper and the back
side of the receiver. In total, there are 152 mono-crystalline-type cells divided into two
identical strings, one for the absorber’s upper side and one for the downside. A thin layer
of silicone is placed between the receiver and the PV cells and on the exposed PV side. The
collector is protected by a glass cover.

The main collector characteristics are summarized in Table 1. Moreover, Figures 1 and 2
present the examined collector.

Table 1. Collector characteristics [25].

General Characteristics Value

Length of the collector 2290 mm
Width of the collector 464.52 mm
Width of the receiver 157 mm

Thickness of the aluminum hydroskeleton 6.50 mm
Thickness of the reflector 4.00 mm

Major radius of the elliptical channel 7.00 mm
Minor radius of the elliptical channel 1.75 mm

Radius of the circle 144.86 mm
Focal length of the parabola 144.86 mm

Concentration ratio 1.51
Thickness of the glass cover 4 mm
PV temperature dependence −0.64%/K

PV nominal efficiency 18.7%
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The properties as regards the optical operation of the solar unit are presented in Table 2.

Table 2. Optical properties of the solar unit.

Optical Parameter Values

Emittance of the cover 0.95
Emittance of the reflector 0.05
Emittance of the absorber 0.90

Reflectance of the absorber 0.94
Transmittance of the cover 0.95

Absorptance of the absorber 0.93
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2.2. Mathematical Formulation

This subsection provides the formulations utilized for thermal and optical analy-
ses. Firstly, the electrical efficiency in terms of electricity production is affected by the
temperature of the PV cells, as it is described in Equation (1) [24,25].

ηel = η0·
(
1 − βc·

(
Tpv,m − T0

))
(1)

Another alternative way for the electrical efficiency calculation is given in
Equation (2) [26].

ηel =
Qel

Gpv·Apv
(2)

In the above equation, η0 represents the cell efficiency considering standard testing
conditions (STCs) (STC, G = 1000 W

m2 , T0 = 25 °C). βc denotes the coefficient of temper-
ature with regards to the photovoltaic (PV) module. A mean value for the PV was taken
into consideration.

By combining Equations (1) and (2), the electrical production for the cells in the
absorber upper side is calculated using Equation (3) [24].

Qel,up = Apv,up·GT ·η0·
(
1 − βc·

(
Tpv,up,m − T0

))
(3)

The available solar irradiance that reaches the absorber down side is calculated using
Equation (4) [24].

Gcpc = GT − 1
C
·Gd (4)

where Gd represents the intensity of diffuse radiation from the sun, GT denotes the solar
radiation that directly falls on the collector aperture perpendicularly and C represents the
ratio of concentration, which indicates the ratio between the glass area and the area of the
hybrid absorber [18].

C =
Ag

Ar
(5)

As a result of the above equations, the electrical production of the cells located on the
bottom side of the receiver is defined using Equation (6) [24].

Qel,down = Apv,down·Gcpc·
(

Apv,tot

Apv,down
C −

Apv,up

Apv,tot

)
·η

0

·
(

1 − βc·
(

Tpv,down,m − T0

))
(6)

The effective solar radiation, which is perpendicularly oriented on the collector aper-
ture, can be written using Equation (7) [18]:

Ge f f ,T = Gb,T +
Gd
C

(7)

The efficiency in terms of thermal operation is determined using Equation (8) [27].

ηth =
m·Cp·(Tout − Tin)

Ag·Ge f f ,T
(8)

where the numerator is the useful heat, which is defined by multiplying the mass flow
rate of heat transfer fluid (m) with the specific heat capacity of the medium (Cp) and the
difference between the outlet and inlet temperature (Tout − Tin). The denominator is the
result of the surface area of the solar unit and the effective radiation of the sun, which is
defined using Equation (7).

The sky temperature, as a function of the ambient temperature, is calculated using
Equation (9) [28].

Tsky = 0.0552·T1.5
a (9)
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Equation (10) is employed to determine the coefficient of the heat transfer between the
outer collector surfaces and the surrounding air [25].

hwind =
8.6·u0.6

L0.4 (10)

The parameter u represents the velocity of the wind in meters per second (m/s), while
L denotes the collector’s length measured in meters (m).

Reynolds number is calculated using Equation (11) [18]:

Re =
uDh

v
(11)

Parameter u is the mean velocity of the water in the channel, v is the kinematic viscosity
and Dh represents the hydraulic diameter, which is expressed using Equation (12) [29]:

Dh =
4A
P

(12)

Parameter A is the cross-sectional area of the channel and P is the channel perimeter.
The mean fluid velocity is calculated with the following equation:

u =

.
m

ρ·Ah
(13)

Ah is the cross section of the hydraulic diameter.
To ascertain if the flow appears to have turbulent or laminar characteristics, the critical

value of Reynolds number is taken into account through Equation (14).

Rec = 140·
√

8
f

(14)

The flow is considered laminar when the Reynolds number ratio between the critical
and the normal values is lower than unit

(
Rec
Re < 1

)
.

The factor of friction in the flow (f ) is determined through the following equation. The
subsequent formula utilizes the pressure drop (∆P), which is obtained from the computa-
tional fluid dynamics analysis conducted for each case.

f =
∆P

L
Dh

· 1
2 ·ρ·u2

(15)

The flow regime was found to be laminar in all the examined operating points. Thus,
Equation (16), which gives the theoretical values of the friction factor considering lam-
inar flow conditions, was utilized for verifying the results of Equation (15) (numerical
model) [18].

f =
64
Re

(16)

Except for thermal efficiency, it is important to calculate the exergy efficiency of
the collector, as exergy efficiency provides a comprehensive measure of the quality and
effectiveness of energy conversion within the system. The expression for the gain of useful
exergy from the collector, accounting for the drop of the pressure, can be represented by
Equation (17), where T0 = 25 °C [30].

Ecol = Qu − m f ·Cp·T0·ln
(

Tout

Tin

)
−

T0·Wp

Tf ,m
(17)
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The solar radiation exergy can be determined using Equation (18), as this is pro-
vided in References [24,31] with the assumption that the temperature of the sun is equal
to 5770 K [28].

Esol = Qsol ·
[

1 − 4
3

(
T0

Tsun

)
+

1
3

(
T0

Tsun

)4
]

(18)

Assuming that the electrical production is useful exergy [24], the collector exergy
performance is calculated using Equation (19) [24].

ηex =
Ecol + Qel

Esol
(19)

Finally, the optical efficiency is calculated using Equation (20).

nopt =
Qabs

Ag·Ge f f ,n
(20)

Parameter Ge f f ,n refers to the amount of solar radiation received on a surface that is
perpendicular to the direction of the rays of the sun.

2.3. Numerical Modeling
2.3.1. Optical Analysis Details

An optical analysis based on the Monte Carlo ray tracing method was conducted
in this study. This analysis was implemented by using Tonatiuh. Tonatiuh is a free and
open-source program designed by the National Renewable Energies Center (CENER) that
employs Monte Carlo ray tracing methods for simulating concentrating collectors. The
software’s findings were verified by comparing them with empirical data from various
solar installations [32]. Additionally, it has been employed in several scientific articles
examining the performance analysis of solar thermal collectors [33,34].

The analysis was performed using a sufficient number of rays, specifically 106, which
was determined after conducting a preliminary analysis while maintaining a constant direct
solar irradiation of 1000 W/m2.

In the simulation, the collector was positioned in a southerly direction in the area of
Athens, Greece, with the latitude and longitude parameters configured as 37.98◦ and 23.93◦,
correspondingly. Tonatiuh’s internal libraries were utilized to compute the sun’s position
and determine the resulting orientation of the incident direct irradiation. These libraries
considered time, date and coordinates as inputs.

2.3.2. Thermal Simulation Details

The thermal simulations in this study were performed using SolidWorks v.2014–2015
and COMSOL 5.2 software [35,36]. Both of these tools are widely used, with proven validity
and reliability [18,27,37].

SolidWorks is a well-established simulation software extensively employed in various
research studies focusing on energy systems, particularly in the context of solar thermal
collectors [28,30]. This program facilitates design processes and allows separate or simulta-
neous simulations of flow, optical and thermal characteristics.

COMSOL is a readily available software that applies finite element methods for solving
multi-coupled physics problems. COMSOL is a software tool employed in research studies
concerning both non-concentrating [16,38] and concentrating solar collectors [39].

The authors developed a novel method for the thermal simulation that was applied in
this study. The innovative aspect of this method stems from its consideration of the enclosed
air between the reflector and glass while excluding it from the numerical simulation, leading
to substantial reductions in computational time. Specifically, the simulated inclusion
of enclosed air was accomplished by imposing boundary conditions that specified the
temperature and equivalent value of the convective coefficient (h) on the absorber boundary
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areas, as well as on the interior surfaces of the cover and reflector. Several simulations
were carried out, varying the enclosed air temperature while keeping the convective
heat transfer coefficient constant in each simulation. The purpose was to determine the
appropriate value of the enclosed air temperature that would result in the heat losses that
come from the absorber being similar to those from the external faces of the solar unit. This
condition ensured that the solution would converge at each operational state, as the thermal
equilibrium of the solar unit needed both losses to be equivalent. The total thermal losses
were accurately calculated by considering both the radiative and convective contributions.

In the beginning, an arbitrary temperature value within the range of the inlet fluid
temperature and the ambient air temperature was assigned to all the surfaces within the
cavity to compute heat losses due to convection. Once the numerical solution was obtained,
the total thermal losses from the absorber and the corresponding losses from the external
faces of the solar unit were established. In the event that the receiver’s thermal losses
exceeded those of the exterior surfaces, a greater temperature rate was assigned to the air
gap. Increasing this temperature led to a decrease in overall losses for the receiver while
causing the outer surfaces to reach higher temperatures, increasing their overall losses.
This iterative process was repeated until an equilibrium was achieved.

This method was implemented for a subset of the examined operating points, revealing
that it yields results that are comparable to those obtained by linearly interpolating between
two observation points, with a 1 K variance in the temperature estimated within the
air cavity.

In order to illustrate the step-by-step implementation of the proposed method, a
flowchart has been developed (Figure 3). The flowchart visually captures the sequence of
actions and decisions involved in each phase of the method. By referring to this flowchart
alongside the following textual description, a holistic understanding of the analysis of the
thermal performance of the ACPC-PVT collector can be obtained.
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Regarding the overall chosen solution approach, it should be noted that steady-state
analysis was employed during the thermal analysis. This selection was deliberate, as the
study aims to mainly investigate the inlet temperature increment impact on the thermal
and exergy efficiency. Furthermore, the assumption of laminar flow as the flow regime was
made. This assumption is consistent with reference [25], in which identical flow rate was
employed for the experiments.

2.3.3. Mesh Information

In the present study, great attention was paid to the mesh grid formation, with several
refinements taking place in order to ensure reliable results. This was attended to in both
the COMSOL and SolidWorks models.

Specifically, the mesh along the boundaries between the fluid and the conduit surfaces
underwent refinement, and the mesh elements used for the water were carefully adjusted
and improved in order to better represent and simulate the thermal exchange involving the
fluid and the receiver walls. Additionally, the mesh elements on the mirror and absorbing
surfaces were fine-tuned to prevent issues related to absorption of solar irradiation and to
enable effective ray tracing. By implementing this enhancement on the reflector, the inter-
actions between the surfaces and the rays of light can be calculated with greater accuracy,
providing better representation of the optical behavior of the collector in the simulation.

2.3.4. Boundary Conditions of Thermal Analysis

The parametric thermal investigation was conducted at the solar time of 12:00 for an
average day of June. Based on the optical analysis for the solar unit at that specific moment
and date, a slope angle of 10 degrees was identified as the optimum for the installation of
the collector. This angle was implemented in the numerical modeling.

The solar irradiation values were acquired from the PVGIS [40], whereas the environ-
ment conditions and especially the external temperature and wind speed for the average
day in June were sourced via Greece’s Technical Chamber [41]. Based on these values and
using Equation (10), the convective coefficient of the outer air on the outer surfaces was
computed. As stated in Section 2.3.2, the coefficient took a constant value of 5 W/m2/K,
which is deemed appropriate for such enclosed spaces. Comparable values are documented
in relevant studies [30,42].

The hybrid collector was investigated across a range of water temperatures at the inlet
from 20 ◦C to 80 ◦C, while the flow rate was kept constant at 2.2 lt/min. The selection
of these values was based on their suitability for the specific application, as shown in
reference [25].

The thermal boundary conditions are presented in Table 3.

Table 3. Thermal simulation operating conditions.

Parameter Value

Outer air temperature (◦C) 26.5
Outer air speed (m/s) 3.3

Heat convective coefficient with ambient (W/m2/K) 12.59
Heat convective coefficient with air in the gap (W/m2/K) 5

Solar irradiance—direct (W/m2) 725
Solar irradiance—diffusive (W/m2) 218

Flow rate—volumetric (lt/min) 2.2
Inlet water temperature (◦C) 20–80

3. Results and Discussion

In the present section, the results of this study are provided with detailed analysis.
Firstly, Figure 4 depicts the optical efficiency of the collector for the mean day of June. An
hourly analysis was performed to determine the optimum value for the collector slope,
as described in Section 2.3.1. The presented findings exclusively pertain to the morning
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period, with the understanding that the same outcomes apply to hours beyond 12:00. To
illustrate, the optimal inclination angle for 13:00 corresponds to that of 11:00.
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It is noteworthy that the optical efficiency of the solar collector is low in the early
mornings and in the late afternoon period. Furthermore, sudden shifts in the performance
of the collector are observed, especially for higher inclination angles. This phenomenon
arises from the fact that, during these circumstances, the reflector does not contribute to
solar utilization, leading to a drastic and abrupt reduction in the collector’s useful reflective
area. In addition, Figure 4 shows that a time period exists around the solar noon in which
the optimal angle of inclination remains 10◦. The maximum value of the calculated optical
efficiency is 75%.

It is also remarkable to notice that the optical efficiency curves seem to be parallel to
certain slope ranges which are different in each time moment, and that happens because
in these ranges, the concentrator of the collector does not contribute to the solar energy
utilization. Hence, in these cases, only the upper part of the receiver remains active for the
solar energy absorption.

After establishing the optimal inclination angle based on Figure 4, the investigated
solar unit was subjected to an analysis involving different inlet temperatures. This analysis
aimed to evaluate the unit’s performance under various operational conditions, specifically
for the determined tilt angle.
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Firstly, so as to verify the results from the simulation model, the Darcy friction factor
was calculated. The Darcy friction factor was determined by comparing values obtained
from the simulation and the theoretical calculations. The theoretical values were derived
using Equation (16), whereas the numerical analysis utilized the pressure drop generated
during the simulation by Equation (15). The values from the prementioned analysis are
presented in Figure 5. A maximum deviation of 2.5% is observed. Therefore, the findings
from the numerical analysis demonstrate close agreement with the theoretical values,
affirming the reliability of the developed simulation model.
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Figure 5. Darcy friction factor: numerical and theoretical values and their deviation with regards to
inlet temperature.

Figure 6 illustrates the thermal solar collector performance, determined by applying
Equation (8) and utilizing data from the two simulation tools employed. The obtained
results demonstrate a strong correspondence between the two types of software, with a
maximum deviation of 5.3% to be observed. These findings confirm the reliability and
validity of the simulation method employed regarding the thermal modeling. The thermal
performance line shows a downward trend with an increase in the water temperature at the
inlet. This is a logical outcome because a higher temperature at the inlet results in greater
losses, ultimately leading to a decrease in thermal efficiency.

Figure 7 showcases the temperature profiles of both the upper and the lower pho-
tovoltaic components, calculated using the simulation tools. Additionally, it presents
the deviation between the two tools in each set of results. The temperature values are
displayed as temperature differences relative to the inlet temperature, as this qualitative
representation is more informative than quantitative values for visual analysis.
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Figure 6. Thermal efficiency of ACPC-PVT: COMSOL and SolidWorks.

In particular, the results in Figure 7 exhibit a remarkably close agreement between
SolidWorks and COMSOL results. Also, it is demonstrated that the calculated temperature
profiles for both the upper and the lower photovoltaic components are highly similar. The
maximum deviation of 6.87% between the two tools highlights the consistency and accuracy
of the simulations. This close correspondence leads further credibility to the reliability of
the simulation tools employed in this study.

From comparing Figure 7a with Figure 7b, it seems that the PV located on the lower
part of the receiver consistently presents higher temperatures than the PV on the upper
part throughout the entire range of operation. This observation can be attributed to the fact
that the PV on the back side of the receiver receives a greater amount of solar irradiation.
This discrepancy arises, also, because the solar radiation is focused in a narrower zone
for the lower PV compared to the upper one, leading to higher temperatures, especially
near the focal point. An intriguing observation is that the temperature delta involving
the photovoltaic (PV) component and the temperature at the inlet tends to be larger at
lower inlet temperatures. This happens because the convective regime inside the channels
is being enhanced with the increment of the temperature at the inlet. Another purpose
for this fact is that when the collector becomes warmer, it grows closer to the stagnation
conditions in which the temperature fields converge with each other. Figure 8 further
illustrates the above analysis by displaying the temperature allocation on the top and
bottom PV. As described previously, the figure shows that as the working fluid warms up,
a corresponding temperature rise is observed on the upper PV panel. Also, the focal point
of the concentrator on the bottom side of the receiver is evident in the region characterized
by the highest temperature at one end of the receiver.
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Figure 7. Temperature delta of the (a) upper and (b) the lower PV by the inlet temperature.
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Figure 8. Temperature profiles at the top (left) and the bottom (right) PV of the receiver for Tf,i = 40 ◦C.

Figure 9 visually represents the temperature difference between the ambient and the
enclosed to the gap air, resulting from the procedure outlined in Section 4. Furthermore,
Figure 9 clearly demonstrates the close agreement between the two numerical models, with
a maximum deviation of 5.36%. The negative values are explained, since for the low inlet
temperatures, the enclosed air temperature is lower than the ambient one.
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Figure 10 presents the air temperature within the collector’s gap, as well as the
temperatures of the receiver and the outlet. The objective is to assess the influence of the
receiver and the outgoing temperature on the air temperature, as well as to observe the
behavior of each one with respect to the rest temperatures.
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Figure 10. Absorber temperature, air in the gap temperature and outlet temperature.

According to Figure 10, the increment of the absorber temperature and the corre-
sponding temperature at the outlet leads to the increment of the enclosed air temperature.
However, this increment happens at a lower rate since the enclosed air has contact with
the “cold” cover. Additionally, the temperature delta between the absorber and the fluid
highlights that the temperature on the absorber tends to converge towards the water tem-
perature as the temperature at the inlet rises, resulting in a decrease in the useful heat
gained at a system level. The same trend was observed with the PV and water temperature
in Figure 7, which is due to increase in the convection in the heat transfer process.

Figure 11 illustrates that the upper photovoltaic (PV) component exhibits higher
efficiency compared to the lower PV. This can be attributed to the lower temperature
developed in the upper PV, as presented in Figure 7. The temperature difference between
the two PV components directly affects their performance, with the upper PV having up to
1.6% higher efficiency than the lower one.
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Figure 11. Electrical efficiency of the upper and lower PV with regards to inlet temperature.

Figure 12 shows the collector thermal and exergy efficiency as far as examined con-
ditions are concerned. The efficiency in terms of thermal operation reaches a maximum
value of 58.55% for the lowest temperature at the inlet, while the exergy efficiency takes the
maximum value of 16.94% for 60 ◦C temperature at the inlet, which shows the optimum
condition for the operation of the collector. It is remarkable to mention that operation
around 60 ◦C is ideal both for hot water applications and for the PV efficiency.
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Figure 12. Exergetic and energetic efficiency of the solar unit.
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Both the thermal and the exergy efficiency curves are approximated using the follow-
ing polynomial expressions (second order) with a fitness factor of 99.86%.

ηth = −0.0000120·Tin
2 − 0.0046586·Tin + 0.6830038 (21)

ηex = −0.0000332·Tin
2 − 0.0041515·Tin + 0.0405358 (22)

4. Conclusions

This research work investigated a PV/T collector with an asymmetric reflector, focus-
ing on the optical and thermal performance. The outcomes of this study demonstrate how
the proposed method for the computational model, which ensures low computational time,
effectively portrays the behavior of the examined solar collector across various operating
conditions, facilitating a deeper understanding of its energy and exergy performance. The
primary outcomes of this paper are the following:

• For the average day of June, the optimal inclination angle to achieve the maximum
optical efficiency (75% at solar noon) is 10◦, as calculated through the optical analysis.

• The optimum angle of 10◦ ensures maximum values of the optical efficiency for four
consecutive hours around solar noon, which is a remarkable time range.

• A mean value for the air temperature inside the collector was used to reduce computa-
tional time while achieving the necessary accuracy of the simulation.

• The collector thermal performance was examined and successfully verified through
two simulation tools, SolidWorks and COMSOL. The mean deviation for the thermal
efficiency was 5.3%.

• The applied simulation’s validity was also verified by utilizing the Darcy friction factor.
In particular, it was revealed that there was a deviation lower than 3.0% between the
numerical simulation output and the values from the theoretical model.

• The electrical efficiency was reduced from approximately 19% to 14% when going to
greater inlet temperatures. The upper PV efficiency was revealed to exceed the lower
PV one by up to 1.6% because of the lower fields of temperature on the upper PV.

• The solar unit presents a maximum performance of 58.55% in thermal operation.
• The maximum efficiency in terms of exergy was found to take the value of 16.94%,

which indicates that there is an optimum operating point for the particular collector
regarding the examined month and the applied operating conditions.
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Nomenclature

General Parameter
A Area, m2

Cp Specific heat capacity of the fluid, kJ/(kg K)
C Concentration ratio, -
D Diameter, m
E Exergy flow, W
f Friction factor, -
G Intensity of solar radiation, W/m2

h Coefficient of heat convection, W/(m2 K)
L Length, m
m Mass flow rate, kg/s
P Power, W
P Perimeter, m
Q Energy rate, W
Re Reynolds number, -
Recr Critical Reynolds number, -
T Temperature, ◦C
u Wind speed, m/s
V Volume flow rate, m3/s
W Power, W
Greek symbols
β Coefficient temperature for PV element, %/K
∆P Pressure drop, Pa
ηel Electric efficiency, -
ηex Exergy efficiency, -
ηth Thermal efficiency, -
ηopt Optical efficiency, -
v Kinematic viscosity, m2/s
ρ Density, kg/m3

Subscripts
a Ambient
abs Absorbed
b Beam
col Collector
cpc Utilized by the reflector
d Diffuse
down Bottom
eff Effective
el Electrical
g Glass
h Hydraulic
in Inlet
m Mean
n Normal
opt Optical
out Outlet
pv Photovoltaic
r Receiver
ref Reference
s Solar
sky Sky
sol solar
sun Sun
T Perpendicular to aperture
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th Thermal
tot Total
u Useful
up Top
wind Wind
a Ambient
0 Reference
Abbreviations
ACPC Asymmetrical compound parabolic collector
CFD Computational fluid dynamics
DHW Domestic hot water
PV/T Thermo-photovoltaic
STC Standard testing conditions
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