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Abstract: The operational reliability of rail vehicle pantograph systems is evaluated by transforming
T-S multistate fault trees into dynamic Bayesian networks (DBNs), which take into account system
multistability, long-lasting operation, dynamic failure, and maintenance recovery. The T-S multistate
fault tree structure is constructed by the content validity ratio and content validity index; the T-S gate
rule expressing causal uncertainty is constructed by using fuzzy theory and dependent uncertain
ordered weighted averaging expert scoring, and finally, the pantograph T-S multistate fault tree
is transformed into a DBN model characterizing the dynamic interaction and time dependence
of the system. The dynamic evolution laws of reliability of a pantograph system in maintenance
and maintenance-free states over time are inferred, compared and analyzed. The results show
that the system availability of a pantograph system decreases continuously during 720 days of
operation. The system availability without maintenance decreases to 0.881, and the system availability
with maintenance is 0.952. The reliability of a pantograph system can be effectively ensured with
maintenance during the operation period; the sensitivity analysis is performed by changing the failure
rate of the equipment to 120% or 80%; the fall indicator, the electrical control box, and the elevating
bow motor are the weak links in the system, and the impact of fault escalation on the reliability of a
pantograph system is analyzed. It is then verified that the system reliability can be further improved
by using a preventive maintenance strategy, and the steady-state reliability can be gradually reached,
which is about 0.9968, providing a reference for the maintenance of a pantograph system.

Keywords: reliability analysis; T-S multistate fault trees; dynamic Bayesian network; fuzzy theory;
pantograph systems

1. Introduction
1.1. Motivation

A pantograph system is a key component of rail vehicle traction receiving equipment,
which obtains electrical energy directly from the contact network to provide traction power
for the vehicle. Pantograph failure will seriously affect the normal operation of the vehicle,
and subsequent maintenance will take up a lot of maintenance resources, so it is necessary
to analyze the reliability of a pantograph system during vehicle operation. The method in
this paper can provide a reference for the functional design and maintenance work, to a
certain extent, to realize the subway vehicle maintenance cost reduction and operational
safety enhancement.

1.2. Background and Literature Review

A portion of the study involved a pantograph reliability analysis [1]. The reliability
indexes and reliability of the structural strength of pantographs were analyzed using simu-
lated sample data extracted from Latin hypercube sampling with a single-arm pantograph
as the object of study [2]. Combining the rain flow counting method, the life prediction
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method and the reliability prediction method, the reliability analysis of the V500 panto-
graph was carried out, and the fatigue life results under different working intensities were
predicted, which provided data support for the structure, material, design and operation
management of the device [3]. A dynamic model was developed for the pantograph of the
TSG19 type, and the contact stresses were analyzed to obtain the fatigue life and reliability
of the component, and its structural model was analyzed based on the stress data.

Currently, there are fewer studies on pantograph reliability alone, and most of them
are based on structural reliability rather than actual operation data. Therefore, this paper
will draw on the data-driven [4] reliability research method to study the dynamic reliability
of pantographs.

Fault tree analysis (FTA) is a powerful tool for assessing the reliability of complex
systems [5]. When using the traditional fault tree analysis method to analyze the reliability
of pantograph systems, in addition to the common problem of few component failure data
and difficulty in calculating the failure rate, there is also the problem that the failure states
are only based on two-state assumptions and cannot accommodate the multiple failure
states that exist in the practical system. Therefore, the T-S fuzzy fault tree analysis method
is generated [6] by introducing the fuzzy theory and uses fuzzy numbers to describe
the failure rate and failure probability; the polymorphic representation of fault states is
realized by T-S gates in the T-S fault tree. When using the T-S fuzzy fault tree for reliability
assessment, a large number of calculations are generated when finding the top event state
(forward inference), and reverse inference is not possible. In addition, the fault tree analysis
method is not suitable for dynamic reliability analysis of the system, which leads to its
limitation in practical engineering applications. Many studies have applied optimized fault
trees to reliability analysis. Rania A. et al. [7] Introduced the concept of Dynamic fault tree
(DFT) by defining additional gates (called dynamic gates) on the traditional fault tree, which
overcame the shortcomings of the traditional static fault tree in not being able to adequately
simulate the dynamic failures of a complex system and effectively assessed the reliability of
real complex systems. In [8], an extended approach for collaborative data-driven fault tree
analysis (DDFTA) of a system is presented, which extracts repairable fault trees from time
series data streaming from multiple systems/machines sharing similar functionalities. This
method is not limited to binary (two states) components nor to exponential distributions.
Iram Akhtar et al. [9] proposed fault tree analysis based on fuzzy set theory and applied it
to wind energy systems; this technique combines the effects of operational failures of wind
energy system configurations and errors in fuzzy environments using fuzzy risk indices
combining probabilistic inaccuracy and engineering inaccuracy for greater flexibility and
adaptability. Haonan Jiang et al. [10] established a polymorphic fuzzy fault tree for the
high-voltage power battery system of a pure electric commercial vehicle based on the
combination of polymorphic theory, fuzzy mathematical theory, group decision-making
theory, and fault tree and carried out qualitative and quantitative analyses to determine
the system’s weak links. In [11], the dynamic reliability model of the hydraulic system
is established by using the continuous-time T-S Dynamic fault tree to solve the fault rate
of the system, and the results are compared with the traditional analysis method and the
probability importance and key importance of the system unit are calculated.

Bayesian networks (BN) are increasingly used in system safety and reliability anal-
ysis [12]. As a graphical inference method, Bayesian networks represent the causal rela-
tionships between events. A BN has some characteristics and advantages over reliability
methods such as fault tree analysis, Petri nets, Markov chains, etc. A BN can be used to
predict the probability of unknown variables or update the probe of known variables by
evidence to achieve two-way reasoning [13]. A dynamic Bayesian network (DBN) carries
out extensions on dynamic attributes such as time based on a BN [14] and combined with
the state transfer probability table of the components to establish a dynamic reliability
model of the system, giving full play to the advantages of BN while achieving dynamic
reliability analysis of the system [15]. BN construction focuses on determining the network
structure and conditional probability table. The usual method is to transform the traditional
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FT model of the system into a BN model to achieve BN construction, but some drawbacks in
the traditional FT still pass into the BN. Due to the power of Bayesian networks, they have
a wide range of applications in the field of reliability analysis. In [16], the author proposes a
Bayesian network modeling framework that systematically combines design life estimates,
operational data, and expert judgment for the reliability prediction of aircraft subsystems.
The model predicts the reliability of a large aircraft fleet by using failure and maintenance
data provided by a large fleet operator. In [17], reliability characteristics such as failure
probability, failure rate, and mean time to failure of the floating offshore wind turbine are
determined according to the Bayesian network predictive analysis. In [18], the fault tree
mapping dynamic Bayesian network (DBN) method is applied to the reliability research
study of centrifugal compressor units, and its usability and reliability are evaluated dynam-
ically. In [19], in order to deal with epistemic uncertainty and dynamic characteristics in
the reliability assessment process of controllable pitch propeller hydraulic systems, the D-S
evidence theory and dynamic Bayesian network were applied to establish a novel approach
for assessing its reliability and availability. In [20], to deal with the uncertain knowledge
and various information in the safety assessment, characteristic indicators are extracted
from marine environment systems and discretized with the Cloud model. The dynamic
evaluation and risk zoning of navigation safety is realized based on Bayesian probabilistic
reasoning and Dempster–Shafer (DS) evidence theory. In [21], the author develops a new
dynamic Bayesian network (DBN) framework for fault diagnosis and reliability analysis
of OWT gearbox systems by incorporating components’ degradation information and a
condition-based maintenance (CBM) strategy. The reliability, availability, and mean time
between failures (MTBF), as well as the failure criticality index (FCI) for each subassembly,
are estimated.

1.3. Paper Organization

In response to the above problems, a reliability assessment method of a pantograph
system based on the T-S polymorphic fault tree and dynamic Bayesian network is proposed.
The T-S multistate fault tree is utilized to solve the problem that the fault states are only
based on the two-state assumption, and multiple fault states cannot exist [22]. The fuzzy
theory is used to obtain the T-S gate rule probability parameter in the T-S polymorphic
fault tree to characterize the uncertainty of the causal relationship between events [6].
Moreover, constructing Bayesian networks using T-S polymorphic fault trees addresses the
shortcomings of traditional fault tree construction of Bayesian networks [18]. Additionally,
using Bayesian networks for bidirectional inference to solve the problem of T-S polymorphic
fault tree forward inference is computationally complex and unable to reverse inference [23].
A dynamic Bayesian network is constructed using a Bayesian network and the multistate
transfer probability table to realize the dynamic reliability analysis of a pantograph system,
and it is verified that the system can effectively improve reliability by adopting preventive
maintenance on the basis of the original maintenance strategy. The objective of this study
is to propose a dynamic reliability assessment method for the dynamic characteristics of
pantograph systems, including dynamic interactions, time dependence, and uncertainty
of causality, so as to provide a reference for the pre-functional design and subsequent
maintenance of pantograph systems.

The rest of the paper is structured as follows: Section 2 presents a system reliability
analysis model based on the T-S polymorphic fault tree and the dynamic Bayesian network.
Section 3 takes the pantograph as the object for modeling. Specific analysis results and
conclusions are presented in Sections 4 and 5. The theoretical framework of the dynamic
reliability assessment method for pantographs is established using FTA, DBN, and FM
methods, as shown in Figure 1.
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Figure 1. Theoretical framework for the approach.

2. Basic Theories
2.1. T-S Multistate Fault Tree

T-S multistate fault trees are inverted tree-like diagrams consisting of top events,
intermediate events, and basic events that map the potential causes of system failures using
a hierarchical deductive framework that can quantitatively or qualitatively estimate the
probability of top events. Compared with the traditional fault tree, the T-S multistate fault
tree uses a series of T-S gates with IF-THEN rules instead of the logic gates in the traditional
fault tree. T-S gates allow events to have multiple fault states, making them more suited
to complex components with multiple fault states or with escalating faults. T-S gate input
events are multiple fault states or with escalating faults [24,25].

The T-S gate input event is xi(i = 1, 2, . . . , n), the corresponding multiple fault state can
be expressed as xai

i (ai = 1, 2, . . . , ki), [6] and its output event corresponds to the multiple
fault state as ybj(bj = 1, 2, . . . , ηj).

In the case of a known IF-THEN rule l, the input event xi fault state in the T-S gate
corresponds to: x1 = xa1

1 , x2 = xa2
2 , . . . , xn = xan

n , then y is a possible representation of state
ybj as Pl(ybj). Number r of rule l is determined by the total number ki of states of xi. The
calculation is given in Equation (1):

r = k1k2 · · · kn =
n

∏
i=1

ki (1)

In addition, the T-S gate rule can be used to assign values to the conditional probability
tables of the corresponding nodes in the Bayesian network [26]. The specific process of
constructing a Bayesian network based on a T-S multistate fault tree is shown in Figure 2.
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Fault Tree Structural Validity Verification

Verifying the validity of the fault tree structure is essential for the subsequent reliability
analysis method based on this fault tree [27]. By collecting expert knowledge, the content
validity ratio (CVR) and content validity index (CVI) of the fault tree structure are calculated
to measure the relevance and necessity of primary and intermediate events in the fault tree.
The content validity ratio (CVR) is a measure of validity proposed by Lawshe [28]. Using
expert knowledge to calculate this value, experts classify each essential event according
to a three-level Likert scale (1 = unnecessary, 2 = helpful but unnecessary, 3 = necessary).
Then, they were calculated using Equation (2).

CVR =
nE − N

2
N
2

(2)

The n is the necessary number of experts selected (3), and N is the total number
of experts.

The calculated content validity ratio (CVR) value is compared with the standard
parameters in Lawshe’s table. If it is higher than the standard, the content validity of the
fault tree structure is accepted.

The content validity index (CVI), where the item-level CVI (I-CVI) evaluates the con-
tent validity of each item [29], and the method is used to measure the relevance of each
event in the fault tree. In this method, experts are required to determine the relevance
of each event. A 4-level Likert scale was used (1 = not relevant, 2 = slightly relevant,
3 = strongly relevant, 4 = very relevant). For each event, the number of experts who gave
a rating of 3 or 4 divided by the total number of experts who participated was the corre-
sponding I-CVI, and the I-CVI determined the content validity of the fault tree structure.

2.2. Fuzzy Theory

The T-S gate rules in the T-S fault trees are usually formulated by expert knowl-
edge [30], and the T-S gate rules correspond to conditional probability tables in subsequent
Bayesian networks. Since experts cannot precisely calculate the probability parameters
Pl(ybj) in the T-S gate rule, natural language, such as “possible” and “impossible”, is
usually used to describe the probability parameters. However, these languages are fuzzy,
so the fuzzy theory deals with this uncertain information.

However, these languages carry fuzziness, so fuzzy theory is used to deal with this
uncertain information. In this paper, fuzzy theory and expert linguistic judgments are used
to estimate the conditional probability parameter Pl(ybj) in the T-S gate rule.

It is first necessary to determine the linguistic rating levels and to replace the expert
linguistic rating values with triangular or trapezoidal fuzzy numbers [31]. Table 1 gives the
corresponding fuzzy number forms and λ-cut sets for the evaluated languages.
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Table 1. Fuzzy number form and λ-cut set.

Evaluation Language Fuzzy Number Form λ-Cut Set

Very low f1 = (0, 0, 0.1, 0.2) f λ
1 = [0,−0.1λ + 0.2]

Low f2 = (0.1, 0.2, 0.3) f λ
2 = [−0.1λ + 0.1,−0.1λ + 0.3]

Comparatively low f3 = (0.2, 0.3, 0.4, 0.5) f λ
3 = [−0.1λ + 0.2,−0.1λ + 0.5]

Moderate f4 = (0.4, 0.5, 0.6) f λ
4 = [−0.1λ + 0.4,−0.1λ + 0.6]

Comparatively high f5 = (0.5, 0.6, 0.7, 0.8) f λ
5 = [−0.1λ + 0.5,−0.1λ + 0.8]

High f6 = (0.7, 0.8, 0.9) f λ
6 = [−0.1λ + 0.7,−0.1λ + 0.9]

Very high f7 = (0.8, 0.9, 1, 1) f λ
7 = [−0.1λ + 0.8, 1]

After obtaining the evaluation information from fuzzy numbers from multiple experts,
the arithmetic averaging method and the combination of expert weights are often used to
synthesize the evaluation information. In order to avoid the intense subjectivity of experts,
the objective weighting method of Depended Uncertain Ordered Weighted Averaging [32]
(DUOWA) is used; this method determines the weights according to the degree of difference
between the evaluation information of each expert and the average evaluation information,
avoiding the uncertainty caused by subjective weighting.

If n experts are evaluating the probability parameter Pl(ybj) of the T-S gate rule l, the
trapezoidal fuzzy number of the evaluation information using the DUOWA operator to
synthesize the expert evaluation information is:

F
k,l,ybj = (F1

k,l,ybj
, F2

k,l,ybj
, F3

k,l,ybj
, F4

k,l,ybj
)

Each expert’s evaluation weight values are calculated and obtained by the following
Equation (3):

w(F
k,l,ybj , Fa) =

s(F
k,l,ybj , Fa)

n
∑

k=1
s(F

k,l,ybj , Fa)
(3)

where Fa is the arithmetic mean of n trapezoidal fuzzy numbers and s(F
k,l,ybj , Fa) is the

similarity between F
k,l,ybj and Fa.

Comprehensive expert evaluation based on the evaluation weights of the experts:

W
l,ybj =

n

∑
k=1

w
k,l,ybj F

k,l,ybj (4)

where w
k,l,ybj is the evaluation weight of each expert calculated by Equation (3).

The information obtained by combining the expert evaluation information is still a
fuzzy number. It is necessary to fuzzify the fuzzy number solution [33] into a clear T-S gate
rule l with probability parameter p. The area-mean method is shown in Equation (5):

Pl(y
bj
W) =

aW + bW + cW + dW
4

(5)

The Pl(y
bj
W) obtained above will be applied to the subsequent Bayesian network

conditional probability table as the probability parameter Pl(ybj) in the T-S gate rule l.

The Pl(ybj) sum must be 1. Therefore, it is necessary to normalize Pl(y
bj
W), which can be

obtained from Equation (6):

Pl(y
bj
W) =

aW + bW + cW + dW
4

(6)
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The above fuzzy theoretical approach to transform the expert fuzzy judgment infor-
mation into the probability parameter Pl(ybj) of the T-S gate rule l can effectively reduce
the uncertainty of the conditional probability table in the subsequent Bayesian network.

2.3. Dynamic Bayesian Network

A dynamic Bayesian network (DBN) is a temporal extension of a static Bayesian
network. By combining the static Bayesian network with temporal information, the DBN
model’s transition between two adjacent time segments can be modeled as follows [34]:

P(Xt|Xt−1 ) =
N

∏
i=1

P(Xt,i|Pa(Xt,i )) (7)

where Xt and Xt−1 denote the nodes in time slice t and t−1; Xt,i is the ith node in time slice
t; and Pa(Xt,i) is the set of parent nodes of the node.

In the DBN model, the joint probability distribution of multiple time segments can be
calculated by the following Equation (8):

P(X1:T) =
T

∏
i=1

N

∏
i=1

P(Xi
t

∣∣∣Pa(Xi
t )) (8)

where T is the number of time segments; P(X1:T) is the joint probability distribution of time
segments 1:T.

Multistate Modeling of Dynamic Bayesian Networks

In order to guarantee reliable vehicle operation, the maintenance department will
regularly repair and maintain the vehicle equipment and the vehicle equipment to carry out
a comprehensive overhaul and repair the equipment in the existence of faults or potential
problems. City metro vehicle equipment mainly takes cycle maintenance and after-the-fact
maintenance. Cycle maintenance is divided into equalization repair and frame overhaul,
with equalization repair cycles ranging from 1 to 12 months. The frame overhaul is a
comprehensive vehicle repair with an active life of 5/10 years. After-the-fact repair is for
the vehicle equipment in the main line after failure, affecting the operation of direct repair.

A city subway for the vehicle equipment according to the impact of the failure of its
fault state is divided, respectively, for the average working state (0), for no impact on the
vehicle operation of the minor fault state (0.5), and the vehicle cannot continue to operate in
the severe fault state (1). Therefore, the essential event state xai

i , representing the equipment
in the T-S fault tree, is divided into three states. The corresponding intermediate and top
events xai

i are also three states (ki = ηj = 3).
Equipment fault states in dynamic Bayesian networks are established as three states

through T-S polymorphic fault trees [35]: regular operation (0), minor fault (0.5), and severe
fault (1). Furthermore, as the vehicle is in operation, the equipment state may randomly
shift to a worse state, i.e., fault escalation.

In this paper, the following assumptions are made when DBN is used to analyze
the reliability of multistate systems: (1) if the actual events in the system T-S multistate
fault tree are considered as the root nodes in DBN, then there are three states of 0, 0.5
and 1 at the root nodes in DBN; (2) the actual events may randomly transition to worse
states during operation; (3) the state transfer rate is constant and exponentially distributed;
(4) repair of equipment in a severe fault and restoration of equipment to regular operation
after repair; (5) the system can also perform planned maintenance to avoid escalation
of minor faults. The system is in as-new condition after planned maintenance, i.e., after
planned maintenance, the state of the equipment can be repaired from a minor fault state
and severe fault state to a regulation operation state (Section 4.4 analyzes the impact of
planned maintenance on system reliability). The state transfer process of the root node in
DBN is shown in Figure 3. λ is the failure rate in the state transfer process of this node
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and u is the maintenance rate in the multistate process of this node. When equipment is
being maintained, planned maintenance is often carried out at the same time in order to
save resources. Therefore, for the purpose of subsequent calculations, it is assumed that a
severe fault to a regular operation and a minor fault to a regular operation have the same
maintenance rate u [14].
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Figure 3. Root node multistate transition diagram.

The system state satisfies the discretization according to the above assumptions and
after dividing the time segments by a dynamic Bayesian network, the process complies
with the Markov assumption and the chi-squaredness assumption; (1) The state of the
current moment is only related to the state of the previous moment; (2) For any moment
t, the state transfer probability P(Xt|Xt−1 ) is constant [35]. The number of state spaces is
limited to three states. Thus, system state modeling can be performed by using Markov
chains in dynamic Bayesian networks [14].

According to the assumption that the node failure state obeys the exponential distribu-
tion of failure rate λ, the corresponding transfer relationship table of the vehicle operation
process without and with maintenance state can be obtained [1], as shown in Table 2 below.
Planned maintenance is not included in the Consider maintenance. The logical relations in
the table are the transfer probability calculation formulas for the transfer of each state of
the node under t moments to each state under (t + ∆t) moments.

Table 2. Root node state transfer relationship table.

No Consideration for Maintenance

t + ∆t
t

0 0.5 1

0 e−(λ1+λ2)∆t 0 0
0.5 λ1

λ1+λ2
(1− e−(λ1+λ2)∆t) e−λ3∆t 0

1 λ2
λ1+λ2

(1− e−(λ1+λ2)∆t) 1− e−λ3∆t 1

Consider maintenance

t + ∆t
t

0 0.5 1

0 e−(λ1+λ2)∆t 0 1− e−u∆t

0.5 λ1
λ1+λ2

(1− e−(λ1+λ2)∆t) e−λ3∆t 0
1 λ2

λ1+λ2
(1− e−(λ1+λ2)∆t) 1− e−λ3∆t e−u∆t

T-S polymorphic fault trees transform the structure learning in DBN, and the specific
rules are shown in Figure 2. The next-level input events in the T-S gate are similar to
the parents in the conditional probability table of the Bayesian network. The upper-
level output events are similar to the children. In contrast, the T-S gate rule satisfies
the conditional probability and independence, so the T-S gate rule is used to assign the
conditional probability table to the corresponding nodes in the Bayesian network. The
dynamic changes of nodes in T-S gates in T-S multistate fault trees can be directly added
with directed edges between time segments to complete the expansion from moment t to
(t + ∆t) moment, as shown in Figure 4.
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The conditional probability table (CPT) in DBN can express the correlation between
devices and the impact of different failure states of devices on system reliability. The CPT
of DBN in this method is converted from the T-S gate rule, and the probability of failure of
the output event can be calculated by the probability of failure of the T-S gate input event,
which corresponds to the CPT in DBN.

Assuming that the probability of failure of the various fault states of the T-S gate
input event is P0

l = P(xa1
1 )P(xa2

2 ) · · · P(xan
n ), assuming that the probability of rule l getting

executed is [30]:
P0

l = P(xa1
1 )P(xa2

2 ) · · · P(xan
n ) (9)

Thus, the probability of the output event y is:

Py
bj =

r

∑
l=1

P0
l Pl(ybj) (10)

where Pl(ybj) is the probability that the output event y is in state bj when the input event
x1 = xa1

1 , x2 = xa2
2 , . . . , xn = xan

n is in its respective state when rule l is executed, the value
is obtained by processing expert fuzzy judging information through fuzzy theory.

3. Pantograph System Reliability Analysis Model
3.1. T-S Multistate Fault Tree of Pantograph System

Based on the vehicle failure log of the whole line network of a city’s rail transit vehicles
in 2019–2021, combined with the selection of the pantograph-related failure data therein as
the data source of the reliability indexes, and taking the single-arm type pantographs as the
object of system analysis, combined with the experts in the field of rail transit vehicle repair
and maintenance, the corresponding system T-S polymorphic failure tree was constructed
and used for the subsequent dynamic reliability analysis.

3.1.1. Pantograph System

The typical single-arm pantograph structure is shown in Figure 5 [30], and a four-
link mechanical mechanism is used to realize the action of lifting the pantograph; related
electrical and pneumatic equipment provides power for the mechanical structure.

3.1.2. Pantograph T-S Multistate Fault Tree

Based on the rules of functional structure division of a city metro equipment and
the typical fault components of a pantograph system with high frequency during the
operation period of 2018–2021, after drawing the fault tree, the CVI and CVR assessment
opinions of six experts for the event structure validity of a pantograph system were
collected. After the modification of expert opinions, the T-S polymorphic fault tree was
established, as shown in Figure 6. According to the Lawshe table, the minimum CVR
value of 0.99 for six experts is required; the I-CVI value corresponding to six experts in
the CVI evaluation needs to be greater than 0.83 to accept the event. From Equation (2),
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the CVI value of 1 is more significant than 0.99. The I-CVI value of each primary and
intermediate event is also greater than 0.83. Therefore, 14 primary events and five
intermediate events are identified.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21 
 

therein as the data source of the reliability indexes, and taking the single-arm type panto-
graphs as the object of system analysis, combined with the experts in the field of rail transit 
vehicle repair and maintenance, the corresponding system T-S polymorphic failure tree 
was constructed and used for the subsequent dynamic reliability analysis. 

3.1.1. Pantograph System 
The typical single-arm pantograph structure is shown in Figure 5 [30], and a four-

link mechanical mechanism is used to realize the action of lifting the pantograph; related 
electrical and pneumatic equipment provides power for the mechanical structure. 

 
Figure 5. Pantograph structure diagram. 

3.1.2. Pantograph T-S Multistate Fault Tree 
Based on the rules of functional structure division of a city metro equipment and the 

typical fault components of a pantograph system with high frequency during the opera-
tion period of 2018–2021, after drawing the fault tree, the CVI and CVR assessment opin-
ions of six experts for the event structure validity of a pantograph system were collected. 
After the modification of expert opinions, the T-S polymorphic fault tree was established, 
as shown in Figure 6. According to the Lawshe table, the minimum CVR value of 0.99 for 
six experts is required; the I-CVI value corresponding to six experts in the CVI evaluation 
needs to be greater than 0.83 to accept the event. From Equation (2), the CVI value of 1 is 
more significant than 0.99. The I-CVI value of each primary and intermediate event is also 
greater than 0.83. Therefore, 14 primary events and five intermediate events are identified. 

  

Figure 5. Pantograph structure diagram.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 6. Pantograph T-S multistate fault tree. 

The fault tree in x is the primary event; y is the intermediate event; T is the top event; 
and T-S gate 1 to gate 6 expresses the correlation between each gate input and output 
events. The meaning of each event is shown in Table 3. 

Table 3. Meaning of each event in the pantograph T-S multistate fault tree. 

Event Code Event Name Event Code Event Name 
T Pantograph failure x5 Electrical control box failure 
y1 Damage to the bow frame x6 Valve box failure 
y2 Electrical component failure x7 Lifting bow cylinder failure 
y3 Pneumatic component failure x8 Solenoid valve failure 
y4 Bowhead damage x9 Bracket broken deformation 
y5 Frame deformation failure x10 Spring box failure 
x1 Bottom frame insulator broken x11 Horn damage 

x2 Lifting bow spring assembly fail-
ure 

x12 Deformation failure of upper and lower frames (upper 
and lower frames, lower arm bars, tension bar) 

x3 Lifting bow/dropping bow mo-
tor failure 

x13 Bearing failure 

x4 Drop bow indicator failure x14 Damper failure 

3.1.3. Fuzzy Theory Constructs T-S Gate Rule 
The construction of T-S gate rules requires establishing the number r of rules l and 

the probability ( )jblP y  when the output event y is in state jb . This paper invites four 

experts to be fuzzy to evaluate the conditional probability parameter ( )jblP y  for all T-S 
gates in the T-S multistate fault tree. The expert profiles are shown in Table 4, and the 
experts perform a fuzzy evaluation of the likelihood of state occurrence based on the Eval-
uation Language in Table 1 for the nodes that have a conditional probability table (in the 
form of Table 5) in the pantograph T-S polymorphic fault tree (Figure 5). 

Table 4. Expert profile. 

Expert Job Title Level of Education Work Experience (Years) Age (Years) 
1 Mechanical Engineer BEng 20–29 40–49 
2 Service Engineer BEng 20–29 40–49 
3 Electrical Engineer MEng 20–29 40–49 
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The fault tree in x is the primary event; y is the intermediate event; T is the top event;
and T-S gate 1 to gate 6 expresses the correlation between each gate input and output events.
The meaning of each event is shown in Table 3.
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Table 3. Meaning of each event in the pantograph T-S multistate fault tree.

Event Code Event Name Event Code Event Name

T Pantograph failure x5 Electrical control box failure
y1 Damage to the bow frame x6 Valve box failure
y2 Electrical component failure x7 Lifting bow cylinder failure
y3 Pneumatic component failure x8 Solenoid valve failure
y4 Bowhead damage x9 Bracket broken deformation
y5 Frame deformation failure x10 Spring box failure
x1 Bottom frame insulator broken x11 Horn damage

x2 Lifting bow spring assembly failure x12
Deformation failure of upper and lower frames

(upper and lower frames, lower arm bars, tension bar)
x3 Lifting bow/dropping bow motor failure x13 Bearing failure
x4 Drop bow indicator failure x14 Damper failure

3.1.3. Fuzzy Theory Constructs T-S Gate Rule

The construction of T-S gate rules requires establishing the number r of rules l and the
probability Pl(ybj) when the output event y is in state bj. This paper invites four experts to
be fuzzy to evaluate the conditional probability parameter Pl(ybj) for all T-S gates in the
T-S multistate fault tree. The expert profiles are shown in Table 4, and the experts perform
a fuzzy evaluation of the likelihood of state occurrence based on the Evaluation Language
in Table 1 for the nodes that have a conditional probability table (in the form of Table 5) in
the pantograph T-S polymorphic fault tree (Figure 5).

Table 4. Expert profile.

Expert Job Title Level of Education Work Experience (Years) Age (Years)

1 Mechanical Engineer BEng 20–29 40–49
2 Service Engineer BEng 20–29 40–49
3 Electrical Engineer MEng 20–29 40–49
4 System Engineer MEng 20–29 40–49

Table 5. Expert fuzzy evaluation information.

Rule l Corresponds to the p Fuzzy Evaluation

Expert ybj = 0 ybj = 0.5 ybj = 1
1 f1 = (0, 0, 0.1, 0.2) f2 = (0.1, 0.2, 0.3) f5 = (0.5, 0.6, 0.7, 0.8)
2 f1 = (0, 0, 0.1, 0.2) f3 = (0.2, 0.3, 0.4, 0.5) f5 = (0.5, 0.6, 0.7, 0.8)
3 f2 = (0.1, 0.2, 0.3) f4 = (0.4, 0.5, 0.6) f6 = (0.7, 0.8, 0.9)
4 f1 = (0, 0, 0.1, 0.2) f2 = (0.1, 0.2, 0.3) f4 = (0.4, 0.5, 0.6)

Due to the space limitation, the T-S gate 4 rule table construction process is listed in
this paper. Establish the number l of rule r: the fault state k6 = k7 = k8 = 3 of the input
event x6, x7, x8, which is calculated by Equation (1) to obtain r = 27.

Collecting experts’ fuzzy evaluation information in rule l of r: For rule l(xk6
6 = 0,

xk7
7 = 0, xk8

8 = 1) as an example, the collected experts’ evaluation information is shown in
Table 5.

Using the DUOWA operator to synthesize expert evaluation information, the data in
Table 5 are calculated from Equations (3)–(7) to obtain the integrated fuzzy value W

l,ybj=0
:

W
l,ybj=0

= (0.027, 0.053, 0.127, 0.227)

W
l,ybj=0.5

= (0.198, 0.298, 0.324, 0.424)

W
l,ybj=1

= (0.525, 0.625, 0.675, 0.775)
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Fuzzy removal of the integrated fuzzy value W
l,ybj yields the exact probability param-

eter and normalizes it to obtain Pl(ybj) from Equations (8) and (9) to obtain:

Pl(ybj = 0) = 0.101,
Pl(ybj = 0.5) = 0.291,
Pl(ybj = 1) = 0.608.

Repeat steps 1 to 4 one by one to obtain Pl(ybj) and the 27 rules l in T-S gate 4 to obtain
the T-S gate 4 rules, shown in Table 6. Obtain the remaining T-S gate parameters one by
one by the above method.

Table 6. T-S gate 4 rules.

Rule l x6 x7 x8
y3

ybj =0 ybj =0.5 ybj =1

1 0 0 0 1 0 0
2 0 0 0.5 0.761 0.136 0.103
3 0 0 1 0.131 0.508 0.361
4 0 0.5 0 0.769 0.131 0.100
5 0 0.5 0.5 0.200 0.644 0.156
6 0 0.5 1 0.097 0.527 0.376
7 0 1 0 0.197 0.496 0.307
¦ ¦ ¦ ¦ ¦ ¦ ¦
27 1 1 1 0 0 1

3.2. Dynamic Bayesian Network

This paper’s reliability data are obtained from a city metro 2018~2021 vehicle fault log
and metro vehicle equalization repair manual for the whole network. The failure rate λ1,
λ2, and the state repair rate u for equipment states from 0 to 0.5 and 0 to 1 are collated in
Figure 2. In addition, the escalation of faults during equipment operation states from 0.5 to
1 cannot be observed practically, so λ3 = λ1 [14] is assumed, and the specific parameters are
shown in Table 7.

Table 7. Pantograph basic component reliability parameters.

Event
Failure Transfer Rate/h Maintenance Rate/h

λ1 λ2 u

x1 5.492 × 10−6 4.145 × 10−7 0.004006
x2 3.938 × 10−6 3.11 × 10−7 0.004004
x3 4.87 × 10−6 4.145 × 10−7 0.004006
x4 5.907 × 10−6 16.58 × 10−7 0.004007
x5 3.731 × 10−6 10.363 × 10−7 0.004004
x6 5.389 × 10−6 5.181 × 10−7 0.001339
x7 8.808 × 10−6 7.254 × 10−7 0.001343
x8 12.23 × 10−6 10.363 × 10−7 0.004013
x9 3.109 × 10−6 1.036 × 10−7 0.004004
x10 3.523 × 10−6 1.036 × 10−7 0.004006
x11 5.596 × 10−6 3.109 × 10−7 0.004007
x12 4.56 × 10−6 2.073 × 10−7 0.004005
x13 2.964 × 10−6 1.036 × 10−7 0.001337
x14 2.383 × 10−6 3.109 × 10−7 0.004004

According to the principle of constructing a Bayesian network for T-S polymorphic
fault tree construction in Figure 2, the T-S polymorphic fault tree of a pantograph system
(Figure 6) is transformed into a DBN (shown in Figure 7). The conditional probability
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table of each node in the DBN can be output according to the T-S gate rule constructed
in Section 2.2. The interval ∆t is set to 1 day in the DBN inference process. Each device’s
initial time interval t = 0 is entirely reliable, i.e., the prior probability of the root node is 1.
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4. Reliability Analysis of Pantograph System
4.1. System Reliability Assessment

A pantograph system’s reliability reflects the ability of the system components and
subsystems to maintain regular operation within a specified period, and the DBN model
can be used to positively infer the immediate reliability of the system to measure the system
reliability. According to the equipment’s failure rate and maintenance rate in Table 7,
substitute the formula in Table 2 to obtain the state transfer table without and with the
maintenance of each root node of DBN during the vehicle operation, respectively. The state
transfer table without maintenance and with maintenance will be substituted into the root
node, and the operation time will be set to obtain the system reliability curve with time, as
shown in Figure 8. The system reliability of a pantograph system declined continuously
during 720 days of operation. On day 720, the system reliability dropped to 0.881 for the
system without maintenance and 0.952 for the system with maintenance.

The dynamic reliability of the pantograph, arch frame, electrical parts, pneumatic
parts, arch body, and frame are compared and analyzed, and the results are shown in
Figure 9.

By comparing the reliability of the overall system and intermediate components
without and with maintenance in Figures 8 and 9, it is found that the reliability with
maintenance is significantly higher than the reliability without maintenance. Therefore,
different overhaul cycles can be formulated according to the reliability change curves of
different sub-components so as to improve the maintenance rate of the system and reduce
the probability of upgrading the fault state, thus improving the reliability of a pantograph
system. The results of this reliability analysis can be used as a reference for the subsequent
optimization of the maintenance of system components.

4.2. Sensitivity Analysis

Since the state transfer input of DBN is mainly calculated based on the equipment
failure rate and maintenance rate, the sensitivity analysis can be achieved by ensuring that
the failure rate of other equipment remains unchanged and adjusting the failure rate of
individual equipment to 120% and 80% of the initial failure rate to obtain the reliability of
the system after the change of failure rate of this equipment [35]. The results are shown in
Figure 10. The sensitivity of each piece of equipment is analyzed by the values change.
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Figure 10 shows that equipment failure rates change individually to affect system
reliability in the following order: x4Drop bow indicator > x5Electrical control box > x3Lifting
bow motor > x6Valve box > x8Solenoid Valve > x7Lifting bow cylinder > x1Underframe
insulator > x2Lifting bow spring assembly > x11Horn > x10Spring Box > x12Upper and
lower frames > x9Bracket > x13Bearing > x14Damper. The weak equipment is the drop bow
indicator, the electrical control box, and the lifting bow motor.

A comparative analysis of the serviced and non-serviced systems showed that the
change in reliability of the serviced system was less than the change in reliability of the
non-serviced system when the failure rate of an identical device was changed to 120% or
80%. Therefore, for a maintenance-free system, the change in the failure rate of a single
device has a more significant impact on its reliability.
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Birnbaum’s probabilistic importance is one of the important parameters in reliability
analysis. It is used to describe the impact of the state change of each root node in the
network on the overall reliability of the system. Birnbaum probabilistic importance is
based on the static failure behavior, and based on the method of calculating the Birnbaum
probability of importance of the T-S polymorphic fault tree [6], we obtain the Birnbaum
probabilistic importance from x1~x14, which are shown in Table 8.

The events with greater probabilistic importance are x4Drop bow indicator, x5Electrical
control box, and x3Lifting bow motor. The comparison in Figure 9 reveals that the results
of the weak components of the system obtained by sensitivity analysis and Birnbaum’s
probabilistic importance analysis are consistent.
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4.3. Failure Escalation Probability Impact Analysis

For each device of the pantograph system, the fault escalation probability λ3 is in-
creased by 25% over the value given in Table 7, and the reliability analysis of the system is
performed to obtain the system reliability, as shown in Figure 11. The results show that the
system reliability decreases as the probability of fault escalation increases; the effect of fault
escalation on a maintenance-free system is more pronounced than that of a system with
maintenance. Therefore, the probability of fault escalation should be reduced as much as
possible to improve the pantograph system’s performance.
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Table 8. Importance probability of each root node.

Serial No. Event No. Importance Rating

1 x4 0.141770062
2 x5 0.128267513
3 x3 0.120981474
4 x6 0.104270695
5 x8 0.099751569
6 x7 0.093909716
7 x1 0.089855377
8 x2 0.081308671
9 x11 0.056126967

10 x10 0.055185346
11 x12 0.04983954
12 x9 0.04948821
13 x13 0.048852713
14 x14 0.048052733
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4.4. System Preventive Maintenance Strategy Analysis

In order to further enhance the reliability of the pantograph system, preventive system
maintenance can be adopted based on the original maintenance strategy [35], and this main-
tenance method can effectively reduce the escalation of failure of system components. The
state transfer relationship table with maintenance cases in Table 2 is amended as follows:

P(X(t + ∆t) = 0|X(t) = 0.5) = u(1−e−(λ3+u)∆t)
λ3+u

P(X(t + ∆t) = 0.5|X(t) = 0.5) = e−(λ3+u)∆t

P(X(t + ∆t) = 1|X(t) = 0.5) = λ3(1−e−(λ3+u)∆t)
λ3+u

According to the modified state transfer relationship table with the maintenance
situation, the dynamic reliability analysis of the pantograph system is performed, and the
system reliability is obtained in Figure 12.
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The graph shows that the system’s reliability gradually decreases at the beginning
of the operation and reaches a steady-state reliability of about 0.9968 after preventive
maintenance is applied, proving that preventive maintenance can effectively avoid
equipment failure and fault escalation. The reliability of the pantograph system is
significantly improved.

5. Conclusions

This study proposes a dynamic reliability assessment method for a pantograph system
based on a multistate T-S fault tree, dynamic Bayesian and fuzzy theory, involving its
time dependence and causality uncertainty. The system reliability of pantographs during
operation is analyzed, and the following conclusions are obtained.

(1) The system reliability of pantographs without and with maintenance during 720 days
of operation is analyzed, and the system reliability decreases continuously during this
period. At day 720, the system reliability decreases to 0.881 for the no-maintenance
case and 0.952 for the with-maintenance case. Maintenance during operation can
effectively improve the system reliability of pantographs and reduce the system
affected by equipment failure escalation; the sensitivity of the no-maintenance panto-
graph system to equipment failure rate is greater than that of the with-maintenance
pantograph system;

(2) According to the equipment sensitivity analysis, the order of concern for equip-
ment in the pantograph system should be: Drop bow indicator > Electrical control
box > Lifting bow motor > Valve box > Solenoid Valve > Lifting bow cylinder > Under-
frame insulator > Lifting bow spring assembly > Sheep’s horn > Spring Box > Upper
and lower frames > Bracket > Bearing > Damper. The weak equipment is the drop
bow indicator, the electrical control box, and the lifting bow motor;

(3) The impact of fault escalation on the pantograph system reliability is analyzed and
verified that the use of a preventive maintenance strategy can further improve the
pantograph system reliability and gradually reach the steady-state reliability of
about 0.9968.

The above analysis results verify that the system reliability curve obtained based on
the DBN model is mainly affected by the failure rate and maintenance rate; therefore, the
system reliability can be improved from these two aspects. The weak links in the system
can be designed with redundancy and derating in the early design stage of the system to
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reduce the failure rate; the overhauling cycle of these components can also be shortened,
or real-time status monitoring can be carried out to improve the maintenance rate, thus
realizing the goal of improving the reliability of a pantograph system.
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