Improving Behavior Monitoring of Free-Moving Dairy Cows Using Noninvasive Wireless EEG Approach and Digital Signal Processing Techniques
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Wireless Electroencephalograph
2.1.1. Animal Module
2.1.2. Base Module
2.1.3. Equipment Validation
2.2. Signal Monitoring
2.3. Signal Characterization
3. Results and Discussion
3.1. Equipment Validation
3.2. Signal Monitoring
3.3. Signal Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramadan, R.A.; Vasilakos, A.V. Brain computer interface: Control signals review. Neurocomputing 2017, 223, 26–44. [Google Scholar] [CrossRef]
- Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiol. Clin. Clin. Neurophysiol. 2016, 46, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Gruszczyńska, I.; Mosdorf, R.; Sobaniec, P.; Żochowska-Sobaniec, M.; Borowska, M. Epilepsy identification based on EEG signal using RQA method. Adv. Med. Sci. 2019, 64, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Tatum, W.O.; Rubboli, G.; Kaplan, P.W.; Mirsatari, S.M.; Radhakrishnan, K.; Gloss, D.; Caboclo, L.O.; Drislane, F.W.; Koutroumanidis, M.; Schomer, D.L.; et al. Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clin. Neurophysiol. 2018, 129, 1056–1082. [Google Scholar] [CrossRef]
- Misiukas Misiūnas, A.V.; Meškauskas, T.; Samaitienė, R. Algorithm for automatic EEG classification according to the epilepsy type: Benign focal childhood epilepsy and structural focal epilepsy. Biomed. Signal Process Control 2019, 48, 118–127. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Kumar, P.; Mueller, A.A.; Richardson, S.P.; Mueen, A. Diminished EEG habituation to novel events effectively classifies Parkinson’s patients. Clin. Neurophysiol. 2018, 129, 409–418. [Google Scholar] [CrossRef]
- Takeuchi, M.; Osawa, M.; Iwata, M. A study on the background activities of EEG in Parkinson disease. Int. Congr. Ser. 2005, 1278, 337–340. [Google Scholar] [CrossRef]
- Gongora, M.; Velasques, B.; Cagy, M.; Teixeira, S.; Ribeiro, P. EEG coherence as a diagnostic tool to measure the initial stages of Parkinson Disease. Med. Hypotheses 2019, 123, 74–78. [Google Scholar] [CrossRef]
- Schalk, G.; Mellinger, J. Brain Sensors and Signals. In A Practical Guide to Brain–Computer Interfacing with BCI2000; Springer: London, UK, 2010; pp. 9–35. [Google Scholar]
- Costa, E.J.X.; Cabral, E.F. EEG-based discrimination between imagination of left and right hand movements using adaptive gaussian representation. Med. Eng. Phys. 2000, 22, 345–348. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Neuper, C.; Flotzinger, D.; Pregenzer, M. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 642–651. [Google Scholar] [CrossRef]
- Jalilifar, M.; Yadollahpour, A.; Moazedi, A.A.; Ghotbeddin, Z. Classifying amygdala kindling stages using quantitative assessments of extracellular recording of EEG in rats. Brain Res. Bull. 2016, 127, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Subasi, A.; Alkan, A.; Koklukaya, E.; Kiymik, M.K. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Netw. 2005, 18, 985–997. [Google Scholar] [CrossRef] [PubMed]
- Hashida, J.C.; Silva, A.C.S.; Souto, S.; Costa, E.J.X. EEG pattern discrimination between salty and sweet taste using adaptive Gabor transform. Neurocomputing 2005, 68, 251–257. [Google Scholar] [CrossRef]
- Robert, C.; Gaudy, J.F.; Limoge, A. Electroencephalogram processing using neural networks. Clin. Neurophysiol. 2002, 113, 694–701. [Google Scholar] [CrossRef]
- Vuckovic, A.; Radivojevic, V.; Chen, A.C.N.; Popovic, D. Automatic recognition of alertness and drowsiness from EEG by an artificial neural network. Med. Eng. Phys. 2002, 24, 349–360. [Google Scholar] [CrossRef]
- Zhang, X.S.; Roy, R.J. Predicting movement during anaesthesia by complexity analysis of electroencephalograms. Med. Biol. Eng. Comput. 1999, 37, 327–334. [Google Scholar] [CrossRef]
- Mazza, M.; Tedeschi, W.; de Pinho, M.; Neves, U.P.C. Tsallis information measure applied to the analysis of EEG signals in a model of the somatosensory system. Neurocomputing 2002, 44–46, 915–921. [Google Scholar] [CrossRef]
- Khosla, A.; Khandnor, P.; Chand, T. A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern. Biomed. Eng. 2020, 40, 649–690. [Google Scholar] [CrossRef]
- Motamedi-Fakhr, S.; Moshrefi-Torbati, M.; Hill, M.; Hill, C.M.; White, P.R. Signal processing techniques applied to human sleep EEG signals—A review. Biomed. Signal Process Control 2014, 10, 21–33. [Google Scholar] [CrossRef]
- Bergamasco, L.; Accatino, A.; Priano, L.; Neiger-Aeschbacher, G.; Cizinauskas, S.; Jaggy, A. Quantitative electroencephalographic findings in beagles anaesthetized with propofol. Vet. J. 2003, 166, 58–66. [Google Scholar] [CrossRef]
- Bassett, L.; Troncy, E.; Pouliot, M.; Paquette, D.; Ascah, A.; Authier, S. Telemetry video-electroencephalography (EEG) in rats, dogs and non-human primates: Methods in follow-up safety pharmacology seizure liability assessments. J. Pharmacol. Toxicol. Methods 2014, 70, 230–240. [Google Scholar] [CrossRef]
- Brauer, C.; Kästner, S.B.R.; Rohn, K.; Schenk, H.C.; Tünsmeyer, J.; Tipold, A. Electroencephalographic recordings in dogs suffering from idiopathic and symptomatic epilepsy: Diagnostic value of interictal short time EEG protocols supplemented by two activation techniques. Vet. J. 2012, 193, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Gibson, T.J.; Oliveira, S.E.O.; Costa, F.A.D.; Gregory, N.G. Electroencephalographic assessment of pneumatically powered penetrating and non-penetrating captive-bolt stunning of bulls. Meat Sci. 2019, 151, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Small, A.; Lea, J.; Niemeyer, D.; Hughes, J.; McLean, D.; McLean, J.; Ralph, J. Development of a microwave stunning system for cattle 2, Preliminary observations on behavioural responses and EEG. Res. Vet. Sci. 2019, 122, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Perentos, N.; Nicol, A.U.; Martins, A.Q.; Stewart, J.E.; Taylor, P.; Morton, A.J. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording. J. Neurosci. Methods 2017, 279, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, J.B.S.; de Felício, P.E. Production systems—An example from Brazil. Meat Sci. 2010, 84, 238–243. [Google Scholar] [CrossRef]
- Sinha, R.K. An approach to estimate EEG power spectrum as an index of heat stress using backpropagation artificial neural network. Med. Eng. Phys. 2007, 29, 120–124. [Google Scholar] [CrossRef]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- McLean, D.; Meers, L.; Ralph, J.; Owen, J.S.; Small, A. Development of a microwave energy delivery system for reversible stunning of cattle. Res. Vet. Sci. 2017, 112, 13–17. [Google Scholar] [CrossRef]
- Vuckovic, A.; Gallardo, V.J.F.; Jarjees, M.; Fraser, M.; Purcell, M. Prediction of central neuropathic pain in spinal cord injury based on EEG classifier. Clin. Neurophysiol. 2018, 129, 1605–1617. [Google Scholar] [CrossRef]
- Suzuki, M.; Sitizyo, K.; Takeuchi, T.; Saito, T. Electroencephalogram of Japanese Black calves affected with cerebrocortical necrosis. Nihon Juigaku Zasshi 1990, 52, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.N.; Shaw, F.D.; King, N.L. The comparison of electroencephalograms recorded before and after electrical stunning of cattle. Meat Sci. 1988, 22, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Lapray, D.; Bergeler, J.; Dupont, E.; Thews, O.; Luhmann, H.J. A novel miniature telemetric system for recording EEG activity in freely moving rats. J. Neurosci. Methods 2008, 168, 119–126. [Google Scholar] [CrossRef] [PubMed]
- West, J.K.; Merrick, A.W. A three-channel EEG telemetry system for large animals. Med. Biol. Eng. 1966, 4, 273. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Hashemi, K.S.; Walker, M.C. A novel telemetry system for recording EEG in small animals. J. Neurosci. Methods 2011, 201, 106–115. [Google Scholar] [CrossRef]
- Merrick, A.W.; Scharp, D.W. Electroencephalography of resting behavior in cattle, with observations on the question of sleep. Am. J. Vet. Res. 1971, 32, 1893–1897. [Google Scholar]
- Takeuchi, T.; Sitizyo, K.; Harada, E. Analysis of the electroencephalogram in growing calves by use of power spectrum and cross correlation. Am. J. Vet. Res. 1998, 59, 777–781. [Google Scholar]
- Bager, F.; Shaw, F.D.; Tavener, A.; Loeffen, M.P.F.; Devine, C.E. Comparison of EEG and ECoG for detecting cerebrocortical activity during slaughter of calves. Meat Sci. 1990, 27, 211–225. [Google Scholar] [CrossRef]
- Derya Übeyli, E. Statistics over features: EEG signals analysis. Comput. Biol. Med. 2009, 39, 733–741. [Google Scholar] [CrossRef]
- Al-Fahoum, A.S.; Al-Fraihat, A.A. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neurosci. 2014, 2014, 730218. [Google Scholar] [CrossRef]
- Marchant, B.P. Time–frequency Analysis for Biosystems Engineering. Biosyst. Eng. 2003, 85, 261–281. [Google Scholar] [CrossRef]
- Kıymık, M.K.; Güler, İ.; Dizibüyük, A.; Akın, M. Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 2005, 35, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Aguilar, R.; Olvera-López, J.A.; Olmos-Pineda, I.; Sánchez-Urrieta, S. Feature extraction from EEG spectrograms for epileptic seizure detection. Pattern Recognit. Lett. 2020, 133, 202–209. [Google Scholar] [CrossRef]
- Gao, Y.; Dai, Q. View Representation. In View-Based 3-d Object Retrieval; Elsevier: Amsterdam, The Netherlands, 2015; pp. 67–83. [Google Scholar]
- Fischer-Cripps, A.C. Digital signal processing. In Newnes Interfacing Companion; Elsevier: Amsterdam, The Netherlands, 2002; pp. 269–283. [Google Scholar]
- Abbas, S.N.; Abo-Zahhad, M.; Ahmed, S.M. State-of-the-art methods and future perspectives for personal recognition based on electroencephalogram signals. IET Biom. 2015, 4, 179–190. [Google Scholar]
- Zeynali, M.; Seyedarabi, H. EEG-based single-channel authentication systems with optimum electrode placement for different mental activities. Biomed J. 2019, 42, 261–267. [Google Scholar] [CrossRef]
- Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [Google Scholar] [CrossRef]
- Zhang, X.S.; Roy, R.J.; Jensen, E.W. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans. Biomed. Eng. 2001, 48, 1424–1433. [Google Scholar] [CrossRef]
- Abásolo, D.; Hornero, R.; Gómez, C.; García, M.; López, M. Analysis of EEG background activity in Alzheimer’s disease patients with Lempel-Ziv complexity and central tendency measure. Med. Eng. Phys. 2006, 28, 315–322. [Google Scholar] [CrossRef]
- Lempel, A.; Ziv, J. On the Complexity of Finite Sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81. [Google Scholar] [CrossRef]
- Gómez, C.; Hornero, R.; Abásolo, D.; Fernández, A.; López, M. Complexity analysis of the magnetoencephalogram background activity in Alzheimer’s disease patients. Med. Eng. Phys. 2006, 28, 851–859. [Google Scholar] [CrossRef]
- Costa, E.J.X.; Tech, A.R.B.; Silva, A.C.S. Linking Non-Extensive Entropy with Lempel-ziv Complexity to Obtain the Entropic Q-index from EEG Signals. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017), Porto, Portugal, 21–23 February 2017; pp. 101–105. [Google Scholar]
- Silva, A.C.S.; Arce, A.I.C.; Souto, S.; Costa, E.J.X. A wireless floating base sensor network for physiological responses of livestock. Comput. Electron. Agric. 2005, 49, 246–254. [Google Scholar] [CrossRef]
- Radiometrix Ltd. 433MHz High Speed FM Radio Transceiver Module [Internet]. Radiometrix Ltd. 2004. Issue 2. Available online: https://www.radiometrix.com/files/additional/bim2.pdf (accessed on 6 October 2020).
- Kavitha, V.; Narayana Dutt, D. A chaos-based model for low complexity predictive coding scheme for compression and transmission of electroencephalogram data. Med. Biol. Eng. Comput. 1999, 37, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, J.F. A review of pain assessment techniques and pharmacological approaches to pain relief after bovine castration: Practical implications for cattle production within the United States. Appl. Anim. Behav. Sci. 2011, 135, 192–213. [Google Scholar] [CrossRef]
- Albright, L.D. Environment Control for Animals and Plants; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1990; 453p. [Google Scholar]
- Rodrigues, V.C.; da Silva, I.J.O.; Vieira, F.M.C.; Nascimento, S.T. A correct enthalpy relationship as thermal comfort index for livestock. Int. J. Biometeorol. 2011, 55, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Moura, D.J.; Naas, I.A.; Silva, I.J.O.; Sevegnani, K.B. The Use of Enthalpy as a Thermal Comfort Index; ASAE Publication: Washington, DC, USA, 1997; pp. 577–583. [Google Scholar]
- Sauter, D.; Tomczak, M.; Richard, A.; Mouze Amady, M.; Cail, F. Artefacts Detection And Pre-cleaning In Spectral EEG Analysis. In Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Philadelphia, PA, USA, 1–4 November 1990; IEEE: New York, NY, USA, 1990; pp. 840–842. [Google Scholar]
- Monson, H. Hayes. Statistical Digital Signal Processing and Modeling; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; 622p. [Google Scholar]
- Same, M.H.; Gandubert, G.; Gleeton, G.; Ivanov, P.; Landry, R. Simplified Welch Algorithm for Spectrum Monitoring. Appl. Sci. 2020, 11, 86. [Google Scholar] [CrossRef]
- Kehtarnavaz, N. Frequency Domain Processing. In Digital Signal Processing System Design; Elsevier: Amsterdam, The Netherlands, 2008; pp. 175–196. [Google Scholar]
- Bachmann, M.; Päeske, L.; Kalev, K.; Aarma, K.; Lehtmets, A.; Ööpik, P.; Lass, J.; Hinrikus, H. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput. Methods Programs Biomed. 2018, 155, 11–17. [Google Scholar] [CrossRef]
- Tamura, T.; Chida, Y.; Okada, K. Short communication: Detection of mastication speed during rumination in cattle using 3-axis, neck-mounted accelerometers and fast Fourier transfer algorithm. J. Dairy Sci. 2020, 103, 7180–7187. [Google Scholar] [CrossRef]
Sequence | C(N) |
---|---|
S1 = [0 1 0 1 0 1 0 1 0 …1 0 1 0 1 0 1 0 1 0 1] | 0.0202 |
S2 = sin(2π30t) | 0.0559 |
S3 = sin(2π0.5t) + sin(2π10t) + sin(2π18t) + sin(2π30t) + sin(2π30t) | 0.0129 |
S4 = sin(2π0.5t) + sin(2π10t) + sin(2π18t) + sin(2π30t) + sin(2π30t) + (array of random numbers) | 1.0000 |
S5 = white noise | 0.9957 |
S6 = array of random numbers | 1.0870 |
S7 = logistic map in chaos threshold value [53] | 1.0000 |
Sequence | C(N) |
---|---|
Climatic chamber 1st section (size: 4 s) | 0.9894 |
Climatic chamber 2nd section (size: 4 s) | 0.6596 |
Climatic chamber 3rd section (size: 4 s) | 0.7483 |
Climatic chamber 4th section (size: 4 s) | 0.7475 |
Climatic chamber 5th section (size: 9 s) | 0.5857 |
Pasture 1st section (size: 240 s) | 0.6078 |
Pasture 2nd section (size: 15 s) | 0.6163 |
Pasture 3rd section (size: 3 s) | 0.8656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.C.d.S.; Arce, A.I.C.; Arteaga, H.; Sarnighausen, V.C.R.; Atzingen, G.V.v.; Costa, E.J.X. Improving Behavior Monitoring of Free-Moving Dairy Cows Using Noninvasive Wireless EEG Approach and Digital Signal Processing Techniques. Appl. Sci. 2023, 13, 10722. https://doi.org/10.3390/app131910722
Silva ACdS, Arce AIC, Arteaga H, Sarnighausen VCR, Atzingen GVv, Costa EJX. Improving Behavior Monitoring of Free-Moving Dairy Cows Using Noninvasive Wireless EEG Approach and Digital Signal Processing Techniques. Applied Sciences. 2023; 13(19):10722. https://doi.org/10.3390/app131910722
Chicago/Turabian StyleSilva, Ana Carolina de Sousa, Aldo Ivan Céspedes Arce, Hubert Arteaga, Valeria Cristina Rodrigues Sarnighausen, Gustavo Voltani von Atzingen, and Ernane José Xavier Costa. 2023. "Improving Behavior Monitoring of Free-Moving Dairy Cows Using Noninvasive Wireless EEG Approach and Digital Signal Processing Techniques" Applied Sciences 13, no. 19: 10722. https://doi.org/10.3390/app131910722
APA StyleSilva, A. C. d. S., Arce, A. I. C., Arteaga, H., Sarnighausen, V. C. R., Atzingen, G. V. v., & Costa, E. J. X. (2023). Improving Behavior Monitoring of Free-Moving Dairy Cows Using Noninvasive Wireless EEG Approach and Digital Signal Processing Techniques. Applied Sciences, 13(19), 10722. https://doi.org/10.3390/app131910722