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Abstract: Road segmentation from high-resolution (HR) remote sensing images plays a core role in
a wide range of applications. Due to the complex background of HR images, most of the current
methods struggle to extract a road network correctly and completely. Furthermore, they suffer from
either the loss of context information or high redundancy of details information. To alleviate these
problems, we employ a dual branch dilated pyramid network (DPBFN), which enables dual-branch
feature passing between two parallel paths when it is merged to a typical road extraction structure.
A DPBFN consists of three parts: a residual multi-scaled dilated convolutional network branch, a
transformer branch, and a fusion module. Constructing pyramid features through parallel multi-scale
dilated convolution operations with multi-head attention block can enhance road features while
suppressing redundant information. Both branches after fusing can solve shadow or vision occlusions
and maintain the continuity of the road network, especially on a complex background. Experiments
were carried out on three datasets of HR images to showcase the stable performance of the proposed
method, and the results are compared with those of other methods. The OA in the three data sets of
Massachusetts, Deep Globe, and GF-2 can reach more than 98.26%, 95.25%, and 95.66%, respectively,
which has a significant improvement compared with the traditional CNN network. The results and
explanation analysis via Grad-CAMs showcase the effective performance in accurately extracting
road segments from a complex scene.

Keywords: remote sensing imagery; transformer mechanism; dilated convolution; road segmentation;
explanation analysis

1. Introduction

Road network information serves as a vital data source in various applications, includ-
ing geographic information system (GIS), unmanned vehicles, and urban planning [1]. The
high spatial resolution of images not only provides clearer ground object information, but
also introduces three challenges. (a) Road network structures exhibit complexity, appearing
as heterogeneous areas with substantial intra-class variability and ambiguous inter-class
distinctions. (b) Roads often appear slender and elongated in high-resolution imagery,
spanning hundreds of pixels in remote sensing images, which can make their detection
challenging. (c) High-resolution images accentuate noise factors such as vehicles and
pedestrians on the road, making their presence more pronounced [1]. Consequently, the
automatic detection of road network information using advanced algorithms over large
areas is of significant interest to the research community.

Meanwhile, roads are categorized into urban roads and rural highways based on
administrative regions, and their manifestation in remote sensing imagery differs accord-
ingly. Urban roads exhibit complex road network structures, often affected by various
noise interferences such as pedestrians and vehicles along the roadside. Additionally, the
distinctions between roads and other land features tend to be relatively subtle. On the
other hand, rural roads are characterized by their elongated shape, featuring unclear road
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boundaries and significant obstruction from roadside trees. Therefore, with increasing
image resolution, the intra-class differences of roads become more prominent, posing a
greater challenge for road interpretation tasks.

In recent years, the transformer mechanism has gained increasing popularity in the
field of optical remote sensing imagery interpretation, owing to its demonstrated advan-
tages in natural language processing tasks. The transformer mechanism achieves global
context information by utilizing multi-head attention, enabling it to establish connections
between different patches of the input sequence and capture comprehensive contextual
details [2]. However, there are several challenges when directly applied to the aspect of
road extraction from HR remote sensing images. The most significant problem arises from
the transformer’s limited ability to capture fine-grained local features, resulting in a lack
of detailed information in the outputs and leading to blurry or less sharp features. Trans-
formers are primarily designed to focus on global context and long-range dependencies,
which may not be well-suited for capturing the intricate local details inherent to HR remote
sensing images. As a remedy, the integration of local feature pyramids and global context
information becomes indispensable to boost the performance of road segmentation from
HR remote sensing images.

In this part, we introduce a dual parallel branch fusion network (DPBFN) to address
the challenges of broken and incomplete road segmentation results. The DPBFN tackles
issues related to shadows and occlusions by employing a dual branch network architecture.
The network comprises a transformer branch and a residual multi-scaled dilated convolu-
tion network branch, fused together through a fusion module. The contributions can be
summarized as follows:

(1) We employed a dual parallel branch architecture to synthesize the features capturing
from depth convolutional and transformer branches, which is able to maintain more
unique characteristics of the road network. Moreover, dual branches features as
a complementary can discriminate the road segments by the spatial and spectral
dependency in the feature space for better inferring the occluded roads.

(2) We enhanced the residual encoder branch by incorporating parallel multi-scaled
dilated convolution operations with an attention block, named as the dilated convolu-
tion pyramid with attention (DCPA) module. The DCPA module helps the network
to capture localized road edges features more effectively.

(3) Extensive experiments were carried out on three road challenge datasets; the results
show the efficacy and powerful generalization capacity of the proposed method.
In addition, we provide a comprehensive explanation analysis using gradient class
activation maps.

The experimental results showcase the effectiveness of the proposed method in han-
dling challenging road extraction scenarios, including shadows and occlusions. The DPBFN
achieves superior performance compared to existing methods, making it a promising solu-
tion for road segmentation in HR remote sensing imagery.

2. Related Work

In this section, we present a comprehensive review of the existing road extraction
works that harness the deep learning techniques. We specifically focus on three cate-
gories: CNN-based road methods, transformer-based [3] road methods, and hybrid CNN-
Transformer methods. These approaches have shown some promising results in road
extraction tasks by leveraging the power of deep-learning techniques. By analyzing and
comparing these methods, we aim to offer enhanced and valuable insights into the ad-
vancements and prospects of road extraction techniques based on deep learning.

2.1. CNN-Based Road Extraction Methods

CNN-based methods have been widely adopted in road extraction tasks because of
their ability to learn hierarchical features from input images. These methods typically
utilize convolutional neural networks to extract the discriminative features, followed by
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classification or segmentation modules for road identification. CNNs inherently possess
translation invariance, meaning they can recognize road patterns regardless of their location
in the image. This property is particularly advantageous for road extraction, where road
layouts may vary in different parts of the image. Several classic CNN architectures, such as
U-Net [4] SegNet [5], and DeepLab [6], have been successfully applied to road extraction
tasks, and these methods have proven their effectiveness in accurately capturing road
patterns and structures. In recent years, CNN models such as DDU-Net [7], SDUNet [8],
and L-DeepLabv3+ [9] have also shown very good results in road extraction. And some
networks like MECA-Net [10], ASPP-U-Net [11], and MSMT-RE [12] with multi-scale
features also have good performance in road extraction. However, most of these CNN-based
methods only focus on the multi-scale encoder structure or multiple branches of the neural
network, while ignoring some inherent characteristics of the road surface. And compared
with a transformer, CNN (convolution neural network) has some unique advantages:
local perception, parameter sharing, and translation invariance. Some methods include
DeepWindow [13], FuNet [14], and HsgNet [15]. And some networks like CADUNet [16],
VNet [17], DA-RoadNet [18], and the literature [19] have proved that the integration of an
attention mechanism in CNN architecture also works in road extraction tasks.

2.2. Transformer-Based Road Extraction Methods

Transformer-based methods, originally introduced for natural language processing
tasks, have recently gained attention in remote sensing imagery interpretation tasks, in-
cluding road extraction. Transformers can capture long-distance dependencies in images,
thus effectively modeling global context information. This enables the model to better
understand the location and shape of the road in the whole image and improve the quality
of road extraction. In the field of road extraction, transformer-based models leverage
self-attention mechanisms to capture contextual information and generate accurate road
predictions. Examples of transformer-based architectures applied to road extraction include
Vision Transformer (ViT) [20], Swin Transformer [21], Swin-UNet [22], BDTNet [23], and
RoadFormer [24]. These models have shown promising results in capturing global context
and improving the accuracy of road extraction. However, due to the large number of
parameters in Vision Transformer, the generalization ability of the model may be limited
for small data sets, and it is easy to over-fit.

2.3. Hybrid CNN-Transformer Methods

To take advantage of the complementary advantages of CNN and transformers, a
hybrid method for road extraction has been proposed. These methods combine the depth
feature extraction ability of the neural network and the context information modeling from
transformers. By integrating the two discriminative features, the hybrid model can capture
fine-grained details and long-range dependencies, thus improving the performance of
road extraction tasks. In recent years, many universal models for semantic segmentation
have been proposed, such as TransFuse [25], TransUnet [26], Ds-TransUnet [27], and
SegFormer [28], which have good results in the related fields. And some noteworthy hybrid
CNN–transformer models for road extraction include TransLinkNet [29], Seg-Road [30], and
DCS-TransUperNet [31]. In the above models, local and global features can be adaptively
integrated through specific strategies and attention mechanisms, so that the model can
better capture the structure and context information of the road.

In summary, different approaches to road extraction have shown their strengths in
handling specific aspects of the task. CNN-based road methods have excelled in capturing
local features and spatial patterns, allowing them to accurately delineate road structures at
a fine-gained level. On the other hand, transformer-based road methods have demonstrated
the ability to model global context and long-dependencies, enabling them to understand
the overall road layout and context in the entire image. Hybrid CNN-transformer methods
have shown enhanced performance by leveraging the strengths of both approaches. The
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next section will delve into the details of the hybrid CNN–transformer mechanism and
provide an in-depth analysis of its advantages in road extraction tasks.

3. Materials and Methods

We introduced a spatial information inference structure aimed at effectively modeling
road-specific contextual information at length. The multi-scaled feature inference structure
was designed to exploit the inherent spatial dependencies present in road networks, thereby
providing a more comprehensive understanding of road patterns and structures from the
images.

3.1. Dual Parallel Branch Network Structure

The dual parallel network architecture comprised a CNN branch, a transformer branch,
and a fusion module. Figure 1 provides an overview of the entire structure. The refined
CNN branch was specifically designed to capture multi-scale features by integrating various
scales of parallel dilated spatial pyramid (PDSP) modules and a convolution block attention
module. The transformer branch was focused on modeling extensive relationships and
capturing the global context information, allowing for the effective handling of long-range
dependencies. Finally, the two paralleled branches were fused using the BiFusion module
referred to in [25]. The fusion module integrated the complementary information extracted
by the CNN and transformer branches, enabling the network to leverage both local and
global contextual cues for road extraction tasks.
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3.2. Transformer Encoder Branch

As inspired by [25], the architecture of the transformer branch adhered to the con-
ventional encoder–decoder design. Initially, the input image is uniformly partitioned into
N = H

S ×
W
S , S = 16. Those patches were subsequently flattened and forwarded through a

linear embedding layer, yielding an output dimension of D0, resulting in the original em-
bedding sequence e ∈ RN×D0 . To incorporate the spatial information, a tunable positional
embedding of the same dimension was added to the raw embedding e. These embeddings
z0 ∈ RN×D0 were fed into the transformer branch, which consisted of L layers of multi
headed self-attention (MSA) and multi-layer perception (MLP). The self-attention (SA)
mechanism, a key principle of transformer, was essential in updating the states of each
embedded patch during every layer of the transformer encoder. SA enabled the model to
aggregate information globally by considering the relationships between all patches in the
input image. Unlike traditional CNNs that have local receptive fields, the SA mechanism
allowed for the network to capture long-range dependencies and contextual information
from the whole image.

SA(zi) = so f tmax(
qikT
√

Dh
)v (1)

where [q, k, v] = zWqkv, Wqkv ∈ RD0×3Dh is the projection matrix and vector zi ∈ R1×Dh are
the ith row of z, respectively.

MSA is an extension of SA that merges multiple SA operations and projects the latent
dimension back to RD0 . This enabled the model to capture diverse and complementary
patterns and relationships within the input. Additionally, the MLP is a stack of dense
layers [20] that processes the outputs of the MSA, further refining and transforming the
extracted features. As the global context features can be fused with the corresponding
feature maps of convolution encoder branch, we used the progressive upsampling method
referred to as SETR [32].

3.3. Residual Multi-Scaled Dilated Convolution Branch

The residual multi-scaled dilated convolution branch employed the dilated convolu-
tion pyramid with attention (DCPA) module to capture localized road features effectively.
The DCPA module comprised four parallel dilated convolution blocks (PDCB), a global
average pooling layer, a channel attention block, and a spatial attention block. Due to
the sparsity of HR remote sensing images, incorporating pyramid features without re-
ducing resolution can enhance the model’s ability to identify objects and improve overall
performance.

The DCPA module, inspired by [11,33], is detailed in Table 1 and visualized in Figure 2.
The module comprised the parallel dilated convolution blocks (PDCB), which consisted
of multi-scale parallel convolution layers with different dilation rates, along with a global
pooling layer. The dilated rates used in four parallel paths were 1, 6, 12, 18, respectively,
aiming to capture pyramid features and context information of road pixels. The output of
the parallel paths was then concatenated and processed by a 1 × 1 convolution layer to
produce the final output. The dilated convolution layers control the size of the effective
receptive field of the convoluted kernels and dilated rate. A larger dilated rate corresponds
to a larger scale without reducing feature resolution. Furthermore, the global pooling layer,
which operates at the image level, averaged the feature maps across the spatial dimensions
to improve the model’s ability to recognize global context and capture long-range depen-
dencies. Furthermore, each path in the DCPA module consisted of a convolution layer
with a specific dilated rate, followed by the operations of batch normalization (BN) and
activation (ReLU).
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Table 1. The settings of the PDSA module.

Items Layer Kernal Size Dilated Rate

PDCB-1 ReLU(BN(Conv)) 1 × 1 1
PDCB-2 ReLU(BN(Conv)) 3 × 3 6
PDCB-3 ReLU(BN(Conv)) 3 × 3 12
PDCB-4 ReLU(BN(Conv)) 3 × 3 18

AvgPooling ReLU(BN(Conv)) 1 × 1 -
CA Pooling-MLP-ReLU - -
SA Pooling-Conv 7 × 7 -
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The spatial attention component learned to selectively emphasize informative spatial
locations by computing an SA map. The map was computed by applying a convolution
layer with a 7 × 7 kernel and a stride set at 1, followed by a ReLU layer and another
convolution layer with a 1 × 1 kernel size and a stride of 1. The resulting spatial attention
output was then multiplied with the refined feature maps obtained from the channel
attention component. The final output of the DCPA module was acquired by concatenating
the refined feature maps with the spatial attention map. The DCPA modules are expressed
as follows:

Dilated convolution blocks:

fDCP(X) = ∑
path

conv(X, dilated_ratepath) (2)

Channel attention blocks:

fchannel(X) = σ(MLP(AvePool(X)))× X (3)

where X is the input tensor, AvgPool represents the global average pooling operation, MLP
is a two-layer fully connected network with ReLU activation layers correspondingly, and σ

utilizes the sigmoid function.
Spatial attention blocks:

fspatial(X) = σ(conv1(ReLU(conv2(X))))× X (4)

where conv1 and conv2 are convolutional layers with kernel sizes of 7 × 7 and 1 × 1,
respectively, and σ is also the Sigmoid layer. The final output of the DCPA module is
obtained by merging the refined feature maps with the SA map:

fDCPA(X) = fchannel( fspatial( fDCP(X))) (5)
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4. Results
4.1. Datasets and Processing

The validation experiments utilized three datasets: the Massachusetts road dataset [34],
the Deep Globe road extraction sub-challenge dataset [35], and the GF-2 dataset [36]. Within
the three datasets, the Massachusetts road dataset consists of 1171 images. The size of
each image is 1500 × 1500 pixels, and its resolution is 1.2m. The Deep Globe dataset
comprises 1113 satellite images accompanied by corresponding masks delineating road
labels. The dimension of the raw images is 1024 × 1024 × 3 pixels, and the resolution is
0.5 m. The GF-2 road dataset contains 200 images, obtained from GF-2 satellite, with a size
of 1500 × 1500 pixels. Each of the three datasets is divided into three parts: training set,
validation set, and test set. The details are described in Table 2.

Table 2. Datasets Allocation Details.

Dataset Training Set Validation Set Test Set

Deep Globe 780 111 222
Massachusetts 1108 14 49

GF-2 170 10 20

To maximize the effective utilization of the constrained training set, we incorporate
geometric transformation techniques, encompassing random clipping as well as horizontal
and vertical flip transformations. In the context of the trainable road datasets, the pre-
dominant contributor to the loss value stems from the misclassification of road pixels as
background pixels. This phenomenon arises due to the inherent disparity in quantity be-
tween background and road pixels within the HR remote sensing images. Therefore, while
optimization endeavors may lead to loss reduction, the fine-tuned semantic segmentation
networks are susceptible to classifying uncertain pixels as background rather than road. To
mitigate this challenge, we address the matter by a rebalancing strategy, where we adjust
the distribution of road and non-road samples to counteract the issue.

4.2. Implementation Details

The training sets obtained by data augmentation were preprocessed by a series of
common data enhancement methods. For the purpose of spectral augmentation, we
performed random cropping of both the image and its corresponding mask, altering size
and aspect ratio. This approach was adopted to enhance the diversity of the dataset.
Subsequently, due to constraints posed by GPU memory, all the images were resized to
dimensions of 256 × 256 × 3 prior to being inputted into the networks. Afterwards, all
the compared models were trained with the same training environment. Specifically, the
networks were optimized by the Adam algorithm [37], whose moments of 0.9 and 0.999
correspond to the two parameters, in Windows 10 with one GTX3060 (memory 12GB) that
allows for a batch size of 2 images. All experiments were performed using PyTorch 1.11.0.

The learning rate was initially set to be 0.0001 and reduced by a factor of 0.1 every
30 epochs. Since the raw size datasets were divided into many patches, the model needed
a significantly higher number of iterations within each epoch across those three datasets.
Moreover, we used the fine-tuned strategy in our network, which can accelerate the conver-
gence. Training is conducted by optimizing structure loss function employing the Adam
algorithm. Therefore, the last part of the proposed network utilized Sigmoid activation to
output the results. Then, structure loss with binary cross entropy loss and the weighted
IoU loss function [17,25] can be described as:

StructureLoss = BCELoss + WeightedIoULoss (6)

BCELoss(p, m) = −1/N
N

∑
i=1

[mi· log(pi) + (1−m) log(1− pi)] (7)
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WeightedIoULoss(p, m) = 1− ∑N
i=1 (pi ×mi × wi) + ε

∑N
i=1 (pi + mi + pi ×mi)× wi + ε

(8)

In Equations (7) and (8), N represents the number of samples. m represents the label of
the sample index ith, usually 0 (negative category) or 1 (positive category). p represents
the model predicted value of sample i, usually between 0 and 1, indicating the model’s
probability estimate that the sample belongs to a positive category.

Figure 3 shows the convergence tendency of loss function values in the process of
the training. Evidently, the error exhibits a gradual reduction over time. In Figure 3b, the
validation loss value becomes stable after the 30 epochs among the three datasets.
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4.3. Evaluation Metrics

The road networks are commonly evaluated by complexness and correctness [19].
Because the metrics mentioned above can be approximated as precision and recall, the
extracted road results are evaluated by the overall accuracy (OA), precision (P), recall (R),
F1, and intersection-over-union (IoU). The F1 score and IoU serve as two comprehensive
evaluation metrics. These metrics [34] can be computed as follows:

OA = (TP + FN)/(TP + TN + FP + TN) (9)

P = TP/(TP + FP) (10)

R = TP/(TP + FN) (11)

F1 = 2× P× R
P + R

(12)

IoU =
TP

FN + TP + FP
(13)

where TPs (true positives) and TNs (false positives) are the number of road pixels and
non-road pixels, respectively, which are correctly classified. FPs (false positives) represent
the number of background pixels that are identified as road. FNs (false negatives) are the
number of road pixels that are identified as background. Meanwhile, those above evaluated
metrics are powerful for the harmonic means.

Figure 4 exhibits the accuracy and IoU curves of the DPBFN from three validation
sets. From the leftmost graph, it can be observed that the accuracy of all three datasets start
stabilizing after 20 epochs. The Massachusetts dataset achieves the highest accuracy. The
accuracy of the Massachusetts and Deep Globe datasets remains relatively stable, while that
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the GF-2 dataset exhibits more significant fluctuations. However, as shown in Figure 4b,
the Deep Globe dataset achieves the best IoU. The IoU curves of the Massachusetts and
GF-2 datasets exhibit a phenomenon of crossing during the convergence process, especially
in the beginning of 10 epochs. Moreover, even after reaching a stable state, the IoU value of
GF-2 is higher than that of the Massachusetts dataset.
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4.4. Results and Comparison

We mainly validate the performance of our network with other different road extrac-
tion methods through the three challenging datasets mentioned above. These datasets are
optical remote sensing imagery datasets. To demonstrate the advantages of the DPBFN, we
compare our method with some classic methods selected from CNN-based, transformer-
based, and hybrid based. To facilitate visual interpretation and the analysis of extraction
outcomes yielded by diverse algorithms, accurately classified road segments are repre-
sented in white, while accurately classified non-road pixels are depicted in black. In cases of
erroneous extractions and misclassified pixels, these specific segments will be emphasized
by using red and blue shades, as illustrated in Figure 5.
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4.4.1. Massachusetts Data

Figure 6 showcases two instances derived from the Massachusetts dataset, follow-
ing a comparison involving various methodologies. Notably, the proposed approach
demonstrates enhanced performance in terms of finer details, as indicated in Figure 6.
The corresponding metrics are detailed in Table 2. For ease of observation and analysis,
a specific region within the yellow frame was chosen from the image. The extraction
outcomes pertaining to this selected area are visualized in Figure 7.

As exhibited in Table 3, the OA of the DPBFN is significantly higher than that of
other models using CNN and integrated transformer architecture. The F1 score and IoU
are improved, with an average of 99.22% and 98.35%, respectively. The additional DCPA
module can obviously reinforce the performance of decapitation extraction and reduce the
misclassification of pixels. However, in the part of depth feature extraction, more scale
features can be extracted through the DCPA module, and these improvements help to
extract roads (by using the fused features) of different sizes.



Appl. Sci. 2023, 13, 10726 10 of 17Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

       

       
(a) Image (b) Label (c) U-Net (d) Deeplabv3+ (e) Swin-UNet (f) TransFuse (g) DPBFN 

Figure 6. Different results outputting of five methods from Massachusetts dataset. 

       

       
(a) Image (b) Label (c) U-Net (d) Deeplabv3+ (e) Swin-UNet (f) TransFuse (g) DPBFN 

Figure 7. Local amplification results for Figure 6. 

 

Figure 6. Different results outputting of five methods from Massachusetts dataset.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

       

       
(a) Image (b) Label (c) U-Net (d) Deeplabv3+ (e) Swin-UNet (f) TransFuse (g) DPBFN 

Figure 6. Different results outputting of five methods from Massachusetts dataset. 

       

       
(a) Image (b) Label (c) U-Net (d) Deeplabv3+ (e) Swin-UNet (f) TransFuse (g) DPBFN 

Figure 7. Local amplification results for Figure 6. 

 

Figure 7. Local amplification results for Figure 6.

Table 3. Quantitative evaluation results in Figure 6.

Methods
Image 1 Image 2

OA (%) P (%) R (%) F1 (%) IoU (%) OA (%) P (%) R (%) F1 (%) IoU (%)

U-Net 96.85 96.95 99.15 98.04 96.72 96.72 96.77 98.78 97.76 96.57
DeepLabv3+ 97.06 97.13 99.79 98.44 96.93 96.88 96.93 99.79 98.34 96.74
Swin-UNet 98.26 99.53 98.56 99.04 98.21 98.35 99.48 98.51 99.00 98.30
TransFuse 98.17 98.81 99.28 99.04 98.10 98.32 98.88 99.35 99.11 98.25

DPBFN 98.35 99.28 99.20 99.24 98.29 98.47 99.26 99.13 99.20 98.41

Table 4 outlines the performance evaluation of the Massachusetts test dataset using
metrics such as OA, P, R, F1 score, and IoU at breakeven points. Notably, the primary
distinctions between the DPBFN and alternative approaches encompass factors such as
kernel filter dimensions, the count of convolution layers, and the depth of the network
structure. The DPBFN can achieve good performance via the DCPA module, which is
an effective way to filter the validation information of road characteristics. The parallel
multi-scaled dilated convolution operators can not only enlarge the receptive field without
losing the feature resolution, but also build the feature pyramid to capture multi-scaled
context information. The attention block can widen the network configuration with channel
and spatial attention computed by maxpooling, averagepooling, and MLP, which confirms
the theory reported in [35]. A statistical examination of Table 3 reveals that the classification
accuracy achieved by the DPBFN surpasses that of U-Net, DeeplabV3+, RoadFormer,
Swin-UNet, and TransFuse. Among these methods, the proposed approach demonstrates
the highest classification accuracy, boasting an IoU of 66.78%, while U-Net registers the
last classification rank with an IoU of 59.57%. As demonstrated in this part, we employ



Appl. Sci. 2023, 13, 10726 11 of 17

comprehensive statistics from the confusion matrix to elucidate the classification accuracy
of these five methods across various experimental regions.

Table 4. Various compared results on the Massachusetts road test set.

Dataset Methods OA (%) P (%) R (%) F1 (%) IOU (%)

Massachusetts

U-Net 97.26 76.91 74.00 74.66 59.57
DeepLabv3+ 97.34 80.01 70.46 74.94 59.92

RoadFormer [23] - 80.70 77.60 79.2 65.50
Swin-UNet 98.16 79.03 76.84 77.92 65.48
TransFuse 98.09 76.46 79.38 77.89 65.76

DPBFN 98.26 80.79 79.38 80.08 66.78

4.4.2. Deep Globe Data

Road extraction in Deep Globe data is obviously challenging due to the large intra-
class variances and small inter-class distinctions. The DPBFN is effectively applied, as
illustrated in Figure 8, with focused details in Figure 9 using yellow rectangles. Two images
with ambiguous road-class distinctions were deliberately chosen. The test images, found
in both figures and maps, predominantly encompass rural terrains where the roads are
narrow, and their texture resembles that of cultivated land.
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The statistical analysis of Table 5 shows that the overall accuracy of the DPBFN is
higher than that of the other methods. Our method shows that the classification accuracy
of the two shown images is the highest, with an average OA of 96.57% and an average IoU
of 96.11%. U-Net holds the last classification rank, with an average OA of 92.62% and an
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average IoU of 91.52%. The rest of the network performance is between the two, the second
models are TransFuse and Swin-UNet, the average OA is 95.89% and 95.33%, respectively,
and the average IOU is 95.39% and 95.35%, respectively. Although the DPBFN has achieved
better results, the fracture and mis-extraction of rural road extraction results will be more
obvious than in urban roads.

Table 5. Quantitative evaluation results in Figure 8.

Methods
Image 1 Image 2

OA (%) P (%) R (%) F1 (%) IOU (%) OA (%) P (%) R (%) F1 (%) IOU (%)

U-Net 91.65 90.95 99.11 94.85 90.21 93.59 93.00 99.91 96.33 92.92
DeepLabv3+ 92.19 91.48 99.24 95.21 90.85 92.42 91.74 99.87 95.64 91.64
Swin-UNet 94.74 97.39 94.87 96.11 94.27 95.92 97.93 97.75 97.83 96.43
TransFuse 94.88 97.69 96.30 96.99 94.16 96.90 97.68 98.88 98.27 96.61

DPBFN 95.76 97.46 97.51 97.49 95.10 97.38 97.71 99.38 98.54 97.12

In the Table 6, it can be seen more clearly that the DPBFN has better extraction accuracy
when facing the bifurcation road, and the phenomenon of mis-extraction and fracture of
the bifurcation road is clearly less than that of other network models. And in the figure-the
overall extraction comparison chart, the extraction accuracy of the DPBFN is also higher,
and the data performance in the table is also better. The OA and IOU reach their highest
at 95.25% and 72.08%, respectively, which is significantly improved compared with other
models.

Table 6. Various compared results in the Deep Globe Road test dataset.

Dataset Methods OA (%) P (%) R (%) F1 (%) IOU (%)

Deep Globe

U-Net 89.95 65.26 87.78 74.16 60.73
RoadFormer [23] - 85.80 83.2 84.50 73.10

DeepLabv3+ 90.46 66.40 81.30 72.82 61.65
Swin-UNet 93.07 81.67 71.58 76.29 61.67
TransFuse 94.37 86.42 79.69 82.92 70.83

DPBFN 95.25 86.27 86.56 86.42 72.08

4.4.3. GF-2 Data

We employed the DPBFN on GF-2 data, as illustrated in Figure 10, with the yellow
rectangles strategically, as depicted in Figure 11. Two distinct images were chosen, each
from different settings—rural and urban areas. The initial row of Figure 10 features a test
image encompassing rural regions, where the roads are narrow and share a texture reminis-
cent of cultivated land. Moving to the second row in Figure 10, and further highlighted in
the zoomed-in depiction in Figure 11, the image covers an urban expanse.
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The presence of HR remote sensing images’ noise, including cars, trees, and buildings’
shadow, significantly hampers the extraction results and poses a major challenge in the
aspect of road segmentation. Table 7 shows the comparison of the road extraction accuracy
with various methods in the same experimental settings.

Table 7. Quantitative evaluation results in Figure 10.

Methods
Image 1 Image 2

OA (%) P (%) R (%) F1 (%) IoU (%) OA (%) P (%) R (%) F1 (%) IoU (%)

U-Net 93.08 93.11 99.66 96.28 92.83 94.32 93.31 99.67 96.39 93.03
DeepLabv3+ 95.77 96.01 99.57 97.76 95.62 89.45 87.09 99.82 93.02 86.96
Swin-UNet 98.64 99.52 99.22 99.36 98.61 96.71 98.48 97.65 98.05 96.11
TransFuse 98.55 99.40 99.09 99.23 98.50 96.67 97.33 98.57 97.94 96.01

DPBFN 98.50 99.16 99.25 99.21 98.42 96.60 97.10 98.65 97.87 95.87

In the GF-2 dataset, the DPBFN was compared with U-Net, DeeplabV3+, Swin-UNet,
and TransFuse. Among the aforementioned methods, U-Net and DeeplabV3+ are repre-
sentatives of the classic convolution neural network methods. SwinUnet and TransFuse
are typical transformer-based and hybrid-based models, respectively, originally used for
medical image segmentation. We present the visualization outcomes generated by the
DPBFN and the aforementioned representative methods. Pertaining to the comprehensive
accuracy analysis encompassing all images within the test set, Table 8 displays the metrics
computed from the test set at the breakeven point. We present the visualization outcomes
generated by the DPBFN and the aforementioned representative methods. Pertaining to
the comprehensive accuracy analysis encompassing all images within the test set, Table 8
displays the metrics computed from the test set at the breakeven point. The hybrid-based
method ranks first (with a recall of 65.05%), followed by Swin-UNet (with a recall of 63.23%),
Deeplabv3+ (with a recall of 78.38%), and U-Net (with a recall of 75.11%). However, in the
GF-2 dataset, the advantages of the DPBFN are not obvious with TransFuse in the respect
of other metrics. Although this approach represents a significant improvement compared
to other methods, it does not confer an advantage over Transfuse. Further investigation is
needed to elucidate the underlying reasons for the phenomenon.

Table 8. Various compared results on the GF-2 road test dataset.

Dataset Methods OA (%) P (%) R (%) F1 (%) IoU (%)

GF-2

U-Net 90.52 56.52 75.11 64.50 56.24
DeepLabv3+ 90.69 54.87 78.38 64.55 58.16
Swin-UNet 93.87 72.30 63.23 67.46 72.46
TransFuse 95.71 76.01 65.03 70.12 74.27

DPBFN 95.66 75.34 65.05 69.84 74.19
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5. Discussion and Explanation Analysis

The higher-level visual constructs [38] and global context information [39] play signifi-
cant roles in road extraction from HR remote sensing imagery with complex background. In
terms of HR remote sensing images interpretation, it is vital to explain the effectiveness of
the extracted method. The class activation map (CAM) is a widely adopted and efficacious
approach for interpretation in various domains. Thus, we utilize Grad-CAM [40] generated
class activation maps with gradient information, as shown in Figure 11. It leverages the
gradient information flowing into the last convolutional layer of both branches to assign
importance value to each neuron for a particular decision of interest [40].

To acquire the road-discriminating localization map Grad-CAM loss Lroad
Grad−CAM

Lroad
Grad−CAM = ReLU(∑

k
αroad

k Ak) (14)

we first compute the gradient of the score of road class yroad, with respect to feature map Ak

of activated convolution layers. These gradients flowing back are global-average-pooled
over the width and height dimensions to obtain the neuron importance weights αroad

k :

αroad
k =

1
Z ∑

i
∑

j

∂yroad

∂Ak
ij

(15)

To intuitively demonstrate the effectiveness of the DPBFN, we present Grad-CAMs
for comparison between the CNN branch without DCPA (in Figure 12b), the CNN branch
with DCPA (in Figure 12c), and the transformer branch (in Figure 12d). Compared with
the second and the third column, the mixed pixels problem in the Grad-CAMs (of CNN
without DCPA module) is severe, and the road pixels are indistinguishable from the roof
of the surrounding buildings. As shown in Figure 12c, the CNN branch with the DPCA
module can alleviate the phenomenon of mixed pixels effectively, but there are still two
obstacles as follows: (1) There is noise caused by the misrepresentation of similar feature
pixels; (2) the stability of the convolution branch to the shadowed road recognition is poor.
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As shown in Figure 12d, based on the Grad-CAMs of the transformer branch, it can
be observed that the multi-head attention module has a positive impact on addressing
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local shadow occlusion and mixed pixels. Specifically, areas shown in Figure 12a that are
significantly obscured by roadside trees can be effectively connected in trans-feature maps.
The main reason is that embedding the patches sequence can focus on the context order;
furthermore, as shown in Figure 12d, the transformer branch is not affected by mixing
pixels. Even so, the transformer still has some problems; the trans module has the problem
of boundary blurring due to insufficient edge refining in the road interpretation task of
large-scale high-resolution remote sensing images. Therefore, the fusion of a transformer
(focus on context information) branch and a CNN branch with a DPCA module (focus on
edge and details) can effectively complement each other’s features, resulting in improved
robustness and accuracy.

6. Conclusions

In this paper, we employ a hybrid method for extracting roads from HR remote sensing
imagery using the dual parallel branch fusion network. The DPBFN model consists of
dual parallel branches (transformer branch and residual multi-scaled dilated convolution
encoder branch). The convolutional branch is based on a dilated the convolution pyramid
with an attention module and residual blocks. The major contributions are the refinement
of the CNN branch, and the fused dual branch features to segment road regions more
accurately. In addition, we utilized the Grad-CAMs to analyze our explanation of the
method. The DPBFN was evaluated using three challenging datasets. The experiments
prove that DPBFN achieves commendable performance in the task of road extraction from
complex high-resolution images (complex backgrounds and mixed pixels).

In conclusion, it is apparent that the domain of road extraction is currently expe-
riencing significant evolution, driven by advancements in sensor technologies and the
increasing accessibility of high-resolution imagery. While our research has yielded appre-
ciable improvements in road extraction accuracy, it is important to acknowledge that there
are several promising avenues for further investigation in this field.
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