Classification of Exergames with Different Types: Perceptual and Physiological Responses in College Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Active Video Games
2.3. Resting Condition
2.4. Physiological Measurements
2.5. Perceptual Measurements
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blair, S.N. Physical inactivity: The biggest public health problem of the 21st century. Br. J. Sports Med. 2009, 43, 1–2. [Google Scholar]
- Ainsworth, B.E.; Macera, C.A. Promoting physical activity in a public health context. J. Sport Health Sci. 2018, 7, 1. [Google Scholar] [CrossRef]
- WHO. Who Guidelines on Physical Activity and Sedentary Behavior. 2020. Available online: https://www.who.int/publications/i/item/9789240015128 (accessed on 15 February 2023).
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- CDC. Health, United States, 2018. 2019. Available online: https://www.cdc.gov/nchs/data/hus/hus18.pdf (accessed on 15 February 2023).
- WHO. Obesity and Overweight. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 February 2023).
- Pate, R.R.; O’neill, J.R.; Lobelo, F. The evolving definition of “sedentary”. Exerc. Sport Sci. Rev. 2008, 36, 173–178. [Google Scholar] [CrossRef]
- Physical Activity Guidelines for Americans. 2018. Available online: https://health.gov/sites/default/files/2019-09/Physical_Activity_Guidelines_2nd_edition.pdf (accessed on 15 February 2023).
- Mansoubi, M.; Pearson, N.; Clemes, S.A.; Biddle, S.J.; Bodicoat, D.H.; Tolfrey, K. Energy expenditure during common sitting and standing tasks: Examining the 1.5 MET definition of sedentary behaviour. BMC Public Health 2015, 15, 516. [Google Scholar] [CrossRef]
- Van der Ploeg, H.P.; Hillsdon, M. Is sedentary behaviour just physical inactivity by another name? Int. J. Behav. Nutr. Phys. Act. 2017, 14, 142. [Google Scholar] [CrossRef]
- Panahi, S.; Tremblay, A. Sedentariness and health: Is sedentary behavior more than just physical inactivity? Front. Public Health 2018, 6, 258. [Google Scholar] [CrossRef]
- Fraser, A.M.; Padilla-Walker, L.M.; Coyne, S.M.; Nelson, L.J.; Stockdale, L.A. Associations between violent video gaming, empathic concern, and prosocial behavior toward strangers, friends, and family members. J. Youth Adolesc. 2012, 41, 636–649. [Google Scholar] [CrossRef]
- Aygün, C.; Çakir-Atabek, H. Alternative Model for Physical Activity: Active Video Games Lead to High Physiological Responses. Res. Q. Exerc. Sport 2022, 93, 447–456. [Google Scholar] [CrossRef]
- Statista. Xbox 360 and Xbox One Gaming Consoles Unit Sales Worldwide from 2005 to 2017: Statista. 2021. Available online: https://www.statista.com/statistics/680526/global-xbox-gaming-consoles-unit-sales/#statisticContainer (accessed on 20 September 2021).
- Statista. Lifetime Unit Sales of Xbox One Consoles Worldwide from December 2017 to November 2020: Statista. 2021. Available online: https://www.statista.com/statistics/1005403/global-xbox-one-console-unit-sales/ (accessed on 20 September 2021).
- Çakir-Atabek, H.; Aygün, C.; Dokumacı, B. Active Video Games versus Traditional Exercises: Energy Expenditure and Blood Lactate Responses. Res. Q. Exerc. Sport 2020, 91, 188–196. [Google Scholar] [CrossRef]
- McDonough, D.J.; Pope, Z.C.; Zeng, N.; Liu, W.; Gao, Z. Comparison of college students’ blood pressure, perceived exertion, and psychosocial outcomes during virtual reality, exergaming, and traditional exercise: An exploratory study. Games Health J. 2020, 9, 290–296. [Google Scholar] [CrossRef]
- Aygün, C.; Çakır-Atabek, H. The futuristic model for physical activity and exercise: Active video games. Phys. Act. Rev. 2018, 6, 45–53. [Google Scholar] [CrossRef]
- Canabrava, K.L.; Faria, F.R.; Lima, J.R.; Guedes, D.P.; Amorim, P.R. Energy expenditure and intensity of active video games in children and adolescents. Res. Q. Exerc. Sport 2018, 89, 47–56. [Google Scholar] [CrossRef]
- Clevenger, K.A.; Howe, C.A. Energy cost and enjoyment of active videogames in children and teens: Xbox 360 Kinect. Games Health J. 2015, 4, 318–324. [Google Scholar] [CrossRef]
- Monedero, J.; McDonnell, A.C.; Keoghan, M.; O’Gorman, D.J. Modified active videogame play results in moderate-intensity exercise. Games Health J. 2014, 3, 234–240. [Google Scholar] [CrossRef]
- O’Donovan, C.; Hirsch, E.; Holohan, E.; McBride, I.; McManus, R.; Hussey, J. Energy expended playing Xbox Kinect™ and Wii™ games: A preliminary study comparing single and multiplayer modes. Physiotherapy 2012, 98, 224–229. [Google Scholar] [CrossRef]
- Overstreet, B.S.; Rider, B.C.; Strohacker, K.; Crouter, S.E.; Springer, C.M.; Baldwin, D. Effects of television on enjoyment of exercise in college students. Int. J. Sport Exerc. Psychol. 2018, 16, 657–669. [Google Scholar] [CrossRef]
- Bartlett, J.D.; Close, G.L.; MacLaren, D.P.; Gregson, W.; Drust, B.; Morton, J.P. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. J. Sports Sci. 2011, 29, 547–553. [Google Scholar] [CrossRef]
- Monedero, J.; Murphy, E.E.; O’Gorman, D.J. Energy expenditure and affect responses to different types of active video game and exercise. PLoS ONE 2017, 12, e0176213. [Google Scholar] [CrossRef]
- Leininger, L.; Coles, M.; Gilbert, J. Comparing enjoyment and perceived exertion between equivalent bouts of physically interactive video gaming and treadmill walking. Health Fit. J. Can. 2010, 3, 12–18. [Google Scholar] [CrossRef]
- Day, M.L.; McGuigan, M.R.; Brice, G.; Foster, C. Monitoring exercise intensity during resistance training using the session RPE scale. J. Strength Cond. Res. 2004, 18, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Stewart, T.H.; Villaneuva, K.; Hahn, A.; Ortiz-Delatorre, J.; Wolf, C.; Nguyen, R. Actual vs. perceived exertion during active virtual reality game exercise. Front. Rehabil. Sci. 2022, 3, 887740. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.; Sarkany, D.; Johnson, M.; Rhodes, R.; Whitford, W.; Esch, B. Metabolic requirements of interactive video game cycling. Med. Sci. Sports Exerc. 2009, 41, 920. [Google Scholar] [CrossRef] [PubMed]
- Aygün, C.; Çakir-Atabek, H.; Dokumaci, B. Active video dancing game provides high-intensity exercise for hip-hop dancers and non-dancers. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2018, 40, 1–10. [Google Scholar]
- Linda, S. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, USA, 2014. [Google Scholar]
- Gibbs, B.; Quennerstedt, M.; Larsson, H. Teaching dance in physical education using exergames. Eur. Phys. Educ. Rev. 2017, 23, 237–256. [Google Scholar] [CrossRef]
- Levenberg, M.G.; Armstrong, T.; Johnson, I.L. Teaching dance for understanding: Reconceptualizing dance in physical education. J. Phys. Educ. Recreat. Danc. 2020, 91, 3–7. [Google Scholar] [CrossRef]
- Lim, L.J.; Ho, R.C.; Ho, C.S. Dangers of mixed martial arts in the development of chronic traumatic encephalopathy. Int. J. Environ. Res. Public Health 2019, 16, 254. [Google Scholar] [CrossRef]
- Riebe, D. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, USA, 2017. [Google Scholar]
- Weir, J.V. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Kendzierski, D.; DeCarlo, K.J. Physical activity enjoyment scale: Two validation studies. J. Sport Exerc. Psychol. 1991, 13, 50–64. [Google Scholar] [CrossRef]
- Graves, L.E.; Ridgers, N.D.; Williams, K.; Stratton, G.; Atkinson, G.; Cable, N.T. The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. J. Phys. Act. Health 2010, 7, 393–401. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Crouse, J.C.; Lin, J.H. Using active video games for physical activity promotion: A systematic review of the current state of research. Health Educ. Behav. 2013, 40, 171–192. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, C.; Hussey, J. Active video games as a form of exercise and the effect of gaming experience: A preliminary study in healthy young adults. Physiotherapy 2012, 98, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Scheer, K.S.; Siebrant, S.M.; Brown, G.A.; Shaw, B.S.; Shaw, I. Wii, Kinect, and Move. Heart rate, oxygen consumption, energy expenditure, and ventilation due to different physically active video game systems in college students. Int. J. Exerc. Sci. 2014, 7, 22. [Google Scholar]
- White, K.; Schofield, G.; Kilding, A.E. Energy expended by boys playing active video games. J. Sci. Med. Sport 2011, 14, 130–134. [Google Scholar] [CrossRef]
- Lanningham-Foster, L.; Foster, R.C.; McCrady, S.K.; Jensen, T.B.; Mitre, N.; Levine, J.A. Activity-promoting video games and increased energy expenditure. J. Pediatr. 2009, 154, 819–823. [Google Scholar] [CrossRef]
- Marks, D.W.; Rispen, L.; Calara, G. Greater physiological responses while playing XBox Kinect compared to Nintendo Wii. Int. J. Exerc. Sci. 2015, 8, 7. [Google Scholar] [CrossRef]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise: Human Kinetics; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F. Clinician’s guide to cardiopulmonary exercise testing in adults: A scientific statement from the American Heart Association. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef]
- Devereaux, J. Comparison of rates of perceived exertion between active video games and traditional exercise. Int. Sport. J. 2012, 13, 133–140. [Google Scholar]
- McDonough, D.J.; Pope, Z.C.; Zeng, N.; Lee, J.E.; Gao, Z. Comparison of college students’ energy expenditure, physical activity, and enjoyment during exergaming and traditional exercise. J. Clin. Med. 2018, 7, 433. [Google Scholar] [CrossRef]
- Carraro, A.; Young, M.C.; Robazza, C. A contribution to the validation of the physical activity enjoyment scale in an Italian sample. Soc. Behav. Pers. Int. J. 2008, 36, 911–918. [Google Scholar] [CrossRef]
- Noah, J.A.; Spierer, D.K.; Tachibana, A.; Bronner, S. Vigorous Energy Expenditure with a Dance Exer-game. J. Exerc. Physiol. Online 2011, 14, 13–28. [Google Scholar]
- Raedeke, T.D. The relationship between enjoyment and affective responses to exercise. J. Appl. Sport Psychol. 2007, 19, 105–115. [Google Scholar] [CrossRef]
- Thum, J.S.; Parsons, G.; Whittle, T.; Astorino, T.A. High-intensity interval training elicits higher enjoyment than moderate intensity continuous exercise. PLoS ONE 2017, 12, e0166299. [Google Scholar] [CrossRef]
- Monedero, J.; Lyons, E.J.; O’Gorman, D.J. Interactive video game cycling leads to higher energy expenditure and is more enjoyable than conventional exercise in adults. PLoS ONE 2015, 10, e0118470. [Google Scholar] [CrossRef]
- Hammer, T.M.; Pedersen, S.; Pettersen, S.A.; Rognmo, K.; Sagelv, E.H. Affective Valence and Enjoyment in High-and Moderate-High Intensity Interval Exercise. The Tromsø Exercise Enjoyment Study. Front. Psychol. 2022, 13, 825738. [Google Scholar] [CrossRef]
- Heisz, J.J.; Tejada, M.G.M.; Paolucci, E.M.; Muir, C. Enjoyment for high-intensity interval exercise increases during the first six weeks of training: Implications for promoting exercise adherence in sedentary adults. PLoS ONE 2016, 11, e0168534. [Google Scholar] [CrossRef]
Variables | Rest | Fruit Ninja AVG | Just Dance AVG | Shape Up Muscle AVG | Shape Up Cardio AVG | Fighter Within AVG | p Value | F | ηp2 |
---|---|---|---|---|---|---|---|---|---|
VO2 (mL·kg−1·min−1) | 3.97 ± 0.37 | 16.21 ± 3.42 acdef | 21.52 ± 3.75 abef | 20.76 ± 2.83 abef | 27.03 ± 3.04 abcd | 27.90 ± 4.61 abcd | <0.001 | 127.20 | 0.92 |
RER | 0.76 ± 0.02 | 0.87 ± 0.02 adef | 0.90 ± 0.03 adef | 0.96 ± 0.01 abc | 0.95 ± 0.02 abc | 0.96 ± 0.03 abc | <0.001 | 119.24 | 0.92 |
EE (kcal·min−1) | 1.33 ± 0.1 | 5.53 ± 1.0 acdef | 7.43 ± 1.1 abef | 7.29 ± 0.8 abef | 9.41 ± 0.7 abcd | 9.75 ± 1.5 abcd | <0.001 | 127.62 | 0.92 |
EE (kcal·kg−1·min−1) | 0.019 ± 0.001 | 0.079 ± 0.017 acdef | 0.105 ± 0.019 abef | 0.104 ± 0.015 abef | 0.134 ± 0.015 abcd | 0.138 ± 0.023 abcd | <0.001 | 120.01 | 0.92 |
MET | 1.00 ± 0.0 | 4.07 ± 0.7 acdef | 5.46 ± 1.0 abef | 5.25 ± 0.7 abef | 6.83 ± 0.7 abcd | 7.03 ± 1.0 abcd | <0.001 | 124.78 | 0.92 |
HR (beat·min−1) | 71.00 ± 9.82 | 120.67 ± 17.43 adef | 131.33 ± 20.23 aef | 135.92 ± 15.55 abef | 152.33 ± 17.76 abcd | 153.58 ± 18.04 abcd | <0.001 | 113.13 | 0.91 |
HR max% (beat·min−1) | ------------- | 60.47 ± 8.68 def | 65.83 ± 10.15 ef | 68.11 ± 7.63 bef | 76.33 ± 8.64 bcd | 76.98 ± 9.06 bcd | <0.001 | 26.36 | 0.70 |
HRR max% (beat·min−1) | ------------- | 38.77 ± 11.59 def | 47.26 ± 14.96 ef | 50.84 ± 9.51 bef | 63.71 ± 11.40 bcd | 64.36 ± 13.27 bcd | <0.001 | 25.00 | 0.69 |
Variables | Fruit Ninja AVG | Just Dance AVG | Shape Up Muscle AVG | Shape Up Cardio AVG | Fighter Within AVG | p Value | F | ηp2 |
---|---|---|---|---|---|---|---|---|
RPE scores | 10.33 ± 2.57 ǂ†π | 10.42 ± 2.31 ǂ†π | 14.67 ± 1.23 #‡ | 13.92 ± 1.88 #‡ | 13.75 ± 1.48 #‡ | <0.001 | 17.28 | 0.61 |
Enjoyment scores | 28.83 ± 4.87 | 28.50 ± 4.42 | 27.00 ± 3.76 π | 28.17 ± 3.09 π | 31.92 ± 2.27 ǂ† | <0.05 | 3.35 | 0.23 |
AVGs | ACSM Classification METs Light: 2.0–2.9 Moderate: 3.0–5.9 Vigorous: 6.0–8.7 | ACSM Classification HR max% Light: 57–63 Moderate: 64–76 Vigorous: 77–95 | ACSM Classification HRR max% Light: 30–39 Moderate: 40–59 Vigorous: 60–89 | ACSM Classification RPE Light: 9–11 Moderate: 12–13 Vigorous: 14–17 |
---|---|---|---|---|
Fruit Ninja AVG | Moderate | Light | Light | Light |
Just Dance AVG | Moderate | Moderate | Moderate | Light |
Shape Up Muscle AVG | Moderate | Moderate | Moderate | Vigorous |
Shape Up Cardio AVG | Vigorous | Vigorous | Vigorous | Moderate |
Fighter Within AVG | Vigorous | Vigorous | Vigorous | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aygün, C.; Çakır-Atabek, H. Classification of Exergames with Different Types: Perceptual and Physiological Responses in College Students. Appl. Sci. 2023, 13, 10769. https://doi.org/10.3390/app131910769
Aygün C, Çakır-Atabek H. Classification of Exergames with Different Types: Perceptual and Physiological Responses in College Students. Applied Sciences. 2023; 13(19):10769. https://doi.org/10.3390/app131910769
Chicago/Turabian StyleAygün, Cihan, and Hayriye Çakır-Atabek. 2023. "Classification of Exergames with Different Types: Perceptual and Physiological Responses in College Students" Applied Sciences 13, no. 19: 10769. https://doi.org/10.3390/app131910769
APA StyleAygün, C., & Çakır-Atabek, H. (2023). Classification of Exergames with Different Types: Perceptual and Physiological Responses in College Students. Applied Sciences, 13(19), 10769. https://doi.org/10.3390/app131910769