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Abstract: As the Information Age brings people an amount of data, research on data prediction has
been widely concerned. Time series data, a sequence of data points collected over an interval of time,
are very common in many areas such as weather forecasting, stock markets, and so on. Thus, research
on time series data prediction is of great significance. Traditional prediction methods are usually
based on correlations between data points, but correlations do not always reflect the relationship
exactly within the data. In this paper, we propose the LiNGAM Weight Adjust–LSTM (LWA-LSTM)
algorithm, which combines a causality discovery algorithm, feature weight adjustment, and a deep
neural network for time series data prediction. Several stocks in the Chinese stock market were
selected and the algorithm was used to predict the stock price. Comparing the prediction effect of the
model with that of the LSTM model alone, the results show that the LWA-LSTM model can find the
stable relationship between the data better and has fewer prediction errors.

Keywords: causal discovery; time series data; stock price forecast

1. Introduction

Time series data, also referred to as time-stamped data, are a sequence of data points
indexed in time order. They are widely present in our daily lives, such as in weather
forecasting, stock markets, and other fields. Nowadays, the accurate prediction and analysis
of time series data have become a hot research topic in the field of artificial intelligence.
Stock prices are typical time series data. Many scholars have carried out research on stock
price forecasting due to its potential high returns. However, since stock data are often
unstable and noisy and are greatly affected by international relations and national policies,
the prediction of stock data has always been a challenging problem. Therefore, we take
stock price data as an example to study the forecast of time series data, proposing a new
method to improve prediction accuracy.

Thanks to the extensive research scholars have conducted, many effective methods
have been proposed. Before the advent of machine learning, statistical approaches were
widely tried and tested. The Exponential Smoothing Model [1] uses the exponential
window function to smooth time series data and then analyze them. The ARMA [2] is
another popular technique for stock market analysis, which combines the Auto-Regressive
(AR) model, which models the momentum and mean reversion effects observed in trading
markets, and the Moving Average (MA) model, which tries to capture the shock effects
observed. The ARIMA [3] is a natural extension of the ARMA model that can reduce a
non-stationary series to a stationary series. Machine learning methods include random
forest [4], xgboost [5], and support vector machine [6]. As neural network models show
their great potential, more and more deep learning models have been proposed for stock
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price prediction, based on RNN [7], CNN [8], LSTM [9], GRU [10], and so on. We will
introduce some of them in the next chapter.

We found that when using machine learning methods for time series prediction, the
choice of features greatly affects the prediction performance. Existing methods often can
only find correlations within variables. As we all know, correlation differs from causality,
which is a more essential and thus more stable and reliable relationship in time series data.
Therefore, it is of great significance to explore the causal relationship between stock price
data for forecasting.

To achieve this, we devised an effective novel method. First, we selected a set of stock
factors as features and used a causal discovery algorithm to model the causal relationship
between these features and the objective. Next, we adjusted the weights of the features that
had a causal relationship with the objective. Finally, we used the weighted feature set as
input to predict the stock price with the LSTM neural network.

The contributions of this paper are as follows: (1) To the best of our knowledge, we
apply the causal discovery algorithm based on a structural causal model to the stock price
prediction for the first time. (2) Based on the LiNGAM algorithm and LSTM algorithm, we
propose LWA-LSTM, which is capable of discovering causality and predicting time series
data. (3) We find that there is a causal relationship rather than a correlation between many
features and the stock price to be predicted. (4) LWA-LSTM achieved excellent performance
when tested on real stock data. Our work validates the potential for adding causality and
causal weight adjustment to produce more reliable and accurate predictions for such tasks.

This paper is organized as follows. Section 2 introduces the relevant work. Section 3
provides a detailed description of the LWA-LSTM method we devised. In Section 4, we
show the experiment settings and results. Finally, in Section 5, we summarize our work
and look forward to the future.

2. Related Work

For a long time, people have been disputing whether the stock market can be pre-
dicted. The efficient market hypothesis proposed by Fama [11] holds that information is
efficient; that is, new information can be quickly reflected in asset prices, so future stock
prices cannot be predicted based on historical information. Goyal and Welch [12] system-
atically investigated the empirical real-world out-of-sample performance of plain linear
regressions to predict the equity premium and found that none of the popular variables
worked. Goyal, Welch, and Zafirov [13] reexamined whether 29 variables from 26 pa-
pers published after Goyal and Welch, as well as the original 17 variables, were useful in
predicting the equity premium in-sample and out-of-sample. The results show that the
predictive performance of popular variables is still disappointing. However, because the
efficient market hypothesis has very strong assumptions, it is difficult to satisfy in the real
world. With the development of computer technology, various forecasting methods other
than linear regression have been enriched. Therefore, many researchers still make stock
forecasts for high returns. Fundamental analysis and technical analysis have been used for
decades. The traditional stock forecasting method is generally based on statistical models,
establishing a linear model between stock features and stock price. Li et al. [14] built an
ARIMA model using the monthly closing price of the SSE Composite Index to predict the
closing price in three months, verifying the accuracy of the ARIMA model in short-term
prediction. Such methods achieved good results with very few model parameters and low
computational complexity. However, they often assume data with linearity, stationarity,
and normality, which is often too strict. There are many complex nonlinear relationships
between stock variables.

Thanks to the massive data recorded in the financial market, the use of machine
learning in stock markets is growing rapidly. Various algorithms such as support vector
machines, perceptrons, artificial neural networks, and decision trees have been applied to
stock price prediction to improve the accuracy.
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Kim [15] applied a support vector machine to stock prediction, and experiments
showed that the method outperformed traditional neural networks. Qiu [16] used artificial
neural networks combined with global search techniques (GA/SA) to make predictions. Al-
though these methods have been greatly improved compared with the traditional methods,
complex feature engineering and poor model scalability have always troubled researchers.
Deep learning has now become the most popular solution for most AI problems. Many
researchers use RNNs to make stock price predictions. Although Recurrent Neural Net-
works (RNNs) possess internal memory and feedback connections, making them capable of
handling sequences of arbitrary length, the model’s performance is heavily compromised
as the input length increases. Furthermore, excessively long inputs can lead to issues of
vanishing or exploding gradients, making the training process extremely challenging. The
LSTM (Long Short-Term Memory) model was developed based on the RNN. LSTM incor-
porates three control units: the forget gate, the input gate, and the output gate. These units
effectively enhance the model’s ability to handle long-range dependencies in sequential
data. In addition to approximating complex non-linear relationships, LSTM also offers
advantages such as high accuracy, strong learning capability, robustness, and fault tolerance.
Catalin [17] designed stock forecasting models based on LSTM and CNN, respectively, and
built a stock trading strategy with prediction results. Sellvin et al. [18] proposed three stock
prediction models based on the CNN, RNN, and LSTM respectively, and compared their
performance by predicting the stock price of listed companies. Chen et al. [19] proposed
a stock price trend prediction model (TPM) based on the encoder–decoder mechanism.
This proposed method consists of two phases. First, it applied a piece-wise linear re-
gression method (PLR) (which extracts long-term temporal features) and a CNN (which
extracts short-term spatial market features) as a dual feature extraction method. Second,
an encoder–decoder framework formed by an LSTM was applied to select and merge
relevant features and then perform trend prediction. Among the multiple advantages of
transformers, the ability to capture long-range dependencies and interactions is especially
attractive for time series modeling, leading to exciting progress in various time series appli-
cations. By highlighting their advantages and limitations, Wen et al. [20] comprehensively
and systematically summarize transformers’ work on the latest advances in time series
data modeling. Liu et al. [21] proposed a capsule network based on a transformer. They
captured semantic features with a transformer encoder and text structure information
with capsule networks, thereby extracting features from the text on social media for stock
predictions. Lin et al. [22] proposed a new deep learning method for time series prediction,
SSDNet. This approach combines the transformer architecture with a state-space model to
provide probabilistic and interpretable predictions. The paper evaluates the performance of
SSDNet on five datasets, showing that SSDNet is an effective method in terms of accuracy
and speed. Gupta et al. [23] proposed the StockNet model based on GRU with a new data
augmentation approach to overcome the issue of overfitting. Hossain et al. [24] propose
a deep learning-based hybrid model that consists of two well-known DNN architectures:
LSTM and GRU. The approach involves passing the input data to the LSTM network to
generate a first-level prediction and then passing the output of the LSTM layer to the GRU
layer to obtain the final prediction. A novel deep-learning approach to predict the stock
market using both historical stock prices and financial news data can be found in Lien
Minh et al. [25]. In this study, mainly two novel approaches were used. First, a two-stream
gated recurrent unit (TGRU) model for stock price trend forecasting; second, a sentiment
Stock2Vec embedding model associated with financial news data as well as a sentiment
dictionary. The proposed network achieved a mean squared error (MSE) of 0.00098 in
prediction, outperforming previous neural network approaches. Shah et al. [26] proposed
AutoAI for time series forecasting (AutoAI-TS). The model can use classical statistical
models, machine learning (ML) models, and deep learning models to create prediction
pipelines and use the T-Daub mechanism to select the best pipeline for prediction.

Existing predictive models often only reveal the underlying correlation relationships
rather than causal relationships between features and stock prices. A common causal
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analysis method for time series data is the Granger causality test proposed by C.W.J.
Granger [27], which promoted econometrics. Hiemstra and Jones [28] tested the nonlinear
causality between transaction volume and returns, confirming the validity of the Granger
causality test. With the linear and non-linear Granger causality tests, Param et al. [29]
found that there is a significant two-way causality between daily stock returns and trading
volume in Korea. Using the same technique, Zhuo et al. [30] found that the Michigan
Consumer Sentiment Index has a causal relationship with the consumption trend in the
United States. However, there is no solid causal theory foundation for the Granger causality
test. It has been recognized that proving causality requires counterfactual reasoning. A
causal relationship is more stable and does not change over time, which is of more interest
to equity investors. Therefore, there is an urgent need to study the real causal relationship
between stock factors.

The existing literature shows that the research on stock price prediction based on
causality among factors has not received enough attention. Hu et al. [31] proposed an
improved additive noise model with conditional probability to solve the problem of many-
to-one causality discovery in high-dimensional dynamic stock markets and successfully
mined the relationship between multiple factors and returns. Zhang et al. [32] proposed
the causal feature selection (CFS) algorithm by using the constraint-based causal discovery
algorithm, which can select the feature set with the best effect on stock market prediction.

The importance of each feature to the predicted objective is different and the features
that have a causal relationship with the stock price should be more critical to the forecast.
Therefore, we propose that the weight of these features should be different from other
features. We propose a method to adjust the feature weights, which combines the causal
discovery algorithm based on the structural causal model, feature weight adjustment,
and deep neural network to improve the accuracy of stock price prediction. Our work is
different from existing methods.

3. LWA-LSTM Method

We propose a stock prediction method called LWA-LSTM based on the structural
causal model. This approach begins by using a causal discovery algorithm to identify
features that have a causal relationship with the predicted values within the feature set.
Subsequently, these identified features are subjected to feature weight adjustment to en-
hance their importance within the entire feature set. Finally, the adjusted feature set is fed
into a neural network for prediction. The flowchart of this method is shown in Figure 1.
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3.1. Multifactorial Forecasting

The daily real-time trading in the stock market generates a large amount of data for
analysis. Various types of trading data that reflect changes in stock prices are suitable for
stock price prediction, making them the focus of research. Traditional stock prediction
methods often rely on single features such as opening and closing prices for forecasts.
However, due to the limited number of features, these models struggle to capture the
patterns of stock price fluctuations, resulting in limited predictive accuracy. A multifactor
model utilizes multiple relevant features, which can improve the accuracy and robustness
of stock prediction while enhancing the model’s interpretability. Therefore, we have chosen
to use a multifactor model for stock forecasting.

Factors in addition to common ones such as the highest price, lowest price, and trading
volume also include some manually constructed composite technical indicators. They can
be divided into the following categories: scale-related features, valuation-related features,
trading-related features, and price-related features. When selecting features, several factors
need to be considered: firstly, the selected features should be representative and able to
reflect the stock’s trading situation and changing trends; secondly, the selected features
should have a strong causal relationship with the predicted value, and for predicting
stock prices, they should possess greater stability and interpretability. Based on these
requirements, we have selected 33 initial features for the model, which include price-
related features, trading-related features, and others, as shown in Table 1.

Table 1. Complete set of multifactorial features.

Number Factor Number Factor Number Factor

X1 next_close X12 open_qfq X23 macd
X2 open X13 close_hfq X24 kdj_k
X3 high X14 close_qfq X25 kdj_d
X4 low X15 high_hfq X26 kdj_j
X5 pre_close X16 high_qfq X27 rsi_6
X6 change X17 low_hfq X28 rsi_12
X7 pct_change X18 low_qfq X29 rsi_24
X8 vol X19 pre_close_hfq X30 boll_upper
X9 amount X20 pre_close_qfq X31 boll_mid

X10 adj_factor X21 macd_dif X32 boll_lower
X11 open_hfq X22 macd_dea X33 cci

3.2. LiNGAM Algorithm and Causal Weight Adjustment

Currently, the mainstream causal discovery algorithms can be classified into three
main types: constraint-based methods, structure-based causal model methods, and hybrid
methods. Constraint-based methods remove redundant edges in the causal graph by con-
ducting independence tests on variables. Structure-based causal model methods start from
the causal mechanisms generated by data and construct functions to determine the causal
relationships between variables, thereby identifying the direction of causality. Hybrid
methods combine both approaches, aiming to achieve both the high-dimensional scalability
of constraint-based methods and the strong causal discovery capability of structure-based
causal model methods.

Constraint-based methods often have drawbacks such as misidentification and high
time complexity. Additionally, these methods are unable to learn all edges in a causal
network graph; they can only obtain a directed acyclic graph comprising a set of Markov
equivalent classes. On the other hand, structure-based causal modeling methods over-
come these limitations by studying the distribution properties of data to discover causal
relationships. However, research on hybrid approaches is still in its early stages and faces
challenges like insufficient theoretical analysis. Therefore, we have chosen to study the
LiNGAM algorithm, which is based on structure-based causal modeling.

LiNGAM, short for Linear Non-Gaussian Acyclic Model, was proposed by Shimizu
et al. It is a variation of structural equation models and Bayesian networks. The model
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requires that the causal structure of the variables satisfies three conditions: first, the directed
graph formed by all the variables must be acyclic; second, the model must be linear,
with the target variable being a linear sum of its corresponding cause variables; third,
the noise variables follow non-Gaussian distributions with nonzero variances and are
mutually independent.

The variables in the LiNGAM model are generated in a causal order, so after the
variables are arranged in a causal order, the variable located in the back cannot be the
dependent variable of the preceding variable. In practice, the arrangement of the observed
variables is random, as opposed to the causal order. We write the variables as {v1, v2, . . ., vn},
denoting the causal order as k (i), i ∈ [1, n]. (i) ∈ [1, n] represents the position of the i-th
variable in the causal order of the observation sequence, then the generation process of the
variable can be described as:

vi = ∑k(j)<k(i) bijvj + ni i, j ∈ [1, n] (1)

In the formula, ni represents the noise terms that obey the non-Gaussian distribution,
and the noise terms are independent of each other in pairs; if bij is not 0, there is an edge
with vj pointing to vi.

Under the linear non-Gaussian acyclic conditions described above, the LiNGAM
model is expressed as a matrix:

V = BV + n (2)

V is a p-dimensional random vector, B is a p × p adjacency matrix, and n is a p-
dimensional non-Gaussian random noise variable. Under the assumption of a cycle-free
graph, there exists a permutation matrix P ∈ Rm×m such that B′ = PBPT is a strictly
lower triangular matrix with all diagonal elements equal to 0. This solving method is
proposed based on the Independent Component Analysis (ICA) algorithm. The algorithm
first obtains the limit matrix W in the connection matrix Y = WV from the observation
data through ICA, where Y is the vector containing independent components. As you can
see, W has a derivation relationship with (I − B). Then, combined with the characteristics
of B′ as a strictly lower triangular matrix, the causal order can be obtained from W by
using methods such as row and column permutation. Finally, after a pruning algorithm,
we obtain the final cause-and-effect diagram. The basic flow is shown in Figure 2.
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In our algorithm, we first use the daily data of the features and the closing price of the
next day as variables. We apply the LiNGAM algorithm to determine the causal ordering
of the variables, obtain the causal matrix, and draw a causal graph. Then, we observe the
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factors in the causal graph that have a causal relationship with the next day’s closing price.
We select these feature factors and add them to the original feature set by duplicating a
column. This increases the weight of causal feature factors in the feature set.

3.3. LSTM Algorithm

Due to the good performance of LSTM in time series data prediction, our approach
selects the LSTM algorithm for stock price prediction.

The specific structure of the LSTM unit is as follows:

ft = sigm
(

w f xxt + wthht−1 + b f

)
(3)

it = sigm(wixxt + wthht−1 + bi) (4)

gt = tanh
(

wgxxt + wghht−1 + bg

)
(5)

ct = ft × ct−1 + it × gt (6)

ot = sigm
(
woxxt + wohht−1 + bo

)
(7)

Among them, ft stands for the door of forgetting, which determines how much infor-
mation from the upper layer will be recorded. it represents an input gate that determines
how much input information will be used. gt represents a source of alternative information,
ready to update new cell status ct. The final output ht is determined by the current cell state
ct and the intermediate output ot and entered into the LSTM unit at the next moment. LSTM
realizes the long-term transmission of information by building input, forget, and output
gates, ensuring that the previous information can always participate in network training.

4. Experiment

In order to verify the effectiveness of the algorithm, we select the actual trading
data of the Chinese stock market for training and predicting future stock prices, and the
experimental results prove that the algorithm can better reduce the prediction error and
improve the accuracy of stock prediction.

4.1. Data Sources and Preprocessing

All stock data are from the Tushare data interface package in Python. We have selected
33 factors, including opening price, trading volume, trading value, and adjustment factors,
as features. The full sample period is from 20 May 2019 to 24 May 2022 and the test set
selects the last 20% of the total sample set. In total, there are 733 days of data and 137 days
of test sets.

Ping An Bank (000001.SZ), formerly known as Shenzhen Development Bank, is the
first nationwide joint-stock commercial bank in mainland China to be publicly listed. We
believe that Ping An Bank has good representativeness for the Shenzhen stock market,
so we chose to conduct our experiment using it. Some of the data for it are presented in
Table 2. There are various types of stocks in the stock market, and in order to ensure that
the prediction errors are not caused by differences in stock types, we selected four banking
stocks listed on the Shenzhen Stock Exchange: Jiangyin Bank (002807.SZ), Zhengzhou Bank
(002936.SZ), and Qingdao Bank (002948.SZ) as data sources.
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Table 2. Ping An Bank partial factor data graph.

Trade_Date Close Open High Low Pre_Close . . . Boll_Mid Boll_Lower cci

20190520 12.38 12.35 12.54 12.25 12.44 . . . 12.62 11.05 −75.58
20190521 12.56 12.4 12.73 12.36 12.38 . . . 12.53 11.00 −45.01
20190522 12.4 12.57 12.57 12.32 12.56 . . . 12.42 11.01 −60.71
20190523 12.29 12.24 12.42 12.14 12.4 . . . 12.33 10.96 −99.07

...
...

...
...

...
...

...
...

...
...

20220523 14.83 15.07 15.07 14.76 15.02 . . . 14.70 13.76 35.00
20220524 14.4 14.87 14.87 14.4 14.83 . . . 14.63 13.74 −50.46
20220525 14.39 14.43 14.49 14.3 14.4 . . . 14.55 13.80 110.45

Since variables in the raw data may have different scales, we first use the fit_transform
method to normalize the train data, then use the transform method on the test set. This
transforms the variance to 1 and the mean to 0.

4.2. Causality Discovery

We used the LiNGAM algorithm from the causal-learn library in Python to discover
causal relationships between variables. The lower limit was set to 0.9, indicating that only
causal relationships with weights greater than 0.9 are displayed in the causal graph.

Due to the large number of characteristic values and the complexity of the connection
between the characteristic factors, the Bank of Qingdao (002948.SZ) causal discovery is
taken as an illustrative example in Figure 3.
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Figure 3. Thirty-three-factor causal discovery diagram of the Bank of Qingdao.

Among them, X1 represents the closing price of the next day. From the above chart, it
can be observed that the lowest price (low) has a causal relationship with the closing price.
By observing the causal relationships between the remaining stocks and the closing price,
the characteristic factors that have a causal relationship with the closing price are shown in
Table 3: for Ping An Bank, the lowest price (low) and the closing price before adjustment
(close_qfq) have a causal relationship; for Jiangyin Bank, the lowest price (low) and the
trading volume (amount) have a causal relationship with X1; for Zhengzhou Bank, the
lowest price (low), highest price (high), and opening price (open) have a causal relationship
with X1; for Qingdao Bank, the lowest price (low) has a causal relationship with X1.
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Table 3. Characteristic values in the four stocks that have a causal relationship with the closing
price X1.

Stock Features that Have a Causal Relationship with X1

000001.SZ low, close_qfq
002807.SZ low, amount
002936.SZ low, high, open
002948.SZ low

4.3. Model Building and Parameter Setting

The experimental model in this paper is built and run under the TensorFlow frame-
work of Python 3.10, using the sequential model in Keras in TensorFlow and combining
two layers of LSTM and a layer of Dense to complete the stock prediction. Above the model
parameters, the number of neurons in the first layer of LSTM is 80, and the number of
neurons in the second layer is 100. Optimizing parameters in 200 epochs using the Adam
optimizer with a learning rate of 0.001 and a batch size batch_size of 128, the experiment
uses a 10-day time step as a sliding time window. The model takes 1 day as the forecast time
step, which means that we will use the stock characteristics data of the previous 10 days to
predict the closing price of the stock on the eleventh day.

4.4. Evaluation Indicators

Since our job is to predict stock prices, which is a regression problem, some evaluation
indicators can be used to evaluate how well our predictions work. In this paper, three
evaluation indicators, mean squared error (MSE), root mean square error (RMSE), and mean
absolute error (MAE), are used to evaluate the matching degree between the predicted
value and true value and quantify the predictive performance of the model. The formulas
for the three evaluation indicators are as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (10)

where n is the number of samples, yi is the real data, and ŷi is the fitted data. The three
evaluation indicators are used to measure the deviation between the true value and the
predicted value. A smaller value indicates that the predicted value is closer to the true
value, indicating that the model selection and fitting are better and that the data prediction
is more successful.

4.5. Experimental Results and Analysis

Figure 4 shows the stock price prediction graph obtained by our algorithm with
000001.SZ as an example. Tables 4–6 present the comparative results between our approach,
the original LSTM model, and the LSTM model after eliminating causal feature factors.
The results indicate that our algorithm outperforms in terms of all evaluation metrics for
the four stocks. Particularly, Ping An Bank’s mean square error has decreased by 39.24%,
achieving excellent performance.
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Table 4. MSE of predicted values under different causal weights.

Stock LSTM Remove Causal Factors LWA-LSTM

000001.SZ 0.195848 0.230194 0.192025
002807.SZ 0.007361 0.007476 0.006347
002936.SZ 0.033469 0.027553 0.028261
002948.SZ 0.076080 0.090381 0.046225

Table 5. RMSE of predicted values under different causal weights.

Stock LSTM Remove Causal Factors LWA-LSTM

000001.SZ 0.442547 0.479785 0.438206
002807.SZ 0.085796 0.086466 0.079671
002936.SZ 0.182945 0.165992 0.168110
002948.SZ 0.275827 0.300634 0.215000

Table 6. MAE of predicted values under different causal weights.

Stock LSTM Remove Causal Factors LWA-LSTM

000001.SZ 0.348708 0.377324 0.352999
002807.SZ 0.060039 0.056817 0.055776
002936.SZ 0.133097 0.138641 0.119297
002948.SZ 0.159176 0.175881 0.150178

The causal feature factors selected for the experiment, represented by variables point-
ing to the closing price, are all dependent variables that predict the target variable, which
is the closing price. Adding these feature values as an additional column to the complete
set of features implies increasing the initial weights of features with causal relationships
when inputting them into the neural network. After removing features with causal relation-
ships, the predictive performance of three out of four stocks declined, demonstrating the
importance of these variables in predicting the closing price. Following the implementation
of the new algorithm, the prediction errors of all four stocks decreased, with the smallest
prediction error observed among the three stocks. In 002948.SZ stock, the MSE error using
our algorithm even dropped by 39%, further validating the effectiveness of our algorithm.
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In previous research, it was widely recognized that features such as the lowest price
and highest price have a positive impact on predictive effectiveness. However, there has
not been any study analyzing whether this effect is based on correlation or causation. Our
research demonstrates that there is a causal relationship between these feature values and
the closing price. Additionally, we also provide evidence that boosting the weights of these
causal features effectively enhances predictive effectiveness.

5. Summary and Outlook

In this paper, the features found with the LiNGAM algorithm are used for stock price
prediction after weight adjustment. In order to make causal features play a more important
role in stock price prediction, a new method is proposed in this paper, which combines the
LiNGAM algorithm, feature weight adjustment, and LSTM algorithm. In this algorithm,
we only select the features that point to the predicted objective in the causal graph to
adjust their weights, which increases the interpretability of the method. We conducted
experiments on real stock data, and the results show that our method can effectively
improve prediction accuracy.

Mining the causal relationship between data to make predictions and adjust the
weights of factors is a very promising research direction in the future, meeting various
challenges. On the basis of this paper, future research directions can be: (1) Combining
causality discovery with more advanced models such as GRU and transformers. (2) Mining
the adjustment rules of feature weights to enhance the method’s generality in predicting
different stocks.
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