Haskap Juicing Method Effects on Haskap Juice Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Juice Preparation
2.3. Juice Physiochemical Measurement
2.4. Carbohydrate Content Analysis
2.5. Malic Acid, Citric Acid, and Tartaric Acid Assays
2.6. Total Anthocyanin Content
2.7. Juice Sample Methanol Extraction
2.8. Total Phenolic Assays
2.9. Antioxidant Capacity Assays
2.9.1. Total Antioxidant Capacity Assessment (DPPH)
2.9.2. FRAP Assay
2.10. Total Flavonoid Content
2.11. Measurement of Juice Ascorbic Acid Amount
2.12. Statistical Analysis
3. Results and Discussion
3.1. General Physicochemical Properties and Cloud Values
3.2. Carbohydrate Content in Processed Haskap Juice
3.3. Malic Acids, Citric Acid, and Tartaric Acid Amount in Haskap Juices
3.4. Total Anthocyanin Content in Haskap Juices
3.5. Total Phenolics Contents and Antioxidant Activities Affected by Juicing Methods
3.6. Ascorbic Acid Content in Haskap Juices
3.7. Total Flavonoid Contents in Processed Haskap Juices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rupasinghe, H.P.V.; Arumuggam, N.; Amararathna, M.; De Silva, A.B.K.H. The Potential Health Benefits of Haskap (Lonicera caerulea L.): Role of Cyanidin-3-O-Glucoside. J. Funct. Foods 2018, 44, 24–39. [Google Scholar] [CrossRef]
- Bahorun, T.; Soobrattee, M.; Luximon-Ramma, M.; Aruoma, O. Free Radicals and Antioxidants in Cardiovascular Health and Disease. Internet J. Med. Update 2006, 1, 24–40. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Boehm, M.M.A.; Sekhon-Loodu, S.; Parmar, I.; Bors, B.; Jamieson, A.R. Anti-Inflammatory Activity of Haskap Cultivars Is Polyphenols-Dependent. Biomolecules 2015, 5, 1079–1098. [Google Scholar] [CrossRef] [PubMed]
- Gazdik, Z.; Reznicek, V.; Adam, V.; Zitka, O.; Jurikova, T.; Krska, B.; Matuskovic, J.; Plsek, J.; Saloun, J.; Horna, A.; et al. Use of Liquid Chromatography with Electrochemical Detection for the Determination of Antioxidants in Less Common Fruits. Molecules 2008, 13, 2823–2836. [Google Scholar] [CrossRef] [PubMed]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Haskap Berries (Lonicera caerulea L.)—A Critical Review of Antioxidant Capacity and Health-Related Studies for Potential Value-Added Products. Food Bioprocess Technol. 2014, 7, 1541–1554. [Google Scholar] [CrossRef]
- Bonat Celli, G. Development of an Oral Delivery System to Modulate the Release of Anthocyanins Extracted from Haskap Berries (Lonicera caerulea L.); Dalhousie University: Halifax, NS, Canada, 2016. [Google Scholar]
- Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive Compounds and Antioxidant Capacity of Lonicera caerulea Berries: Comparison of Seven Cultivars over Three Harvesting Years. J. Food Compos. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef]
- Langer, S.; Kennel, A.; Lodge, J.K. The Influence of Juicing on the Appearance of Blueberry Metabolites 2 h after Consumption: A Metabolite Profiling Approach. Br. J. Nutr. 2018, 119, 1233–1244. [Google Scholar] [CrossRef]
- Uckoo, R.M.; Jayaprakasha, G.K.; Balasubramaniam, V.M.; Patil, B.S. Grapefruit (Citrus Paradisi Macfad) Phytochemicals Composition Is Modulated by Household Processing Techniques. J. Food Sci. 2012, 77, C921–C926. [Google Scholar] [CrossRef]
- Khaksar, G.; Assatarakul, K.; Sirikantaramas, S. Effect of Cold-Pressed and Normal Centrifugal Juicing on Quality Attributes of Fresh Juices: Do Cold-Pressed Juices Harbor a Superior Nutritional Quality and Antioxidant Capacity? Heliyon 2019, 5, e01917. [Google Scholar] [CrossRef]
- Pyo, Y.-H.; Jin, Y.-J.; Hwang, J.-Y. Comparison of the Effects of Blending and Juicing on the Phytochemicals Contents and Antioxidant Capacity of Typical Korean Kernel Fruit Juices. Prev. Nutr. Food Sci. 2014, 19, 108–114. [Google Scholar] [CrossRef]
- Wang, J.; Jayaprakasha, G.K.; Patil, B.S. Untargeted Chemometrics Evaluation of the Effect of Juicing Technique on Phytochemical Profiles and Antioxidant Activities in Common Vegetables. ACS Food Sci. Technol. 2021, 1, 77–87. [Google Scholar] [CrossRef]
- Salau, B.; Odufuwa, K.; Adeosun, C.; Atunnise, A. Blanching and Juicing Effect on Flavonoids Contents in Commonly Consumed Leafy Vegetables in South West Nigeria. Int. J. Biochem. Res. Rev. 2015, 5, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Mirzabe, A.H.; Hajiahmad, A. Physico-Mechanical Properties of Unripe Grape Berries Relevant in the Design of Juicing Machine. J. Food Process. Eng. 2021, 44, e13859. [Google Scholar] [CrossRef]
- de Andrade Kaltbach, S.B.; Bender, A.; Kaltbach, P.; Malgarim, M.; Herter, F.G.; Costa, V.B.; de Souza, A.L.K. Juices from “Bordô” and “BRS Cora” Grapes Grown in an Organic Production System in the Serra Do Sudeste Region. Pesq. Agropec. Bras. 2022, 57, e02843. [Google Scholar] [CrossRef]
- Mendes Lopes, M.L.; Miguel, M.A.L.; Fialho, E.; Valente-Mesquita, V.L. Grape Juice Obtained Using Steam Extraction and Other Small-Scale Extraction Methods: Phenolic Content, Antioxidant Capacity and Stability during Storage. Int. J. Food Sci. Technol. 2016, 51, 1696–1702. [Google Scholar] [CrossRef]
- Martins, A.B.N.; Canto, M.; Perrone, D.; Monteiro, M. Chemical, Microbiological and Sensory Stability of Steam Extracted Jaboticaba (Myrciaria Jaboticaba) Juice. Foods 2021, 10, 732. [Google Scholar] [CrossRef]
- Matei, F. Chapter 14—Technical Guide for Fruit Wine Production. In Science and Technology of Fruit Wine Production; Kosseva, M.R., Joshi, V.K., Panesar, P.S., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 663–703. ISBN 978-0-12-800850-8. [Google Scholar]
- Hsu, K.-C. Evaluation of Processing Qualities of Tomato Juice Induced by Thermal and Pressure Processing. LWT Food Sci. Technol. 2008, 41, 450–459. [Google Scholar] [CrossRef]
- Barba, F.J.; Jäger, H.; Meneses, N.; Esteve, M.J.; Frígola, A.; Knorr, D. Evaluation of Quality Changes of Blueberry Juice during Refrigerated Storage after High-Pressure and Pulsed Electric Fields Processing. Innov. Food Sci. Emerg. Technol. 2012, 14, 18–24. [Google Scholar] [CrossRef]
- Huang, H.-W.; Chang, Y.H.; Wang, C.-Y. High Pressure Pasteurization of Sugarcane Juice: Evaluation of Microbiological Shelf Life and Quality Evolution During Refrigerated Storage. Food Bioprocess Technol. 2015, 8, 2483–2494. [Google Scholar] [CrossRef]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef]
- Fundo, J.F.; Miller, F.A.; Mandro, G.F.; Tremarin, A.; Brandão, T.R.S.; Silva, C.L.M. UV-C Light Processing of Cantaloupe Melon Juice: Evaluation of the Impact on Microbiological, and Some Quality Characteristics, during Refrigerated Storage. Lebensm. Wiss. Technol. 2019, 103, 247–252. [Google Scholar] [CrossRef]
- Kim, H.; House, L.A.; Odabasi, A.Z.; Sims, C.A. Sensory and Hedonic Evaluation in Response to Food-Cue Exposure: The Case of Juicing Demonstration of Fresh Oranges. Int. J. Mol. Sci. 2015, 7, 65. [Google Scholar] [CrossRef]
- Wang, C.; Duan, H.; Liu, L.; Luo, Y.; Dai, J. Effect of Juicing On Nutrition Qualities of “Sanhua” Plum (Prunus Salicina Lindl.) Juice from 4 Cultivars. Food Sci. Technol. Res. 2014, 20, 1153–1164. [Google Scholar] [CrossRef]
- Myrtsi, E.D.; Koulocheri, S.D.; Evergetis, E.; Haroutounian, S.A. Pigments’ Analysis of Citrus Juicing Making By-products by LC-MS/MS and LC-DAD. MethodsX 2022, 9, 101888. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Konopska, J.; Feszterová, M.; Zbikowska, A.; Kowalska, B. Quality Assessment of Natural Juices and Consumer Preferences in the Range of Citrus Fruit Juices. Appl. Sci. 2023, 13, 765. [Google Scholar] [CrossRef]
- Illera, A.E.; Sanz, M.T.; Beltrán, S.; Melgosa, R.; Solaesa, A.G.; Ruiz, M.O. Evaluation of HPCD Batch Treatments on Enzyme Inactivation Kinetics and Selected Quality Characteristics of Cloudy Juice from Golden Delicious Apples. J. Food Eng. 2018, 221, 141–150. [Google Scholar] [CrossRef]
- Ndife, J. Comparative Evaluation of the Nutritional and Sensory Quality of Different Brands of Orange-Juice in Nigerian Market. Afr. J. Food Sci. 2013, 7, 479–484. [Google Scholar] [CrossRef]
- Khattab, R.; Ghanem, A.; Brooks, M.S.-L. Quality of Dried Haskap Berries (Lonicera caerulea L.) as Affected by Prior Juice Extraction, Osmotic Treatment, and Drying Conditions. Dry. Technol. 2017, 35, 375–391. [Google Scholar] [CrossRef]
- Versteeg, C.; Rombouts, F.M.; Spaansen, C.H.; Pilnik, W. Thermostability and Orange Juice Cloud Destabilizing Properties of Multiple Pectinesterases from Orange. J. Food Sci. 1980, 45, 969–971. [Google Scholar] [CrossRef]
- McCleary, B.; Blakeney, A.; McCleary, B.V.; Blakeney, A.B. Measurement of Inulin and Oligofructan. Cereal Foods World 1999, 44, 398–406. [Google Scholar]
- Methods of Enzymatic Analysis V2—2nd Edition. Available online: https://shop.elsevier.com/books/methods-of-enzymatic-analysis-v2/bergmeyer/978-0-12-091302-2 (accessed on 8 September 2023).
- Elkins, E.R.; Heuser, J.R. Detection of Adulteration in Apple Juice by L-Malic/Total Malic Acid Ratio: Collaborative Study. J. AOAC Int. 1994, 77, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking Color and Pigment Changes in Anthocyanin Products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, S.-U.; Lee, H.S.; Kim, I.; Ahn, M.Y.; Ryu, K.S. Determination of 1-Deoxynojirimycin in Morus Alba L. Leaves by Derivatization with 9-Fluorenylmethyl Chloroformate Followed by Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr. A 2003, 1002, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus Religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; ElSohly, M.A.; Khan, I.A. Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study. Evid. Based Complement. Altern. Med. 2014, 2014, 253875. [Google Scholar] [CrossRef]
- Pesti-Asbóth, G.; Molnár-Bíróné, P.; Forgács, I.; Remenyik, J.; Dobránszki, J. Ultrasonication Affects the Melatonin and Auxin Levels and the Antioxidant System in Potato in Vitro. Front. Plant Sci. 2022, 13, 979141. [Google Scholar] [CrossRef]
- Porto, I.S.A.; Santos Neto, J.H.; dos Santos, L.O.; Gomes, A.A.; Ferreira, S.L.C. Determination of Ascorbic Acid in Natural Fruit Juices Using Digital Image Colorimetry. Microchem. J. 2019, 149, 104031. [Google Scholar] [CrossRef]
- Testing Wine Musts for Sugar, pH, and TA|MoreBeer. Available online: https://www.morebeer.com/questions/238 (accessed on 1 May 2023).
- Galant, A.L.; Widmer, W.W.; Luzio, G.A.; Cameron, R.G. Characterization of Molecular Structural Changes in Pectin during Juice Cloud Destabilization in Frozen Concentrated Orange Juice. Food Hydrocoll. 2014, 41, 10–18. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Jiang, Y.; Hu, X.; Yi, J. A Novel Strategy to Improve Cloud Stability of Orange-Based Juice: Combination of Natural Pectin Methylesterase Inhibitor and High-Pressure Processing. Foods 2023, 12, 581. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.; Celli, G.B.; Ghanem, A.; Brooks, M.S.-L. Effect of Frozen Storage on Polyphenol Content and Antioxidant Activity of Haskap Berries (Lonicera caerulea L.). J. Berry Res. 2015, 5, 231–242. [Google Scholar] [CrossRef]
- Khattab, R.; Ghanem, A.; Brooks, M.S.-L. Stability of Haskap Berry (Lonicera caerulea L.) Anthocyanins at Different Storage and Processing Conditions. J. Food Res. 2016, 5, 67. [Google Scholar] [CrossRef]
- Talasila, U.; Vechalapu, R.R.; Shaik, K.B. Clarification, Preservation, and Shelf Life Evaluation of Cashew Apple Juice. Food Sci. Biotechnol. 2012, 21, 709–714. [Google Scholar] [CrossRef]
- Sanz, M.L.; Villamiel, M.; Martínez-Castro, I. Inositols and Carbohydrates in Different Fresh Fruit Juices. Food Chem. 2004, 87, 325–328. [Google Scholar] [CrossRef]
- Molina, A.K.; Vega, E.N.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Kostić, M.; Soković, M.; et al. Promising Antioxidant and Antimicrobial Food Colourants from Lonicera caerulea L. Var. Kamtschatica. Antioxidants 2019, 8, 394. [Google Scholar] [CrossRef]
- Zehfus, L. 1994- Chemical Profiling of Five Canadian Haskap Berry Varieties and the Roles of Their Phenolic Extracts in Modulating Cellular Stress in Human Fibroblasts. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2020. [Google Scholar]
- Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. The Higher the Better? Differences in Phenolics and Cyanogenic Glycosides in Sambucus Nigra Leaves, Flowers and Berries from Different Altitudes. J. Sci. Food Agric. 2017, 97, 2623–2632. [Google Scholar] [CrossRef]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue Honeysuckle (Lonicera cearulea L. Subs. Edulis) Berry; A Rich Source of Some Nutrients and Their Differences among Four Different Cultivars. Sci. Hortic. 2018, 238, 215–221. [Google Scholar] [CrossRef]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef]
- Steyn, W.J. Prevalence and Functions of Anthocyanins in Fruits. In Anthocyanins: Biosynthesis, Functions, and Applications; Winefield, C., Davies, K., Gould, K., Eds.; Springer: New York, NY, USA, 2009; pp. 86–105. ISBN 978-0-387-77335-3. [Google Scholar]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.-L. Optimization of Ultrasound-Assisted Extraction of Anthocyanins from Haskap Berries (Lonicera caerulea L.) Using Response Surface Methodology. Ultrason. Sonochemistry 2015, 27, 449–455. [Google Scholar] [CrossRef]
- Khattab, R.; Brooks, M.S.-L.; Ghanem, A. Phenolic Analyses of Haskap Berries (Lonicera caerulea L.): Spectrophotometry Versus High Performance Liquid Chromatography. Int. J. Food Prop. 2016, 19, 1708–1725. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Cheung, L.M.; Cheung, P.C.K.; Ooi, V.E.C. Antioxidant Activity and Total Phenolics of Edible Mushroom Extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and Development of DPPH Method of Antioxidant Assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant Activities of Peel, Pulp and Seed Fractions of Common Fruits as Determined by FRAP Assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Danet, A.F. Recent Advances in Antioxidant Capacity Assays; IntechOpen: London, UK, 2021; ISBN 978-1-83968-865-2. [Google Scholar]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Arrigoni, O.; De Tullio, M.C. Ascorbic Acid: Much More than Just an Antioxidant. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 2002, 1569, 1–9. [Google Scholar] [CrossRef]
- Chong, K.Y.; Brooks, M.S.-L. Effects of Recycling on the Aqueous Two-Phase Extraction of Bioactives from Haskap Leaves. Sep. Purif. Technol. 2021, 255, 117755. [Google Scholar] [CrossRef]
- Oyetade, O.A.; Oyeleke, G.O.; Adegoke, B.M.; Akintunde, A.O. Stability Studies on Ascorbic Acid (Vitamin C) from Different Sources. IOSR J. Appl. Chem. 2012, 2, 20–24. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Ballard, C.R.; Maróstica, M.R. Chapter 10—Health Benefits of Flavonoids. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 185–201. ISBN 978-0-12-814774-0. [Google Scholar]
- Munsell, T. 5 Main Types of Juicers and Which to Choose for Your Kitchen. Something Swanky. Available online: https://www.somethingswanky.com/types-of-juicers/ (accessed on 5 November 2022).
- Cheng, Z.; Bao, Y.; Li, Z.; Wang, J.; Wang, M.; Wang, S.; Wang, Y.; Wang, Y.; Li, B. Lonicera caerulea (Haskap Berries): A Review of Development Traceability, Functional Value, Product Development Status, Future Opportunities, and Challenges. Crit. Rev. Food Sci. Nutr. 2022, 1–25. [Google Scholar] [CrossRef]
- Hu, F.; Li, L.; Liu, Y.; Mikolajczyk, T. A Fully Automatic Fresh Apple Juicer: Peeling, Coring, Slicing and Juicing. MATEC Web Conf. 2017, 100, 01005. [Google Scholar] [CrossRef]
- Turyamusiima, C. Design and Fabrication of a Banana Juicing Machine. Bachelor Thesis, Busitema University, Busia, Uganda, 2021. [Google Scholar]
- Baltacıoğlu, H. Thermosonication of Peach Juice: Investigation of PPO and POD Activities, Physicochemical and Bioactive Compounds Changes, and Development of FT-IR–Based Chemometric Models for the Evaluation of Quality. Int. J. Food Sci. Technol. 2022, 57, 1688–1697. [Google Scholar] [CrossRef]
- Darvishi, H.; Salami, P.; Fadavi, A.; Saba, M.K. Processing Kinetics, Quality and Thermodynamic Evaluation of Mulberry Juice Concentration Process Using Ohmic Heating. Food Bioprod. Process. 2020, 123, 102–110. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Niu, H.; Zhang, L.; Xiang, Q.; Zong, W. Alternaria Mycotoxin Degradation and Quality Evaluation of Jujube Juice by Cold Plasma Treatment. Food Control 2022, 137, 108926. [Google Scholar] [CrossRef]
- Dhenge, R.; Langialonga, P.; Alinovi, M.; Lolli, V.; Aldini, A.; Rinaldi, M. Evaluation of Quality Parameters of Orange Juice Stabilized by Two Thermal Treatments (Helical Heat Exchanger and Ohmic Heating) and Non-Thermal (High-Pressure Processing). Food Control 2022, 141, 109150. [Google Scholar] [CrossRef]
- Jegatheesan, V.; Shu, L.; Keir, G.; Phong, D.D. Evaluating Membrane Technology for Clarification of Sugarcane Juice. Rev. Environ. Sci. Biotechnol. 2012, 11, 109–124. [Google Scholar] [CrossRef]
- Gulec, H.A.; Bagci, P.O.; Bagci, U. Clarification of Apple Juice Using Polymeric Ultrafiltration Membranes: A Comparative Evaluation of Membrane Fouling and Juice Quality. Food Bioprocess Technol. 2017, 10, 875–885. [Google Scholar] [CrossRef]
- Sheng, J.; Shan, C.; Liu, Y.; Zhang, P.; Li, J.; Cai, W.; Tang, F. Comparative Evaluation of the Quality of Red Globe Grape Juice Fermented by Lactobacillus Acidophilus and Lactobacillus Plantarum. Int. J. Food Sci. Technol. 2022, 57, 2235–2248. [Google Scholar] [CrossRef]
- Trishitman, D.; Negi, P.S.; Rastogi, N.K. Concentration of Pomegranate Juice by Forward Osmosis or Thermal Evaporation and Its Shelf-Life Kinetic Studies. Food Chem. 2023, 399, 133972. [Google Scholar] [CrossRef] [PubMed]
Treatment | Brix | pH | Cloud Value |
---|---|---|---|
Steam juicer | 11.20 ± 1.78 a | 3.14 ± 0.04 a | 0.96 ± 0.18 a |
Press | 16.97 ± 1.55 b | 3.07 ± 0.04 b | 1.00 ± 0.10 a |
Juicer | 19.17 ± 0.50 c | 2.97 ± 0.07 c | 1.51 ± 0.17 b |
Treatment | D-Glucose (g/L) | D-Fructose (g/L) | Sucrose (g/L) |
---|---|---|---|
Steam juicer | 44.17 ± 7.81 a | 45.63 ± 7.98 a | ND |
Press | 62.24 ± 8.48 b | 65.55 ± 9.43 b | ND |
Juicer | 69.20 ± 13.14 b | 69.87 ± 14.35 b | ND |
Treatment | Malic Acid (g/L) | Citric Acid (g/L) | Tartaric Acid (g/L) |
---|---|---|---|
Steam juicer | 1.09 ± 0.37 a | 3.54 ± 0.38 a | 0.64 ± 0.22 a |
Press | 1.7 ± 0.42 b | 3.18 ± 0.28 a | 0.54 ± 0.17 a |
Juicer | 1.71 ± 0.14 b | 3.36 ± 0.11 a | 0.71 ± 0.24 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Svyantek, A.; Miller, Z.; Jarrett, B.; Kapus, A. Haskap Juicing Method Effects on Haskap Juice Quality. Appl. Sci. 2023, 13, 10784. https://doi.org/10.3390/app131910784
Wang Z, Svyantek A, Miller Z, Jarrett B, Kapus A. Haskap Juicing Method Effects on Haskap Juice Quality. Applied Sciences. 2023; 13(19):10784. https://doi.org/10.3390/app131910784
Chicago/Turabian StyleWang, Zhuoyu, Andrej Svyantek, Zachariah Miller, Bridgid Jarrett, and Ashley Kapus. 2023. "Haskap Juicing Method Effects on Haskap Juice Quality" Applied Sciences 13, no. 19: 10784. https://doi.org/10.3390/app131910784
APA StyleWang, Z., Svyantek, A., Miller, Z., Jarrett, B., & Kapus, A. (2023). Haskap Juicing Method Effects on Haskap Juice Quality. Applied Sciences, 13(19), 10784. https://doi.org/10.3390/app131910784