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Abstract: This research introduces an innovative technique for estimating the particle size distribution
of muckpiles, a determinant significantly affecting the efficiency of mining operations. By employing
deep learning and simulation methodologies, this study enhances the precision and efficiency of
these vital estimations. Utilizing photogrammetry from multi-view images, the 3D point cloud of a
muckpile is meticulously reconstructed. Following this, the particle size distribution is estimated
through deep learning methods. The point cloud is partitioned into various segments, and each
segment’s distinguishing features are carefully extracted. A shared multilayer perceptron processes
these features, outputting scores that, when consolidated, provide a comprehensive estimation of
the particle size distribution. Addressing the prevalent issue of limited training data, this study
utilizes simulation to generate muckpiles and consequently fabricates an expansive dataset. This
dataset comprises 3D point clouds and corresponding particle size distributions. The combination of
simulation and deep learning not only improves the accuracy of particle size distribution estimation
but also significantly enhances the efficiency, thereby contributing substantially to mining operations.

Keywords: muckpile; particle size distribution; 3D point cloud; photogrammetry; deep learning

1. Introduction

Blasting is a process of breaking rock mass using explosives, such as in mining, and
the resulting pile of broken rock is called muckpile fragmentation. The main purpose of
blasting is to break rocks into suitable sizes without damaging surrounding objects and to
extract resources contained in the rocks [1]. Blasting is a very effective method of crushing
various types of rocks with different hardness in mining, as it can crush a large amount
of rocks at once and at a low cost. In addition, muckpile fragmentation is represented by
particle size distribution, which is an important parameter for optimizing blasting plans [2].

Currently, methods for measuring the particle size distribution of muckpile fragmen-
tation include sieving and using laser scanners [3], and methods using 2D images [4].
However, sieving requires a tremendous amount of effort to be performed on site, as
the amount of rocks that can be measured at once is limited. The cost and knowledge
required for laser scanners pose problems when used on site. Therefore, WipFrag [4] (https:
//wipware.com/products/wipfrag-image-analysis-software/, accessed on 4 September
2023), a method for quickly measuring particle size distribution by processing 2D images,
has become more common. However, this method, which is based on 2D images, has
been criticized for its low accuracy due to its inability to recognize the complex shapes

Appl. Sci. 2023, 13, 10985. https://doi.org/10.3390/app131910985 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131910985
https://doi.org/10.3390/app131910985
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://wipware.com/products/wipfrag-image-analysis-software/
https://wipware.com/products/wipfrag-image-analysis-software/
https://doi.org/10.3390/app131910985
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131910985?type=check_update&version=2


Appl. Sci. 2023, 13, 10985 2 of 18

of rocks [5]. Recent studies have underscored the pivotal role of blast charge initiation
techniques in optimizing fragmentation outcomes and ensuring environmental safety, as
evidenced by comprehensive analyses using the WipFrag software [6].

To overcome the shortcomings of 2D image-based measurement systems, Tungol et al. [7]
reconstructed 3D point clouds from multi-view images of muckpile fragmentation using
3D photogrammetry. They then divided the 3D point clouds into individual rocks using
Supervoxel clustering and estimated the particle size distribution by calculating the particle
size. However, since the rocks and clusters did not correspond one-to-one, the accuracy of the
particle size distribution estimation was insufficient.

Therefore, this study develops a method for quickly and accurately estimating the
particle size distribution of muckpile fragmentation using deep learning with simulations
and 3D point clouds. By using simulations, which excel at handling 3D models, a large
amount of learning data can be obtained without the need for extensive effort in capturing
multi-view images on site or measuring particle size distribution by sieving. Instead, a
large number of muckpile fragmentation instances with known particle size distributions
can be generated and used for deep learning.

The overall flow of the muckpile fragmentation particle size distribution estimation
system in this study is shown in Figure 1. First, the muckpile fragmentation CG model
generated by simulation in the Cyber world, the 3D point clouds generated by 3D pho-
togrammetry from multi-view images, and the ground truth particle size distribution are
used as learning data for training the particle size distribution estimation network, similar
to the method of Tungol et al. [7]. Then, in the Physical world, the 3D point cloud data of
actual muckpile fragmentation, reconstructed from multi-view images in the same way as
in the Cyber world, is input into the trained particle size distribution estimation network to
perform the estimation.

Figure 1. Proposed System Workflow.

2. Related Work
2.1. Estimation for the Particle Size Distribution

The particle size distribution of blast muckpile has a significant impact on all down-
stream processes in the mining industry, including loading, hauling, and processing.
Figure 2 illustrates the relationship between fragmentation size and unit cost, with the
x-axis representing the fragmentation size and the y-axis representing the unit cost. If
the fragmentation distribution is skewed towards smaller particles (part A), as shown in
Figure 2, useful minerals become excessively fine, resulting in increased costs. Conversely,
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if the particle size distribution is skewed towards larger particles (part C), transportation
becomes challenging and additional mechanical crushing is required after blasting, leading
to unnecessary costs. To minimize total costs, blasting should be conducted in a manner that
achieves an optimal particle size distribution (aiming at part B). However, controlling blast-
ing is complex, as it depends on various factors such as the amount and type of explosives,
the number and depth of blasting holes, and the timing of blasting. Consequently, accurate
estimation of the particle size distribution of blast muckpile is essential for optimizing
downstream processes, prompting researchers to propose various mathematical models for
this purpose, such as the Kuz-Ram mathematical model presented by Cunningham [8], the
Swebrec model proposed by Sanchidrian et al. [9], and the Hybrid model introduced by
Gheibie et al. [10].
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where, B: burden (m), S: spacing (m), D: hole diameter (mm), W: standard deviation of
drilling precision (m), L: charge length (m), BCL: bottom charge length (m), CCL: column
charge length (m), H: bench height (m).

The Kuz-Ram mathematical model is a common mathematical model for predicting
the size distribution of rock fragments caused by blasting. It is widely used in the mining
industry because of the ease of collecting input data and the simplicity of the relationship
between blasting design and rock fragmentation results. However, one limitation of this
predictive mathematical model is that it tends to underestimate the number of fines pro-
duced by the blast, which means it cannot be considered a perfect estimation model. The
distinction between 2D and 3D imaging in fragmentation estimation lies in the spatial
information captured. 3D imagery, with its depth and volume metrics, provides a com-
prehensive representation of muckpile fragments. Our model is specifically designed to
leverage this depth of information inherent in 3D data, allowing for a refined fragmentation
estimation process. In the diagram illustrating the relationship between fragmentation size
and operational costs in mining, depicted in Figure 2, three zones labeled A, B, and C are
shown. In zone A, excessive fragmentation leads to increased costs due to the heightened
need for drilling and blasting. Conversely, in zone C, while costs for drilling and blasting
are diminished, there is a substantial rise in the subsequent transportation and additional
crushing expenses. Zone B stands as the optimal middle ground, highlighting the zone of
minimum total costs. Here, both the preliminary and subsequent costs converge to provide
the most economical mining operation

Figure 2. Relationship between Fragmentation Size and Operational Costs in Mining.
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2.2. Estimation Methods Using 2D Images

The rapid advancement of image analysis technology has enabled the development
of methods for estimating particle size distribution using image analysis. WipFrag, for
instance, is a system that estimates the particle size distribution of blast muckpile using
digital image analysis and videotape images [4]. Despite its ease of use and widespread
application in mining sites, several drawbacks have been identified with this estimation
method. The automatic contouring tool built into the 2D image processing system requires
manual correction, making it less user-friendly. This process can be time-consuming
and prone to human error, leading to potential inaccuracies in the estimated particle size
distribution [11]. Additionally, the quality of the input images has a significant impact
on the accuracy of the estimation. Factors such as lighting conditions, camera angle, and
image resolution can all influence the reliability of the results [12].

Furthermore, estimating the particle size distribution of the entire blast muckpile
necessitates the analysis of multiple moving photographs, each requiring calibration. The
process of calibrating multiple images can be cumbersome, and the complexity increases
with the number of images involved [13]. The overlapping nature of blast muckpile and
the potential for particles to be too small for recognition can lead to overestimation of
particle size distribution [14]. In an effort to address these limitations, researchers have
proposed alternative methods, such as those based on stereoscopic imaging and 3D recon-
struction [2,15]. These approaches aim to improve the accuracy of particle size distribution
estimation by leveraging the additional depth information provided by multiple images
or 3D models. However, these methods can also be more computationally intensive and
may require specialized equipment, potentially limiting their widespread adoption in the
mining industry.

2.3. Estimation Using 3D Images

Recent advancements in muckpile fragmentation estimation have shifted from tra-
ditional 2D imaging systems to more advanced 3D model-based techniques [16,17]. Our
proposed approach harnesses the power of Structure-from-Motion (SfM), a state-of-the-
art 3D photogrammetry method [2,18], combined with Patch-based Multi-View Stereo
(PMVS) [4,19]. This methodology allows for the detailed reconstruction of muckpile’s 3D
shape, subsequently facilitating the estimation of its particle size distribution.

The resulting 3D structure is portrayed as a point cloud, where each point represents a
specific position in space. To discern individual rocks within the muckpile, we employed
the Supervoxel clustering technique. This method clusters these points based on the k-
means objective function [20,21], taking into account parameters like Euclidean distance,
color differentiation, and normal vectors. By applying the Laplacian of Gaussian filter to
multi-view images of the muckpile, we can effectively detect rock edges [22].

The process further categorizes clusters based on specific thresholds. When a point
surpasses a predetermined boundary threshold between two clusters, these clusters are
distinguished as separate rocks. Conversely, if no points exceed this threshold, clusters
are identified as the same rock, merging them. A significant challenge arises here, as the
number of clusters doesn’t always equate to the actual number of rocks. This disparity
complicates the precise measurement of particle size distribution, especially when aiming
to consolidate multiple clusters representing a single rock.

One approach to addressing the challenge of accurately measuring the particle size
distribution is to use a combination of machine learning techniques, such as deep learning
and convolutional neural networks (CNNs), to improve the detection and segmentation
of rocks within the 3D point cloud [23,24]. These methods have been successfully applied
in various fields, including object recognition, image segmentation, and 3D point cloud
processing. By training a model with a large dataset of labeled 3D point clouds, the deep
learning algorithms can learn to identify and segment rocks more accurately, potentially
improving the estimation of the particle size distribution.
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Another possibility is to integrate other sources of information, such as LiDAR data,
to enhance the accuracy of the 3D models and the subsequent particle size distribution
estimation [25,26]. By combining different types of data, more accurate and robust models
can be generated, leading to improved estimations of the particle size distribution and
better optimization of downstream processes in the mining industry. In an effort to provide
a comprehensive evaluation of our method, a comparative analysis with conventional esti-
mation techniques has been included. This juxtaposition not only validates the performance
of our proposed method but also elucidates its relative strengths.

3. Methodology
3.1. Photogrammetry

Photogrammetry is a technology that simultaneously recovers the position and orien-
tation of the camera and the 3D shape of an object from multi-view images of the object
taken from various angles using SfM [27]. This technology makes it possible to efficiently
photograph and reconstruct the 3D shape of blast muckpile. In recent years, the availability
of affordable and high-resolution digital cameras, along with the increased computational
power of personal computers, has significantly improved the potential of photogrammetry
for various applications [28]. The process of 3D photogrammetry consists of several stages,
as shown in Figure 3, where the 3D shape is constructed by transforming the 2D image
coordinates (x, y) of several photographs into 3D coordinates (X, Y, Z). First, the images
are preprocessed, which involves the removal of lens distortion and the normalization of
image brightness and contrast [29]. Next, a feature matching process is performed, in which
distinctive points in the images are identified and matched across multiple images. The
matched features are then used to estimate the camera’s pose and calibrate the camera [30].
Drawing from recent research on the effectiveness of ANN in predicting blast impacts, it’s
crucial to adapt their methodologies to address current gaps in our study [31].

Figure 3. Example of Photogrammetric System.

Once the camera calibration is complete, a sparse 3D reconstruction is generated
using SfM. This initial reconstruction is often too sparse for many applications, so a denser
reconstruction is obtained using PMVS [19,32]. Finally, a mesh model is created from the
dense point cloud, and a texture is applied to the mesh to generate a realistic 3D model [33].
In this study, we used Agisoft Metashape, a 3D modeling software, which can extract feature
points from multiple 2D photographs of a surveyed object using SfM and reconstruct a
dense 3D point cloud from a sparse point cloud using PMVS [34]. It is also possible to
reconstruct textures and place scales. The software offers various tools for processing and
analyzing the reconstructed 3D model, such as tools for measuring distances, areas, and
volumes, as well as for exporting the model to various formats [34]. While recognizing that
the foundational system model has been discussed in prior works, this study introduces a
novel integration of cloud data capabilities with deep learning algorithms for muckpile
fragmentation estimation. Our approach aims to harness the expansive potential of cloud
data to further enhance the efficiency and accuracy of fragmentation analysis.
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3.2. Deep Learning

Deep learning is a subset of machine learning that employs neural networks to learn
complex patterns and representations from large datasets. One of the challenges in applying
deep learning to 3D point cloud data is that point clouds are simply unordered sets of points,
lacking the regular structure found in images or voxel grids [35]. This structure difference,
when compared to the regular grid pattern seen in the example of the Multi-view Stereo
Pipeline illustrated in Figure 4, makes point clouds particularly challenging. PointNet is a
pioneering deep learning method designed to work directly with 3D point cloud data as
input [36]. While voxel grids and images have traditionally been the preferred data formats
for deep learning, PointNet can effectively perform classification and segmentation tasks
on unordered 3D point cloud data. When dealing with point clouds, several issues need to
be addressed, such as the unordered nature of the points and the invariance to geometric
transformations. To tackle the issue of unordered points, PointNet employs a symmetric
function, which is invariant to the order of the input points. As illustrated in Figure 5,
each point is independently transformed and processed before a max-pooling operation
is applied to extract global features of the point cloud without depending on the order of
the points.

Figure 4. Example of Multi-view Stereo Pipeline.

Figure 5. Using Logarithmic Functions.

In addition to order invariance, point clouds also exhibit transformation invariance.
A point cloud representing the same shape can have different positions and orientations
but should be recognized as the same object. To address this issue, PointNet introduces a
subnetwork called T-Net, shown in Figure 6. The T-Net estimates an affine transformation
matrix that aligns the input point cloud to a canonical space, thus providing approximate
invariance to translations and rotations [36]. This paper leverages the classification capabil-
ities of PointNet to analyze blast muckpile. The proposed approach involves preprocessing
the point cloud data to ensure that it is suitable for PointNet, followed by training the neural
network on a labeled dataset of muckpile. The trained network can then be used to classify
and segment new muckpile data, enabling the estimation of particle size distributions and
other relevant properties. Several studies have demonstrated the effectiveness of PointNet
in various applications, such as object recognition, scene understanding, and semantic
segmentation of point clouds [24,35,37].
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Figure 6. T-Net Functions.

3.3. Experimental Procedures

In this study, we propose a method to estimate the particle size distribution of muckpile
using an improved PointNet network, which is a deep learning technique that reconstructs
the 3D point cloud of muckpile and acquires features from local shapes. This method
consists of two phases: the learning phase and the inference phase. In the learning phase,
simulation is used to create training data. The processing flow is shown in Figure 7. After
generating the CG model of the muckpile using the simulation, multi-view images are
obtained with a virtual camera, and point cloud data is obtained using SfM. In addition, the
true particle size distribution is measured and used as the dataset for training the particle
size distribution estimation. Since we are using a CG model of rocks with known sizes in
this study, it is possible to measure the particle size distribution of the muckpile CG model.
After training the particle size distribution estimation network using this dataset, in the
inference phase, the actual muckpile is photographed and point cloud reconstruction is
performed. The particle size distribution is then estimated by inputting the reconstructed
point cloud into the trained network.

Figure 7. Flow of the Experiment.
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The particle size distribution of muckpile is represented by the cumulative distribution
shown in Figure 8, with the vertical axis being the cumulative undersize value and the
horizontal axis being the particle size. The cumulative undersize distribution is indepen-
dent of the interval setting, unlike the frequency distribution, so anyone can obtain the
same distribution when tallying the data. Moreover, the proportion of particle sizes is
represented by the slope of the graph. In the case of Figure 8a, the gentle slope indicates
the presence of particles with a wide range of sizes. On the other hand, Figure 8b shows
that particles around 800 mm are most abundant due to the steep slope. In the mining field,
it is important for the particle size distribution of muckpile to have a certain particle size,
as shown in Figure 8c .

(a) Wide range of particle sizes. (b) Distribution with many constant particle sizes.

Figure 8. Example of Particle-size Distribution.

4. Simulation-Based Learning Data Generation
4.1. Creation of Muckpile CG Model

The generation of the muckpile CG model was carried out using simulation. As
shown in Figure 7, a large number of muckpile CG models were generated by automatically
repeating these procedures:

(a) Configure Fragmentation
(b) Configure Type of Rock
(c) Configure Size of Rock
(d) Placing the rocks in mid-air in the simulation
(e) Drop Rocks
(f) Form a CG Muckpile

In step (a), the particle size distribution of the muckpile CG model to be generated was
set as shown in Figure 9. Here, the particle size distribution was changed randomly within
the range of [2.36, 4.76, 9.5, 19, 26.5, 37.5, 53, 75] (mm) from 0 mm to 80 mm in 8 stages,
allowing the generation of muckpile with various particle size distributions.

Figure 9. Particle Size Distribution of CG Muckpile.
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Next, in step (b), a rock CG model was randomly selected from 18 different shaped
rock CG models, and in step (c), the rocks were scaled according to the 8-stage particle
size distribution set in step (a) ranging from 0 mm to 80 mm, [2.36, 4.76, 9.5, 19, 26.5,
37.5, 53, 75] (mm). In order to generate a more faithful muckpile CG model, actual rock
CG models obtained by 3D scanning were used for the rocks, and mesh division was
performed on the rocks by vertices, edges, and faces to accurately perform scaling of
rock sizes and collision detection during free fall. Figure 10 shows a rock CG model
with mesh division, which is divided into multiple polygons. The particle size of the
rock CG model was determined by the length when a Bounding-Box was applied. The
Bounding-Box used the values calculated by Oriented Bounding-Box as the particle size,
as shown in Figure 11. First, the 3D covariance matrix was calculated from the mesh
vertex coordinates of the rock CG model, and the eigenvalues were calculated. When the
eigenvectors are sorted in descending order of eigenvalues as e1, e2, and e3, they become
the first, second, and third principal components, respectively, and form an orthonormal
basis. The Bounding-Box is set with these axes. The length is determined by calculating the
difference between the vertex with the maximum value and the vertex with the minimum
value for each axis. Considering the situation in which a rock passes through the sieve
mesh in measurements using a sieve, the size of the second axis was used as the particle
size of the rock 3D CG model.

Figure 10. Segmentation by Mesh.

Figure 11. OBB: Oriented Bounding-Box.

After that, by repeating steps (b) and (c), a large number of rock groups were generated,
and in step (d), the rocks were placed in mid-air in the simulation, and in step (e), the
rocks were freely dropped to form the muckpile CG model. The process of rock CG models
accumulating and forming the muckpile CG model is shown in Figure 12. Figure 12a shows
the rock CG models being generated in mid-air. The green-framed board shown here is
a board that repels when a rock CG model collides with it, and four slanted boards and
a cylindrical board were placed to accumulate the rock CG models around the center. In
Figure 12b, the falling rock CG models are shown forming the muckpile CG model while
colliding with the board. In this way, the formation of the muckpile CG model as shown in
Figure 12c was performed.
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(a) Placing the rocks in mid-air (b) Drop rocks. (c) Form a CG muckpile.

Figure 12. Creating a Computer-Generated Muckpile.

In addition, when dropping the rock CG models, the physical calculations based on
the parameters shown in Table 1 were applied. Dynamic Friction is the friction coefficient
for moving objects, and Static Friction represents the friction coefficient used for stationary
objects. Both of these friction coefficients were set to 0.9 in order to make all the rock CG
models used in this experiment accumulate. These two friction coefficients are used with
values ranging from 0 to 1. In the case of 0, the object does not stop, like on ice, and in
the case of 1, the object does not move unless a strong force or gravity is applied to it.
Bounciness indicates how much elasticity is on the surface, and in this experiment, the
purpose was to accumulate, so it was set to 0.1. Friction Combine and Bounciness Combine
represent the friction coefficient and bounce level of colliding objects, respectively, and
were set to Average.

Table 1. Parameter of the Simulation.

Rock Properties Value

Dynamic Friction 0.9
Static Friction 0.9

Bounciness 0.1
Friction Combine Average

Bounciness Combine Average

4.2. Creating Point Cloud Data

The point cloud data of the muckpile CG model was generated using the muckpile
CG model created in Section 4.1. The procedure is as follows:

(g) Placement of Virtual Cameras Around the Muckpile CG Model
(h) Capture Multi-View Images
(i) Reconstruct 3D Point Cloud
(j) Point Cloud Preprocessing:

(j-1) Remove Unnecessary Point
(j-2) Down Sampling of Point Cloud
(j-3) Scale Point Cloud

In step (g), as shown in Figure 13a, virtual cameras were placed around the muckpile
CG model accumulated in the simulation in a spiral pattern covering 360 degrees. The
red spherical object indicates the placement of the virtual cameras. Next, in step (h),
144 multi-view images, as shown in Figure 13b, were obtained by rendering the muckpile
CG model at 1024 × 768 pixels from the placed virtual cameras. In step (i), the 3D point
cloud reconstruction, as shown in Figure 13c, was performed by applying SfM. At this time,
the green-framed wall used for generating the muckpile CG model exists as a transparent
wall in the simulation and is not included in the rendered images. Therefore, it is not
shown in the acquired multi-view images. Subsequently, preprocessing for deep learning
was performed in step (j), Figure 13d. In step (j-1), blue point removal was carried out to
reduce errors, as not only the muckpile CG model but also the background color, etc., are
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reconstructed simultaneously during the 3D point cloud reconstruction. Blue points are the
simulation background color reconstructed as a 3D point cloud, and in this simulation, the
blue color ([R G B] = [0 0 255]) is significantly different from the color information of the rock
CG model used for generating the muckpile CG model. Therefore, this background color
was selected and removed. In step (j-2), downsampling was performed from approximately
300,000 points to 50,000 points for the purpose of data reduction when applying deep
learning. Finally, in step (j-3), the point cloud of the muckpile CG model reconstructed by
SfM may slightly change in scale, so scaling was performed to reduce errors by making
all point clouds fit within a sphere of radius 1. Through these steps, the 3D point cloud
reconstruction of the muckpile CG model was performed, and these data were used as
training data.

(a) Placement of virtual cameras. (b) Capture Multi-View Images.

(c) Point cloud preprocessing. (d) Down Sampling of Point Cloud.

Figure 13. Steps in Generating and Processing Multi-View Point Clouds.

5. Verification of Particle Size Distribution Estimation
5.1. Particle Size Distribution Estimation Network

The particle size distribution estimation network used in this study is a modified
version of PointNet++ [37], which is an advanced version of PointNet [35]. PointNet++ [37]
is proposed as a method to capture local features by hierarchically applying PointNet to
each group of divided point clouds. In this experiment, we used a modified version of
PointNet++ for particle size distribution estimation. The network structure is shown in
Figure 14. The network consists of a Local Module and a Global Module. The Local Module
divides the point cloud into multiple groups using a sphere with radius r. It captures
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features, learns from all points in each group as a single PointSet, and calculates a score.
The Global Module captures global shape features from the sampled point cloud and
multiplies them with the final score of the Local Module as weights.

The Local Module takes the XYZ coordinates of the 3D point cloud as input and selects
centroids for group division using FPS (FPS: Farthest Point Sampling). In FPS, a point is
selected randomly, and this point becomes the first centroid. The second centroid is the
point farthest from the first, and the third centroid is the point farthest from the first and
second. This is repeated to select centroids up to the n’th. By using FPS, it is possible to
sample points spatially evenly. In this study, the points selected as centroids are limited
to the range from the “center of the point cloud” to “r inside the edge” so that local shape
patterns can be learned appropriately. Furthermore, by setting the radius r so that the
largest rock in the data fits into a sphere, appropriate learning can be achieved. After
generating n’ groups, feature extraction is performed for each group as shown in Figure 5.
After feature extraction, a Shered MLP is applied to each feature. This MLP is shared within
the group, learned to output a score from the shape of the group, and finally normalized by
the Softmax function to sum up the scores.

Figure 14. Architecture of Fragmentation Estimation Network.

The Global Module takes the XYZ coordinates of the 3D point cloud as input and
samples n_s points using FPS. Feature extraction is performed on the sampled point cloud
as shown in Figure 4, and the overall feature is output. Then, an MLP is applied to generate
weights. The score output from the Local Module is multiplied by the weight obtained
from the Global Module and normalized by the Softmax function to obtain the final output.
When the particle size distribution is at the d-stage, the output is a d-dimensional discrete
probability distribution.

In addition, the Kullback-Leibler divergence was used as the loss function for the
difference between the output d-dimensional discrete probability distribution and the
correct label, which is the particle size distribution. Let the output vector be p(x) and the
correct particle size distribution be q(x). The loss function is represented by Equation (2).

DKL(Q‖P) = ∑
x∈X

q(x) log
(

q(x)
p(x)

)
(2)

To estimate the particle size distribution, the Bhattacharyya Distance (BD: Bhat-
tacharyya Distance) is used as the evaluation function for the difference between the correct
label particle size distribution and the estimated particle size distribution. Let the two
distributions be p(x) and q(x). It is expressed as in Equation (3).

BD(p, q) = ∑
x∈X

√
p(x)q(x) (3)
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5.2. Particle Size Distribution Estimation Using CG Data

Using the training data created in Section 4, the particle size distribution estimation
network was trained. For the training, 1000 sets of data consisting of 3D point cloud data
and corresponding particle size distribution data as labels were used. Out of the 1000 sets,
800 were used for training, 100 for validation, and 100 for testing. The computer used was
the supercomputer Cygnus [38] at the University of Tsukuba’s Center for Computational
Sciences, equipped with a CPU: Intel Xeon Gold 6126 Processor and four GPU: NVIDIA
Tesla V100 32GiB. The batch size for training was 16, the initial learning rate was 1× 10−5,
the parameter update was done using the Adam method [39], and the training was con-
ducted for 2000 epochs. At this time, the radius r of the sphere when generating groups
in the Local module was set to 0.15 so that the largest rock in the simulation would fit.
During training, the point cloud data was randomly and slightly rotated and the points
were slightly shifted for data augmentation.

The results of performing group division using the FPS method with the input 3D
point cloud XYZ coordinates are shown in Figure 15. Figure 15a,b show the results of
group division in the Local module. The blue point cloud in Figure 15a represents the
input XYZ coordinates of the muckpile fragmentation, and the red points indicate the
selected centroids. Figure 15b shows the result of generating spheres with radius r centered
on the selected centroids. From these results, it was confirmed that each centroid was
spatially sampled evenly. In addition, Figure 15c shows the result of sampling in the Global
module. The sampled point cloud retains the overall shape information of the muckpile
fragmentation rather than the fine shape information. From these results, it was confirmed
that the sampling in the Global module was also performed appropriately.

(a) Centroid Selection with
Range Specification

(b) Generation of Spheres
based on Centroids.

(c) Point cloud Sampled in
Global Module.

Figure 15. Results of group partitioning using Farthest Point Sampling.

The results of adding the features learned in the Global module to the particle size
distribution scores obtained in the Local module and performing the training are shown
in Figure 16. As shown in Figure 16a, the learning curve depicts an accuracy of 96.3%
during the training phase. Figure 16b illustrates the transition of the loss function, which
evaluates the magnitude of the difference between the estimated values and the correct
values; the value of the loss function was recorded as 0.1237. It is essential to note that the
stated 96.3% accuracy pertains specifically to the training data. We will further provide
the exact estimation accuracy in subsequent sections to offer a comprehensive view of
the model’s overall performance. The results underline that the muckpile fragmentation
particle size distribution estimation network utilized in this study demonstrates efficacy
with the simulation-generated training data.



Appl. Sci. 2023, 13, 10985 14 of 18

(a) Training accuracy incorporating local and
global module features.

(b) Loss function performance with the
combined approach.

Figure 16. Performance evaluation of the combined approach using local and global module features.

5.3. Particle Size Distribution Estimation Using Actual Data

Using the model trained in Section 5.2, the particle size distribution estimation was
performed on actual data in the Physical world. For the actual data, three sample data
of muckpile fragmentation measured at Curtin University in Kalgoorlie, Australia, were
used. The sample data of muckpile fragmentation consisted of particle size distributions
measured by sieving at eight levels of [2.36, 4.76, 9.5, 19, 26.5, 37.5, 53, 75] (mm), and as
shown in Figure 17, the multi-view images captured by the camera were reconstructed
into 3D point clouds using SfM, similar to the Cyber world. An iPhone 6s was used as the
camera, and the image resolution was 1080 pixels by 1929 pixels. The reconstructed point
clouds were preprocessed by background point removal, downsampling to 50,000 points,
and scaling, and then input into the trained model in the Cyber world for estimation.

Figure 17. The experiment of taking multi-view photos.

Figure 18 shows the results of the particle size distribution estimation for muckpile
fragmentation sample 1. Figure 18 represents the cumulative undersize distribution, with
the blue line indicating the actual distribution and the yellow line indicating the estimated
values. From these results, although the estimation results recognized about 10% of the
rocks at [2.36, 53, 75] (mm) which were not included in the actual data, a generally close
particle size distribution could be estimated. Next, the results for muckpile fragmentation
samples 2 (Figure 19a) and 3 (Figure 19b) are shown in Figure 19. The upper graph
represents the cumulative undersize distribution, and the lower graph represents the
proportion of each of the eight particle sizes contained in the muckpile fragmentation,
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with the blue line indicating the actual values and the yellow line indicating the estimated
values. From these results, the cumulative undersize distributions for samples 2 and 3
were significantly different from the actual particle size distributions. However, when
the estimated results were compared in terms of the proportions of each particle size, the
distribution peaks for samples 2 and 3 matched, and a close overall shape of the distribution
could be obtained. However, in muckpile fragmentation like sample 2, which does not
contain rocks smaller than 2.36 mm and larger than 26.5 mm, the estimation should be zero,
but the estimation was still performed. Factors that may be affecting the estimation results
include overlapping ranges when generating groups in the Local module and areas not
included in the group.

Figure 18. Estimation Results of Particle Size Distribution for Sample 1.

(a) Sample 2. (b) Sample 3.

Figure 19. Estimation Results of Particle Size Distribution.
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From these results, it can be said that the particle size distribution estimation network
trained and learned in the Cyber world can effectively estimate the particle size distribution
of actual muckpile fragmentation.

6. Conclusions

In this study, we presented a novel approach for estimating the particle size distri-
bution of blasted rock fragments (muckpile) by leveraging simulation and deep learning
techniques applied to 3D point clouds. Our experiments demonstrated the effectiveness of
employing simulation in the Cyber world to generate training data with known particle
size distributions for deep learning, addressing the challenge of obtaining large quantities
of real-world training data, which is often scarce and time-consuming to collect.

By designing a particle size distribution estimation network that combines a Local
Module, focusing on the local shape of rocks, and a Global Module, concentrating on the
overall shape, we achieved a learning process that takes into account the local shape of
rocks. In our experiments, we performed particle size distribution estimation by inputting
3D point cloud data reconstructed from actual muckpile into the pretrained estimation
model developed in the Cyber world.

The estimation results revealed that our approach could estimate particle size distri-
butions that were generally close to the actual values. The stated accuracy of 96.3% and
a loss function value of 0.1237 indeed pertains to the model’s performance during the
training phase. In practical estimation scenarios with real-world data, the accuracy might
vary. Moreover, in models estimating different particle size distributions, the peaks of the
eight particle size categories aligned, allowing us to obtain a distribution with a similar
overall shape. These findings indicate that the particle size distribution estimation network
developed in this study can effectively estimate the particle size distribution for actual
muckpile, demonstrating its potential for practical applications in mining operations.

In conclusion, our research showcases the potential of combining simulation and
deep learning techniques for the estimation of particle size distributions in blasted rock
fragments using 3D point cloud data. This approach paves the way for further advance-
ments in the field, enabling more efficient and accurate analysis of muckpile in mining
operations, ultimately contributing to improved safety, efficiency, and environmental
impact management.
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