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Abstract: Microplastics, or plastic particles smaller than 5 mm in size, have become ubiquitous in the
environment, found in places ranging from remote deep ocean trenches to minute dust particulates.
From the breakdown of larger plastic products and the release of synthetic clothing fibers, these
particles enter the ecosystem and cycle through the various components including aquatic, terrestrial,
and human systems. Due to their durability, capacity to adhere to other toxic compounds, and
potential effects on humans and ecosystems, microplastics have recently risen to the forefront of
environmental and health concerns. To address these critical issues, there has been a surge in research
related to the microplastics cycle, examining where they originate, how and where they travel, and
their environmental and human health impacts. Research on the microplastic cycle is often broken
down into its various individual components such as sources, fate, and effect, and further scattered
through the literature are focuses on specific environments such as land, oceans, and freshwater,
as well as on human health. Here, we review the current state of the literature on the microplastic
cycle across its various environmental reservoirs. In-depth examination of the microplastics cycle is
necessary for understanding the scope of the problem and developing viable solutions or mitigation
strategies, such as reducing plastic production and promoting recycling. Understanding the complex
microplastics cycle is an urgent issue that necessitates multidisciplinary research and action.

Keywords: microplastics; plastic pollution; micro-particles; microbeads; plastic waste; persistence;
contaminants; environmental impact; human health; food chain; ecosystems

1. Introduction

The discovery of enormous plastic waste patches in the Pacific Ocean, comprising at
least 79,000 tons of plastic and spanning an area of 1.6 million km2, sparked an immense
interest in microplastics [1]. Microplastics are minute fragments of plastic garbage that
originate from the dumping and breakdown of consumer and industrial items. Plastics
degrade to become microplastics and nanoplastics in many forms, including fibers, films,
foams, and fragments, depending on soil moisture, temperature, pH, and the plastic’s size,
shape, molecular weight, and kind. These micro- and nanoplastics can serve as vectors
for toxic metals, pathogens, organic contaminants, and antibiotic resistant genes [2–5].
Microplastics are derived from several sources, including bigger plastic trash that degrades
into ever-smaller fragments. In addition, microbeads, a form of microplastic, are extremely
small bits of synthetic polyethylene plastic that are added as exfoliants to some soaps
and personal care products. The majority of plastic waste ends up in aquatic bodies [6–8],
in part because microscopic particles readily slip past most water filtering systems and
wind up in rivers, oceans, and lakes, presenting a hazard to aquatic ecosystems. When
researchers realized the sheer quantity and ubiquitous nature of plastics in the environment,
and their potential to become microplastics, the necessity for and attention to addressing
microplastics skyrocketed. Thus, microplastics are now a significant focus of research.
Despite a recent surge in research on microplastics, it remains a relatively new area of
study, with only a rudimentary understanding on their fate and effect in the environment.
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Additionally, there is a lack of consensus, yet an identified need, regarding standardized
methods for monitoring, collecting, and quantifying microplastics from the environment
(e.g., soil, sediment, water, biota). Eventually, standardized field and laboratory techniques
will allow for global comparisons of the amount of microplastics in the environment, which
is the first step in determining the eventual distribution, and the consequences of this
debris. Plastic litter, like climate change and persistent organic pollutants, is yet another
troubling example of human impacts on the global biosphere. According to Villarrubia-
Gómez et al. [9], marine plastic pollution is irreversible and pervasive on a global scale.
Therefore, it meets two of the three requirements for a global threshold hazard, except that
the disruptive effect is not identified until it is a global problem [10].

In the realm of microplastics research, the majority of published studies, comprising
61% of the corpus, have been dedicated to investigations within the marine environment.
Conversely, only 39% of these studies have focused on the freshwater environment. Uti-
lizing the comprehensive Web of Science Core Collection database, our search strategy
entailed querying for the keyword “microplastics” within the title, abstract, author-defined
keywords, and keywords. Our search spanned up to the year 2022, encompassing a sub-
stantial compilation of 11,947 research papers. As illustrated in Figure 1, the trajectory of
publications on microplastics exhibits a remarkable and consistent upward trend over the
years, demonstrating a substantial surge from 1986 to 2022. While numerous papers have
been published on the examination and assessment of microplastic levels in water sources,
these studies often indicate that the detected quantities may not have a significant impact
on the metabolism of biological organisms. What is even more intriguing is the question of
whether this relatively low quantity of microplastics can indeed make a substantial differ-
ence over the long term. Many of the research findings related to the impact of microplastic
contamination on aquatic organisms tend to focus on short-term effects.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 14 
 

 

research. Despite a recent surge in research on microplastics, it remains a relatively new 
area of study, with only a rudimentary understanding on their fate and effect in the envi-
ronment. Additionally, there is a lack of consensus, yet an identified need, regarding 
standardized methods for monitoring, collecting, and quantifying microplastics from the 
environment (e.g., soil, sediment, water, biota). Eventually, standardized field and labor-
atory techniques will allow for global comparisons of the amount of microplastics in the 
environment, which is the first step in determining the eventual distribution, and the con-
sequences of this debris. Plastic litter, like climate change and persistent organic pollu-
tants, is yet another troubling example of human impacts on the global biosphere. Accord-
ing to Villarrubia-Gómez et al. [9], marine plastic pollution is irreversible and pervasive 
on a global scale. Therefore, it meets two of the three requirements for a global threshold 
hazard, except that the disruptive effect is not identified until it is a global problem [10]. 

In the realm of microplastics research, the majority of published studies, comprising 
61% of the corpus, have been dedicated to investigations within the marine environment. 
Conversely, only 39% of these studies have focused on the freshwater environment. Uti-
lizing the comprehensive Web of Science Core Collection database, our search strategy 
entailed querying for the keyword “microplastics” within the title, abstract, author-de-
fined keywords, and keywords. Our search spanned up to the year 2022, encompassing a 
substantial compilation of 11,947 research papers. As illustrated in Figure 1, the trajectory 
of publications on microplastics exhibits a remarkable and consistent upward trend over 
the years, demonstrating a substantial surge from 1986 to 2022. While numerous papers 
have been published on the examination and assessment of microplastic levels in water 
sources, these studies often indicate that the detected quantities may not have a significant 
impact on the metabolism of biological organisms. What is even more intriguing is the 
question of whether this relatively low quantity of microplastics can indeed make a sub-
stantial difference over the long term. Many of the research findings related to the impact 
of microplastic contamination on aquatic organisms tend to focus on short-term effects. 

 
Figure 1. Temporal evolution of microplastics research publications (1986–2022), illustrating a sus-
tained increase in research publications dedicated to microplastics over this period, highlighting a 
substantial surge in scientific interest. 

2. The Microplastics Cycle 
To comprehend the whole life cycle of microplastics, it is essential to understand their 

entry points into the environment, the course they follow, and the transformations they 
undergo. The microplastics cycle was first defined as a novel concept and model for com-
prehending the consequences of plastic contamination on ecosystems as a whole [11]. 

Figure 1. Temporal evolution of microplastics research publications (1986–2022), illustrating a
sustained increase in research publications dedicated to microplastics over this period, highlighting a
substantial surge in scientific interest.

2. The Microplastics Cycle

To comprehend the whole life cycle of microplastics, it is essential to understand
their entry points into the environment, the course they follow, and the transformations
they undergo. The microplastics cycle was first defined as a novel concept and model for
comprehending the consequences of plastic contamination on ecosystems as a whole [11].
Recognizing that plastic pollution is now a part of the biogeochemical cycle is important
in developing risk assessment and mitigation measures, as well as related standardizing
research methods, to address the global scale of this environmental problem [11]. Recent
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studies have highlighted the approach to understand the life cycle of plastics [12–14].
This approach involves the comprehensive monitoring of plastics throughout their entire
lifecycle, from creation to disposal, recycling, and their ultimate interaction with humans
through polluted air, water, and seafood. This holistic strategy encompasses the entire
journey of plastics, which also includes the prediction and modeling of potential threat of
microplastics to humans [15], and their interaction with emerging contaminants, including
pharmaceuticals [16], etc. Despite the presence of alternative models that focus on specific
microplastic timelines, this complete and integrated approach has yet to receive widespread
acceptance [17].

In some recent investigations, researchers have concentrated on examining the com-
plete lifecycle of plastics [18–20]. This approach, often described as the ‘cradle to the grave’
perspective, involves tracing plastic materials from their initial use, through their disposal
into the environment (such as landfills, recycling, and processing), and continues to follow
their fate and transport through the various ecosystem components, up to and including
human exposure via air, drinking water, and food. However, it is crucial to note that
even after discarding plastics, they remain in transport. They continue to traverse various
ecosystem components, ultimately leading to human exposure.

2.1. Microplastics in Land

Plastics have become prevalent, in part due to their portability, durability, light weight,
and low cost, and the diversity of uses within residential, medical, and industrial set-
tings [21]. Despite the fact that the design and manufacturing of microplastics and majority
of its uses occurs on land, the research on the impact of plastic waste and microplastics
on soil and landfills is considerably less extensive than that on water sources. (In 2022,
499 papers published on microplastics related to soil, sludge, compost, and land fill, among
the total 2402 microplastic research articles. Using the Web of Science database, an extensive
search was conducted employing the keywords ‘microplastics and landfills’, ‘microplastics
and sludge’, and ‘microplastics and compost’ in the title, abstract, author keywords, and
keywords plus fields). Plastics and microplastics captured in the soil may undergo multiple
transformations, including degradation, before reaching water sources [22,23]; however,
these transformations vary depending on a variety of factors such as temperature, rainfall,
soil type, type of microbes in soil, chemical composition of soil, etc. [24,25]. In light of this,
it is crucial to comprehend the plastics and microplastics present in landfills and soil, as
well as their repercussions on soil and ecosystems.

The presence of microplastic (MP) particles has been detected in various commonly
consumed items derived or processed on land, including sugar (0.44 particles/g), honey
(0.10 particles/g), salt (0.11 particles/g), alcohol (32.27 particles/L), bottled water
(94.37 particles/L), tap water (4.23 particles/L), and ambient air (9.80 particles/m3) [26,27].
According to Banerjee and Shelver [28], there is an estimated annual deposition of a sub-
stantial amount of microplastics in North American agricultural soils, ranging from 44,000
to 300,000 tons. This expansion of focus to include agricultural contexts highlights the pres-
ence and potential impact of microplastics in these specific settings. European farmlands
have been associated with a comparable estimate ranging from 63,000 to 430,000 tons, as
reported by Nizzetto, Futter, et al. in 2016 [29]. These studies highlight just one route of
exposure people have to microplastics as they move through the environment in the land,
water, and air, and enter our food chain.

Furthermore, the potential for plants to concentrate plastic particles and then be
ingested by animals adds another dimension to this intricate matter. The utilization of
plastic film is a common technique in agriculture for the purpose of preserving fodder,
which plays a crucial role in the diets of dairy and beef cattle [30]. Furthermore, it is
common practice to encase hay bales with mesh or twine in order to maintain their shape.
This practice involves the use of plastics, which are incorporated into feed preservation
techniques for animals that are raised for food production. This method increases the
likelihood of migration of microplastics or additives from feed packaging into animal feed.
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It is worth mentioning that there have been documented cases in scientific research, where
bisphenol products (BPs) have been detected in animal feed. These BPs are believed to
originate from packing materials such as polypropylene (PP) and polyethylene (PE) [31].
The infiltration of polycyclic aromatic hydrocarbons (PAHs) into the solid feed of cows
serves as a significant indication of the likelihood for these pollutants to permeate the milk
generated by these livestock, as emphasized by Russo et al. [32].

The number of publications published by various nations on the same topics as those
mentioned above is shown on the global map (Figure 2). Using the Web of Science Core
Collection database, we combed through all 1405 papers published up to 2022. The search
pattern included all conceivable permutations of the word associated with each of four
land-related terms. The studies were combed for location and publication date information.
China is, according to statistics, the leader in microplastics research connected to landfills,
followed by the United States of America. It is noteworthy to observe that the number of
published research papers on microplastics in soil has risen nearly 20-fold during the last
five years.
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The problem associated with plastics intensifies as land-based plastics undergo aging.
Physical, chemical, and biological reactions generate microplastics from waste plastics.
According to recent study by Yu, Wu, et al. [33], carbonyl groups are produced in preference
to hydroxyl groups, resulting in an increase in the hydrophilicity of waste plastics as
landfills age. Therefore, microplastics may attract microorganisms from landfills and
sewage systems. Also, metals (e.g., Al, Fe, Ca, Ti, Ni) may be released from plastic
additives in discarded plastics [33]. Microplastics are capable of absorbing hazardous
compounds from the environment [34–36]; hence, microplastics may function as a vector
for these toxic chemicals, and microplastics can introduce these toxic chemicals into the food
chain [37]. In Kilponen’s [38] study, an investigation was carried out to assess the presence
of microplastics in a stream located in close proximity to a landfill that had been inactive for
over three decades. The study exclusively focused on the detection of microplastics larger
than 1 mm. The results indicated the presence of microplastics in the stream, confirming
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that even though the landfill had been closed for three decades, it continued to release
microplastics into the environment. It is plausible that aged plastics within the landfill
were undergoing degradation, transforming into microplastics that were subsequently
leached into the river water. Given that the analysis was limited to particles larger than
1 mm, it is reasonable to assume that there may be an even greater quantity of smaller-sized
microplastics present than what was initially determined. As a result, it is evident that
the long-term impact of plastics and microplastics on the environment remains significant,
even when strict monitoring and control measures are promptly implemented.

Primarily, the introduction of plastics into the soil occurs through municipal landfills
designated for solid waste disposal. These landfills serve as repositories for various plastic
items, which can inadvertently release microplastics over time due to degradation and
environmental weathering. To address this issue, landfill leachate treatment systems
have been established. These systems play a crucial role in recovering microplastics and,
potentially, repurposing the polymers into valuable products. However, it is essential to
recognize that collecting microplastics from these treatment facilities is a formidable task
due to the small size and diverse nature of microplastics. Additionally, the transformations
that microplastics undergo at different stages within these systems are intricate. From their
initial introduction into landfills to their potential release into the environment through
leachate, microplastics can experience a series of physical, chemical, and biological changes.
These transformations are influenced by factors such as environmental conditions, polymer
types, and the duration of exposure within the landfill. Given the complexity of this
process and the challenges associated with collecting microplastics from treatment plants,
further exploration and comprehensive research are necessary to gain a more profound
understanding of the fate and behavior of microplastics in landfill environments and
beyond [39]. Microplastics, tiny plastic particles under 5 mm in size, present complex
challenges in landfill environments [40]. Wind and mechanical activity in landfills disperse
microplastics into the air, potentially inhaled by nearby residents, posing health risks [41].
Landfills attract wildlife seeking food, with animals ingesting plastic waste, introducing
microplastics into their systems. This interaction raises ecological concerns and potential
food chain contamination. Leachate, liquid draining from landfills, carries microplastics
into nearby water bodies, contributing to aquatic contamination and endangering aquatic
life [42]. As plastics degrade in landfills, hazardous chemicals can seep into soil and
groundwater, increasing environmental contamination [43,44]. Additionally, leachate from
microplastics can enhance antibiotic resistance gene propagation and pathogen enrichment
on polystyrene microplastics [45].

When plastic degrades aerobically in landfills, microbes can colonize them, releasing
enzymes by the colonized bacteria that further break down the plastics into smaller low
molecular weight particles [46]. Microbes break down microplastics even more in anaerobic
conditions by taking electrons from sulfate, nitrate, iron, carbon dioxide, and manganese.
This makes methane and hydrogen sulfide, in addition to water, carbon dioxide, and
microbial mass, which comes from aerobic digestion (taking electrons from oxygen) [47,48].

2.2. Microplastics in Freshwater

Regardless of where they are used, plastic products used both on land and water can
introduce microplastics into freshwater bodies [49,50]. Even the primary microplastics
designed for use in terrestrial systems, including medicine, industry, home, recreation, etc.,
have the potential to progressively break down into microplastics and reach freshwater
sources. Plastics undergo degradation in the soil and end up in rivers and lakes as mi-
croplastics [51]. Or they enter aquatic bodies as macroplastics, and are later transformed
into microplastics [52]. After use, many plastics designed for use in the water are typi-
cally discarded into water sources. As stated above, most of the microplastics originated
from production, and use on land can ultimately transverse wastewater treatment plants
(WWTPs) [53,54]. Microplastics can invade freshwater bodies through treated waters, since
there is currently no effective method or procedure for eliminating microplastics [55]. Cur-



Appl. Sci. 2023, 13, 10999 6 of 14

rent methods used to intercept microplastics within WWTPs typically involve several key
strategies, including physical separation [56] and filtration [57]. Although these methods
hold promise for mitigating microplastic contamination, there are obstacles to their practical
application. To address these obstacles and improve the viability of microplastic intercep-
tion, researchers are developing cost-effective and flexible advanced treatment processes,
such as magnetic seed filtration [58], magnetic micro-submarines [58], and photocatalytic
micromotors [59]. Membrane bioreactors coupled with activated carbon filters [60] hold
promise for enhancing the efficacy of microplastic removal. Following processing from
WWTPs, solid wastes, often contaminated with microplastics, separated by the WWTP
(i.e., sludge), are sometimes utilized for agricultural fertilization [61,62]. Precipitation (i.e.,
rain, snow) and wind, however, can transport the microplastics to freshwater bodies [62].
Microplastics have been identified in plastic landfill leachate [41].

With the help of the Web of Science Core Collection database, we went through all
2249 publications, using key words (freshwater, river, and lake) that had been published
up to that year (2022) to identify research on microplastic in surface water (i.e., lakes,
rivers, oceans). The location and publication years were obtained from the research. The
data suggest that China is the global leader in research on microplastics on freshwater
ecosystems, followed by the United States (Figure 3). Over the last five years, there has been
a near ninefold increase in the number of published research publications on microplastics
in water.
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Microplastics can constitute a hazard to freshwater ecosystems, inflicting comparable
physical and biophysiological harm, as in marine habitats [63]. Other than field experi-
ments, the evidence on the relative effects of microplastics is often inconsistent with the
concentrations of microplastics in water bodies [64]. Studies often employ a greater concen-
tration of microplastics than is typically present in aquatic environments and focus on the
impact on live organisms [64–66]. However, research indicates that the present amounts of
microplastics have the potential to inflict significant harm to species over time. Another
major concern associated with microplastics is that they concentrate other pollutants in
water on their surface [67–69]. Microplastics supporting other contaminants may readily
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harm organisms and serve as a vector to move these other contaminants into the food
web [70–72].

Transport of microplastics and other associated contaminants may be facilitated though
biofilm growth on microplastics, and the subsequently mistaken for food. Several arti-
cles have identified that microplastics can serve as a substrate for biofilm formation [73].
When microplastics age, their surfaces roughen, creating increased crevices that can cre-
ate a favorable habitat for biofilm development and other pollutants and pathogens to
adhere [74,75]. Biofilms formed on microplastics can have a significant impact in the adhe-
sion and concentration of pollutants [76]. Polyvinyl chloride plastics (PVC) with biofilms
absorb approximately 50 percent more of the antibiotic norfloxacin than PVC without
biofilms. Similarly, high density polyethylene (HDPE) and polyamide (PA) microplastics
with biofilm absorbed 46 percent and 24 percent more norfloxacin, respectively, than HDPE
and PE microplastics without biofilm [77]. Metal adsorption on microplastics depends
heavily on intraparticle diffusion. In addition, a rise in temperature and a decrease in
salinity boost the affinity of metals and microplastics [78]. Different kinds of microplastics
and metals exhibit varying degrees of adherence. PE microplastics have a stronger affinity
for metals than PS microplastics, whereas PP microplastics have an even greater attrac-
tion [79]. Furthermore, the adsorption of microplastics on metals varies, depending on
the microplastics’ particle size [79]. The surface carbonyl group of PS microplastics inter-
acts with the biogeochemistry of silver to produce silver nanoparticles [80]. Additionally,
viruses may also adhere to the surface of microplastics. However, the adsorption affinity of
microplastics varies on their size and surface functional group [81].

The complexities of the degradation of plastics into microplastics, driven by microbes
and biofilms, raises questions about the impact of these plastics on the microbes themselves
and their integral role in the ecosystem. It also raises questions about the impact of these
plastics, and their integral role in the ecosystem on the very microbes themselves and the
wider ecological balance. In addition to interactions of microplastics and biofilms, several
papers have identified interactions between microalgae and microplastics. Microalgae
are at the base of the food chain, and subtle impacts to them may affect the whole food
chain. Microplastics can inhibit the development of the microalgae Chlorella pyrenoidosa,
modify oxidative stress, and compromise cell membrane integrity [82]. Microplastics can
also inhibit the photosynthetic activity of Chlorella vulgaris. Microplastics also dramatically
decreased peroxidase and glutathione reductase levels in C. vulgaris, while increasing
superoxide dismutase levels [83]. Additionally, when organic pollutants such as amoxi-
cillin, ibuprofen, sertraline, and simazine are adsorbed onto microplastics, the combined
disruption of this combination has a substantial impact on the photosynthetic activity
of Scenedesmus armatus [84]. Further concern is raised when examining the interactions
specifically with cyanobacteria and microplastics. Gopalakrishnan and Kashian [85] found
that microplastics exerted a dual effect on Anabaena variabilis growth, stimulating it at
lower concentrations but inhibiting it at higher levels (>0.3 mg/mL) across a tempera-
ture range of 2.5–32.5 ◦C. As the concentration of microplastics increased, shading by the
microplastics may have induced stress, which corresponded with an observed increase
in extracellular polymeric substance (EPS) production by A. variabilis, which enhanced
microplastic deposition. This complex interplay suggests that microplastics may play a role
in cyanobacterial blooms, potentially impacting their deposition dynamics. In eutrophic
reservoirs, microplastics can serve as vectors for potentially harmful cyanobacterial toxins,
specifically microcystin-LR and microcystin-LF [86]. The interaction between cyanobacteria
and calcium plays a crucial role in facilitating the sedimentation of microplastics within
these ecosystems [87]. Moreover, naturally weathered microplastics have been observed
to accumulate cyanobacterial toxins, thereby posing environmental concerns in eutrophic
lakes [88]. Furthermore, microalgae can secrete EPS to avoid the combined toxic effects of
cadmium [89]. Currently, researchers are concentrating on the characteristics of charged
microplastics and nanoplastics. Positively charged nanoplastics with an amide group on the
surface hindered the development of M. aeruginosa more than negatively charged nanoplas-
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tics with carboxyl groups on their surfaces [90]. Overall, there is a clear dose–response
relationship between microplastics and their effect on the survival of microalgae.

2.3. Microplastics in Oceans

Much of the research on plastic pollution in marine systems has focused on ocean
surface waters [91], but recent studies have expanded to examine microplastics at the
ocean’s depths, so existing knowledge disproportionally favors surface water. Approxi-
mately 18% of the plastic identified in marine habitats comes from fisheries and sectors
associated with fishing [92]. The broad use of plastic items as direct replacements for metal
and mechanical components in the fishing and allied industries is the primary factor for
their prevalence in marine systems [93]. Additionally, aquaculture increases or introduces
many plastics into the marine ecosystem [94]. Comparing wild and farm-raised or cultured
mussels, for instance, the amount of microplastic debris in farmed mussels is substantially
greater than that in mussels captured in the wild, away from the farming facilities. This
rise in plastic debris in cultivated mussels is mostly due to the use of PP plastic lines in
mussel farming [95]. Additionally, beach plastic litter is a significant contributor to plastics
and microplastics entering marine habitats. Approximately 50 percent of beach litter is
composed of plastic [96]. These plastics may either immediately enter the sea or ocean as
plastics, or degrade on the beach and enter the marine ecosystem as microplastics. Vectors
that contribute to the movement of microplastics into the marine environment include
wind, rain, streams, and rivers, and also illegal waste dumping.

Research on microplastics in marine settings has been widely published. We quantified
this using the Web of Science Core Collection database to search through all 3616 publica-
tions that had been published up to 2022. The search strategy encompassed all permutations
of the term ‘microplastics’ in conjunction with each of the three related phrases: ‘ocean’,
‘marine’, and ‘sea’ (Figure 4). Locations and published years were culled from the research.
The data suggests that China is the global leader in publishing on the effects of microplastics
on marine ecosystems, followed by the United States (Figure 3). Over the past five years,
academic articles on microplastics in marine environments have surged to approximately
four times their previous numbers.

Microplastics’ age in the marine environment has a substantial bearing on their effects
and problems [97]. As microplastics spend more time in the environment, the possibility
that microorganisms, invertebrates, and vertebrates they interact with, grows [98,99]. In
addition, the longer the time period, the higher the likelihood of organic or microbiological
deposition on microplates due to surface roughness [100] and/or ionic group changes [97].
Biofilms made up of organic components, microorganisms, and algae are rich in microplas-
tics that have disintegrated over time. When this occurs, the substance may readily enter
the food chain, since the microorganisms and algae in the biofilm serve as food for certain
groups of species [101]. Copepods typically consume microplastics that have been in the
environment longer, because these older plastics develop a biofilm of natural microbes,
which contains similar prey and emits chemicals that make the particles more enticing as
food [101]. Additionally, recent research has delved into the potential of plastics to serve as
a carbon source for microorganisms, which can further boost biofilm development [102].
Consequently, microplastics create localized micro-hotspots characterized by heightened
microbial activity, thereby instigating alterations in carbon cycling dynamics. Therefore,
the longer that microplastics remain in the environment, the greater the likelihood that they
will enter the food chain.

Vertical transport, which refers to the movement of microplastics from the surface
(floating) to the bottom of the sea or ocean, is a growing area of study in the field of
microplastics. Research has identified several variables that contribute to this phenomenon.
Generally, microplastics sink when their specific gravity exceeds that of seawater, which is
1.03 g/cm3 [103]. Despite the fact that microplastics have a low specific gravity in general,
some additives added to plastics to make them acceptable for certain applications have
rendered their buoyancy unstable and caused them to sink as a result of an increase in
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specific gravity [104]. Additionally, microplastics that enter the sea or ocean with a lower
specific gravity than water begin to sink with age, owing to many causes such as fouling
by biofilm, microorganisms, organic pollutants, etc. [105]. Although specific gravity is a
crucial factor in the fluctuating buoyancy of microplastics, other conditions may cause
them to sink. As microplastics descend, they can adhere to aquatic vegetation like eelgrass,
a process facilitated by the formation of biofilm. Two predominant epiphytic bacteria
were identified as the key microorganisms within the biofilm, facilitating the adherence
of microplastics to the grass (Vibrio and Exiguobacterium) [106]. The disintegration rate,
nutritional alterations, and potential interactions of microplastics with specific species as
they enter the food chain vary significantly, depending on factors such as environmental
conditions, particle size, and chemical composition. As a consequence of photodegradation
by sunlight, microplastics that are still in suspension break down at a considerably quicker
pace than those that have settled to the bottom [107].
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3. Conclusions

Comprehending the microplastic cycle necessitates interdisciplinary research, bringing
together the realms of biophysics, ecology, and chemistry. These disciplines collectively
unravel the intricate web of physical processes governing particle behavior, chemical
interactions, and the dynamic interplay of biological systems. By weaving these threads
together, we gain a holistic understanding of how microplastics’ fate and impacts are
shaped. From the physical and chemical breakdown of larger plastic products to the
shedding of synthetic clothing fibers, microplastics are pervasive, and their persistence,
ability to absorb and transport harmful contaminants, and potential effects on human
health and the environment are a growing concern. Microplastics’ origins, pathways, and
environmental effects are the subject of extensive research. Research findings highlight the
severity of the problem due to microplastics, and the urgent need for measures to restrict
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the production and distribution of microplastics, increase their recovery and recycling,
and encourage the development of viable substitutes. Due to the inherent complexity
of this issue, it is essential to have clear guidelines and policies in place at every stage
of the microplastics life cycle, to help mitigate and minimize inputs and impacts in the
environment.
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