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Abstract: Birds play a vital and indispensable role in biodiversity and environmental conservation.
Protecting bird diversity is crucial for maintaining the balance of nature, promoting ecosystem health,
and ensuring sustainable development. The Broad Learning System (BLS) exhibits an excellent
ability to extract highly discriminative features from raw inputs and construct complex feature
representations by combining feature nodes and enhancement nodes, thereby enabling effective
recognition and classification of various birdsongs. However, within the BLS, the selection of feature
nodes and enhancement nodes assumes critical significance, yet the model lacks the capability to
identify high quality network nodes. To address this issue, this paper proposes a novel method
that introduces residual blocks and Mutual Similarity Criterion (MSC) layers into BLS to form an
improved BLS (RMSC-BLS), which makes it easier for BLS to automatically select optimal features
related to output. Experimental results demonstrate the accuracy of the RMSC-BLS model for the
three construction features of MFCC, dMFCC, and dsquence is 78.85%, 79.29%, and 92.37%, respectively,
which is 4.08%, 4.50%, and 2.38% higher than that of original BLS model. In addition, compared with
other models, our RMSC-BLS model shows superior recognition performance, has higher stability
and better generalization ability, and provides an effective solution for birdsong recognition.

Keywords: broad learning system; birdsong recognition; feature sequence; residual blocks; mutual
similarity criterion

1. Introduction

Biodiversity is a fundamental and critical biological component of our planet, includ-
ing all forms of life in ecosystems, from microorganisms to large organisms. The study
of biodiversity is of great significance as it helps to maintain ecological balance, provides
key ecosystem services, and promotes sustainable development [1]. Ecological monitoring
plays an indispensable role in understanding, conserving, and advancing biodiversity. It
also provides essential scientific evidence and decision support for environmental pro-
tection and the maintenance of ecological equilibrium. In this regard, birds are highly
valuable indicators of ecosystem health due to their sensitivity to climate, habitat qual-
ity, and ecological disturbances. Compared to other animal groups, birds are relatively
accessible for observation and research, which makes them particularly suitable for eco-
logical assessments [2]. As an important part of the ecosystem, birds play a vital role in
ecological balance by controlling pests and participating in pollination and seed dispersal.
Bird diversity monitoring and protection can assess the overall health status of ecosystem,
help to resist species invasion, protect endangered species, and provide scientific basis for
formulating environmental protection policies and management measures. Birdsong is a
form of vocal expression in birds, containing rich information such as species identification,
individual identification, gender, and behavior. The study of birdsong holds significant
importance in the fields of biodiversity, ecology, and behavior [3]. Birdsong classification
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can accurately grasp the status and dynamic changes of bird populations, allowing for
biodiversity monitoring and species identification, evaluation of ecosystem health and func-
tion, prioritization of conservation work, and detection of invasive bird species with unique
songs. Ultimately, the goal of protecting biodiversity and environmental sustainability
is achieved.

Feature extraction and pattern recognition techniques have found widespread applica-
tion in the classification of birdsongs for achieving automated bird recognition [4–8]. This
approach has achieved some success to a certain extent, but it also has some limitations.
Manual feature extraction requires the expertise and experience of domain experts, and it
is difficult to capture the underlying complex patterns and information in birdsongs [9].
Traditional machine learning algorithms also have certain limitations in dealing with high
dimensional, non-linear, and dynamic features. In recent years, deep learning has made
significant breakthroughs and has demonstrated powerful expressive and generalization
abilities in areas such as image and speech recognition [10,11]. Models based on deep
learning are suitable for extracting features from large-scale datasets, usually consisting
of a large number of neurons and multi-layer networks. This requires a large amount of
training data and computing resources for training and reasoning, which is challenging in
resource constrained or real-time applications [12].

The Broad Learning System (BLS) provides an alternative approach to deep learning
networks [13]. By expanding the width of network layers, the expressive capacity of the
model is enhanced, thus improving its ability to learn complex patterns and information.
Compared with deep networks, BLS has fewer parameters and a lower computational
burden, is easier to train and optimize, and can exhibit better performance using limited
data [14]. BLS has been widely applied in machine learning for tasks such as image
recognition [15,16], food safety [17], and biomedicine [18]. However, in research fields such
as text and speech processing, the application of BLS is relatively limited. BLS learns the
input features using a hierarchical architecture, where each layer processes the features and
extracts higher-level representations. In addition, BLS can process a large amount of audio
data, has good scalability and efficiency, and is suitable for real-time or large-scale bird
species recognition applications. By fully utilizing the capabilities of BLS, researchers can
enhance their work in monitoring bird populations and studying their behavior, thereby
contributing to the protection of biodiversity and ecosystem health. While BLS has been
proven to be a powerful modeling structure, it still faces some challenges. The performance
of BLS is influenced by the number and selection of nodes, and it remains to be solved [19].
Furthermore, adding more nodes to the intermediate hidden layers of BLS models for
optimization purposes could lead to overfitting issues.

To address the limitations of the BLS model, this study focused on analyzing 16 types
of birdsongs. Differential Mel-Frequency Cepstral Coefficients (MFCC) sequence feature
(dsquence) is extracted and constructed. To further enhance the performance of the BLS model,
residual blocks are incorporated. Moreover, nodes selection is performed by measuring the
correlation between nodes and class. Subsequently, a comprehensive birdsong recognition
study is conducted utilizing the proposed approach. The aims and contributions of this
paper can be summarized as follows:

(1) Build the improved BLS model for birdsongs recognition.
(2) Integrate residual block into the BLS, enabling the model to learn the residual infor-

mation of the differences between feature nodes and enhancement nodes instead of
directly learning the mapping. This makes the network more capable of learning and
optimizing complex functions.

(3) Employ a mutual similarity criterion to measure the correlation between nodes and
the class in BLS for nodes selection, enhancing the quality of node subset.

The rest of this paper is organized as follows. Section 2 presents the related work
conducted by various authors for birdsong classification. Section 3 describes the data
used in the experiment. Section 4 introduces the proposed method in detail. Then, the
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experimental results and discussion are analyzed in Section 5. Section 6 gives limitations
and scope. Finally, Section 7 concludes the study.

2. Related Work

Birdsong recognition mainly relies on the selection of specific audio features from
bird vocalizations for identification purposes. These audio features capture distinctive
patterns and characteristics inherent in the birdsongs, enabling the recognition system to
differentiate between different bird species based on their vocalizations. Common audio
features for birdsong recognition include Mel-Frequency Cepstral Coefficients (MFCC) [20],
Mel-Frequency Spectrum Coefficients (MFC), Linear Prediction Coefficient (LPC) [21]
and deep features [22,23], which represent the spectral content of audio signals. For
example, Stowell et al. conducted unsupervised learning on MFCC, MFC, and other
features extracted from birdsongs, and used a random forest classifier for classification [24].
Wang et al. focused on eight bird species, extracted MFCC feature parameters, and utilized
the dual Gaussian mixture model for training and recognition [25]. In addition, Xu et al.
studied 11 bird species and employed DTW templates based on syllable length, MFCC,
and LPC, combining these with time-frequency texture features and multi-label classifiers
for birdsong recognition [26]. With the widespread application of deep learning in the field
of audio processing, researchers have begun to explore the application of deep learning
technology for birdsong recognition. Yan et al. combined chroma, logmel spectrogram,
and MFCC features, and used three-dimensional convolutional neural networks and long
short-term memory networks as classifiers to realize birdsong classification [27]. Jisheng
Bai et al. extracted logmel or loglinear spectra as features in BirdCLEF 2020 and used data
augmentation technology to improve the detection performance of birdsongs, achieving
good results [28]. Gupta et al. proposed a deep learning method for large-scale prediction
and analysis of the acoustics of 100 different bird species [29]. Overall, these studies have
achieved good results in birdsong recognition through the strategic use of audio features
and classification techniques. The research progress in the field of birdsong recognition
highlights the significance of using audio feature extraction and classification techniques
for automatic identification of birdsongs. However, there are still some challenges in this
area. Although neural networks perform well in processing complex data and tasks, their
interpretability is relatively poor due to their highly nonlinear structure and large number
of parameters. Thus, the neural network requires a large number of training sets to obtain
a good model.

There is a significant difference in the structure between BLS and deep neural networks,
as BLS tends to construct the network horizontally compared to deep structures. As
a shallow neural network structure, BLS has been widely applied in various research
fields since its inception. For instance, it performs well in tasks such as shrimp freshness
detection [30], mushroom toxicity assessment [17], fatigue driving detection [31], and
material recognition [32]. Nevertheless, with the widespread application of BLS, some
issues have been discovered, and the method needs to be improved. Many researchers have
made significant contributions in this regard. Huang et al. proposed a feature selection
algorithm of an orthogonal BLS model based on mutual information by analyzing the
mutual information between feature nodes and output nodes [33]. Zheng et al. introduced
the maximum correlated entropy criterion into the BLS to train output weights, including
the impact of outliers on the modeling performance and enhancing the robustness of the
model [34]. Zhang et al. proposed an effective BLS with rich feature combinations, utilizing
unsupervised grouping encoding for feature extraction and extensive feature fusion [35].
Ye et al. presented a regularized deep cascaded BLS, consisting of a cascaded feature
mapping node layer and a cascaded enhancement node layer. They also designed a parallel
framework to make it compatible with large-scale data and achieved significant success
in image denoising [36]. Han et al. combined structured manifold learning with BLS to
propose an efficient framework for large-scale time series processing. This framework can
discover crucial intrinsic structures in time series, making the modeling more interpretable



Appl. Sci. 2023, 13, 11009 4 of 16

than traditional methods [37]. Ding et al. developed a BLS architecture search method,
which not only improved the efficiency of network architecture search but also showed good
performance. Additionally, they analyzed its general approximation ability and provided
two extended variants, enriching the neural network architecture search system [38]. Xie
et al. proposed a stacked structure of the BLS, which utilized residual expansion of the
original input space. This stacked structure can enhance system performance and simplify
its architecture [39].

Despite some success with BLS, little attention and research have been paid to the
issues of information redundancy and loss during model expansion. Ma J et al. have
demonstrated that BLS suffers from information redundancy and loss between original
and newly added nodes, which effects its performance in large scale expansion [40]. These
issues may lead to overfitting on data features during model design and training, resulting
in reduced generalization performance of the model on new data. Therefore, to further
improve and optimize BLS, it is essential to conduct in-depth research on these problems
and propose corresponding solutions to enhance its performance and robustness. Address-
ing these challenges is critical to achieving better performance and broader applicability of
the BLS.

3. Dataset

The dataset used in this study mainly comes from the online resource https://www.
xeno-canto.org/ and http://www.birder.cn/ (accessed on 13 October 2021) A total of
271 audio samples were collected, representing 16 bird species distributed in 7 orders,
9 families, and 15 genera. Each dataset is divided into a training set and a test set at the
ratio of 8:2. Detailed information is presented in Table 1 below.

Table 1. The information of dataset.

ID Genus Family Order Latin Name Training Set Test Set Total

1 Francolinus Phasianidae Galliformes Francolinus pintadeanus 552 138 690
2 Coturnix Phasianidae Galliformes Coturnix 1093 274 1367
3 Phasianus Phasianidae Galliformes Phasianus colchicus 800 201 1001
4 Lagopus Phasianidae Galliformes Lagopus muta 778 195 973
5 Lyrurus Phasianidae Galliformes Lyrurus tetrix 944 236 1180
6 Cygnus Anatidae Anseriformes Cygnus cygnus 908 227 1135
7 Asio Strigidae Strigiformes Asio otus 556 140 696
8 Grus Gruidae Gruiformes Grus grus 606 152 758
9 Numenius Scolopacidae Charadriiformes Numenius phaeopus 1441 361 1802
10 Larus Laridae Charadriiformes Larus canus 553 139 692
11 Accipiter Accipitridae Ciconiiformes Accipiter nisus 852 214 1066
12 Accipiter Accipitridae Ciconiiformes Accipiter gentilis 517 130 647
13 Falcons Falconidae Falconiformes Falco tinnunculus 642 161 803
14 Phylloscopus Sylviidae Passeriformes Phylloscopus trochiloides 817 205 1022
15 Spelaeornis Sylviidae Passeriformes Elachura formosa 678 170 848
16 Leiothrix Sylviidae Passeriformes Leiothrix lutea (Scopoli) 603 151 754

4. Methods
4.1. Broad Learning System

The Broad Learning System (BLS) [13] is proposed based on the Random Vector
Functional-link Neural Network (RVFLNN) [41]. One of the distinctive advantages of BLS
is its ability to simultaneously learn and represent various levels of abstraction within data.
The structure of BLS is shown in Figure 1. The input samples of the BLS undergo linear
transformations to map onto the feature plane to form feature nodes. The obtained feature
nodes are then transformed into enhancement nodes through activation function nonlinear
transformation. The feature nodes and enhancement nodes are jointly connected as the
actual input of the system, and linearly output through the connection matrix. Finally,

https://www.xeno-canto.org/
https://www.xeno-canto.org/
http://www.birder.cn/
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considering the high time cost and tendency to fall into local optima, the BLS obtains the
connection matrix through the pseudoinverse.
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First, the input samples are mapped into feature nodes Z by random linear mapping.
The formula can be represented as follows:

Z = ∅(XWei + βei) (1)

where n refers to the number of feature nodes. Wei and βei represent the weights and
biases of the feature nodes, respectively, which are randomly initialized. ∅(·) stands for a
linear mapping.

After obtaining the feature nodes, enhancement features are generated through non-
linear mapping:

H = τ
(

ZnWhj + βhj

)
(2)

where m denotes the number of enhancement nodes. Whj represents the random matrix after
orthogonal normalization, βhj is the basis constant, and τ represents a nonlinear mapping.

Finally, by merging the feature nodes and enhancement nodes, the input A of the
ultimate network is obtained as A = [Z|H]. The output of the final network can be
represented as:

Ŷ = [Z|H]W = AW (3)

where the weight matrix W of the output is solved by pseudoinverse and ridge regression
learning algorithms. The objective is to find an appropriate W to minimize the discrepancy
between the output Ŷ and the true value of Y. Chen et al. [13] formulated the optimization
problem as follows:

min
w

(
||Y− AW||22 + γ||W||22

)
(4)

where γ is the regularization parameter. By taking the partial derivative of Formula (4)
with respect to W and setting it to zero, W can be expressed as:

W =
(

AT A + γI
)−1

ATY (5)

We specifically have

A+ = lim
γ→0

(
γI + AAT

)−1
AT (6)
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where I represents the identity matrix. By solving for the parameter matrix W, the final
construction of the BLS mode is achieved.

4.2. Improved Broad Learning System

The birdsongs recognition model based on improved BLS mainly concludes three
modules, namely, the construction of feature sequences, integration of residual block and
correlation measures to BLS, and establishment of classification model, detailed as follows:

Step1: Construction of differential MFCC feature sequences.
First, the input sound signal is denoised, and then the effective speech segments are

determined through endpoint detection. Finally the differential MFCC features of birdsong
signal are extracted to obtain the feature matrix. On this basis, the first-order and second-
order differential features of each frame of audio data are calculated. Finally, the feature
sequences of a sample are formed by sliding window approach.

Step2: Introduce residual block module into the BLS and measure the correlation
between nodes and class for nodes selection.

By introducing residual connections between feature nodes and enhancement nodes,
the differences between nodes are eliminated and residual blocks are formed. Then, residual
blocks are linearly connected with feature nodes to form the nodes layer. Finally, a mutual
similarity criterion (MSC) is used to measure the similarity between nodes for nodes
selection in order to obtain the most relevant and effective node subset.

Step3: Map the node subset to the test set to verify model performance.
The specific framework structure is shown in Figure 2.
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4.2.1. Construction of Differential MFCC Feature Sequences

Mel-Frequency Cepstral Coefficients (MFCC) is a feature parameter that closely models
the auditory characteristics of the human ear and is widely employed in various audio-
related tasks, including speech and sound recognition. The MFCC extraction process
involves the following steps:
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1. Perform the signal pre-processing: pre-emphasis, framing, and windowing.
2. Perform the Fast Fourier Transform (FFT) on each frame.
3. Pass the power spectrum through a bank of Mel filters.
4. Take the logarithm of the filter-bank energies.
5. Apply the Discrete Cosine Transform (DCT) to obtain the MFCC coefficients.

Define the original feature matrix as T, where the size of T is N ∗ D, representing
N samples, each with D dimension. After obtaining the MFCC features, the first-order
(∆MFCC) and second-order (∆∆MFCC) differentials are calculated through differencing.
Utilizing MFCC, ∆MFCC, and ∆∆MFCC, we construct a new feature, dMFCC, as shown in
Formula (7).

dMFCC = Concatenate(MFCC, ∆MFCC, ∆∆MFCC) (7)

Next, we adopt a sliding window approach with window size w and step size p. For
each window of w consecutive samples, the class labels of the samples are consistent, and
we concatenate w samples together. The final sample representation is denoted as dsquence,
and it has dimensions ((N − w) + p) ∗ (D ∗ w)). This process effectively captures the
dynamic information in birdsongs and provides richer features for subsequent recognition
tasks. The overall procedure is illustrated in Figure 3.
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Figure 3. Construction of dsquence feature.

4.2.2. Improved BLS Based on Residual Block and Mutual Similarity Criterion (RMSC-BLS)

In this paper, we introduce two modules, residual block and MSC (Mutual similarity
criterion) layer, into the BLS to form an improved BLS, named RMSC-BLS. The structure of
the model is shown in Figure 4.
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4.2.2. Improved BLS Based on Residual Block and Mutual Similarity Criterion (RMSC-
BLS) 

In this paper, we introduce two modules, residual block and MSC (Mutual similarity 
criterion) layer, into the BLS to form an improved BLS, named RMSC-BLS. The structure 
of the model is shown in Figure 4. 
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Figure 4. The improved BLS model with residual block and MSC. Figure 4. The improved BLS model with residual block and MSC.

• The design of residual block

The residual block allows the network to learn residual information of the differences
between feature nodes and enhancement nodes during the training process by introducing
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skip connections. In this way, the network can adjust the expression of the original features
by learning residuals, rather than directly learning the features themselves. The design of
the residual module is mainly used between feature nodes (Z) and enhancement nodes (H)
of BLS, as shown in Formula (8).

NL = (Z⊕ H)|Z (8)

where ⊕ represents residual connection. After obtaining the residual block, the residual
block is linearly concatenated with Z to obtain the Nodes Layer (NL).

• Mutual similarity criterion (MSC)

Nodes in BLS have a direct impact on the network. Through the correlation between
the nodes and the class, the features irrelevant to the output are removed, so that the BLS
can effectively carry out feature learning. This improves the generalization ability of the
model. According to the nodes and class c combined with the cosine similarity, it is called
MSC (Mutual similarity criterion), and can be expressed as:

cos
(

Fi, c
)
=

Fi·c∣∣Fi
∣∣|c| = Fi·c

‖Fi‖2‖c‖2
(9)

where Fi represents the i-th node in Nodes layer, c is the sample class. cos
(

Fi, c
)

refers
to the cosine similarity between each node and class. ‖·‖2 is the Frobenius norm of the
matrix. Due to cos

〈
Fi, c

〉
∈ [−1, 1], the closer the cosine values of Fi and c are to 1, the

higher the correlation between the nodes and c. During the node selection process, the
correlation between Fi and c is computed using the cosine theorem, and the correlations are
ranked. Subsequently, the top k nodes are chosen from MSC layer to form the node subset
(Ns). This obtained node subset is then entered into the output layer of BLS to establish a
birdsong classification model. The major steps of the proposed RMSC-BLS are summarized
in Algorithm 1.

Algorithm 1: The procedure of RMSC-BLS

Input: training set {X, Y}, number of feature nodes n, number of enhancement nodes m, node
subset Ns = ∅.
Output: Classification result Ŷ
1. for i = 1; i ≤ n do
2. Randomly generate Wei and βei;
3. Calculate Zi by Formula (1);
4. end // Obtained the feature nodes Z.
5. for j = 1; j ≤ m do
6. Randomly generate Whj and βhj;
7. Calculate Hj by Formula (2);
8. end // Obtained the enhancement nodes H.
9. Obtain Nodes Layer (NL) according to the Formula (8);
10. Caculate correlation for each node in NL according to the Formula (9);
11. Sort the correlation and select the top k nodes as nodes subset Ns;
12. Set the input A = [Ns|W] for BLS;
13. Calculate A+ with Formula (6);
14. Calculate the weight matrix W with Formula (5);
15. Obtained Ŷ with Formula (3);
16. Output Ŷ.

5. Experiment and Result Analysis
5.1. Experimental Design and Environment

The hardware platform used in this experiment is a desktop computer with 128 G
memory, 16 core and 32 thread CPU, 3.40 GHz frequency, and 24G GPU. The operating
system is Windows 10 64-bit professional operating system. Anaconda3, PyCharm 2018.3.5,
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Python 3.6, and TensorFlow 2.6 are used as deep learning platforms, and MATLAB 2021a is
used as a data processing platform.

Two group experimental schemes are designed. One group compared the proposed
RMSC-BLS with the original BLS (BLS) and the BLS with residual block (Res-BLS). Another
group compared RMSC-BLS with other classic methods, including Random Forest (RF) [42],
Support Vector Machines (SVM) [43], Extreme Learning Machine (ELM) [44], and Multilayer
Perceptron (MLP) [45]. The parameters of the experiments are as follows: feature nodes
per window (N1): number of windows of feature nodes (N2); number of enhancement
nodes (N3); regularization parameter: C; the shrinkage scale of the enhancement nodes: s;
the number of hidden layer neurons: h. The relevant parameters settings of the classifiers
model are listed in Table 2.

Table 2. Setting of experimental parameters.

Classifier Relevant Parameter Settings

BLS activation function: tanh, epoch:50, N1:10, N2:100, N3:1000, C: 2−30; s: 0.8
ELM hidden_layer_size:1000, activation function: sigmoid

MLP hidden_layer_size:100, activation function: ReLU
alpha: 0.0001, solver: Adam, learning_rate_init: 0.001, max_iter: 200

RF n_estimators:100, random_state: 0, criterion: gini, max_depth: none
SVM kernel: rbf, gamma: auto, catch_size: 200, max_iter: −1, degree: 3

Each experiment is repeated 50 times independently, and the average of the experi-
mental results is taken as the final result. In this experiment, Accuracy (Acc), Precision (Pre),
Recall, and F1-score (F1) are used as indicators to evaluate performance of classification
model. The calculation formula of Acc is as follows:

Acc =
TP + TN

TP + FP + FN + TN
(10)

Among them, TP refers to True Positive, which represents the number of positive
samples correctly predicted as positive by the model. TN stands for True Negative, repre-
senting the number of negative samples correctly predicted as negative by the model. FP
represents False Positive, indicating the number of negative samples incorrectly predicted
as positive by the model. FN represents False Negative, indicating the number of positive
samples incorrectly predicted as negative by the model.

Pre is used to evaluate the proportion of all predicted correct samples that contain
actual correct samples. The calculation formula is as follows:

Pre =
TP

TP + FP
(11)

The recall rate is the percentage of correctly predicted samples among all samples. The
calculation formula is as follows:

Recall =
TP

TP + FN
(12)

F1 score is a comprehensive consideration of Pre and Recall, defined as:

F1 =
2× (Pre× Recall)

Pre + Recall
(13)

5.2. Analysis of Experiment Results

With the sliding window approach, we set the size of w to 4, and the p size to 1. By
combining the three features (MFCC, ∆MFCC, and ∆∆MFCC), we obtain dMFCC features
(39 dimensions). Subsequently, four frames of audio data are combined into feature
sequences of a sample (156 dimensions). The final generated training and test samples are
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3091 and 12,337, respectively. The classification models are built using the training set and
the recognition effect is verified using test set. Acc, Pre, and other evaluation indicators are
calculated based on the confusion matrix.

5.2.1. The Results of RMSC-BLS

The classification performance of three models, including BLS, Res-BLS, and RMSC-
BLS, on the test set is shown in Table 3. The accuracy of 50 runs of each model is shown in
Figures 5 and 6.

Table 3. Classification results of different models.

Model Features
Performance (%)

Acc (mean ± std) F1 (mean ± std) Pre (mean ± std) Recall (mean ± std)

BLS
MFCC 74.77 ± 0.37 74.39 ± 0.41 75.80 ± 0.39 73.84 ± 0.43
dMFCC 74.79 ± 0.29 74.33 ± 0.31 75.69 ± 0.30 73.81 ± 0.32
dsquence 89.99 ± 0.31 89.50 ± 0.32 90.39 ± 0.34 88.94 ± 0.31

Res-BLS
MFCC 74.90 ± 0.37 74.53 ± 0.40 75.97 ± 0.38 73.99 ± 0.41
dMFCC 75.48 ± 0.32 75.06 ± 0.36 76.45 ± 0.36 74.51 ± 0.36
dsquence 90.07 ± 0.29 89.58 ± 0.32 90.47 ± 0.34 89.02 ± 0.32

RMSC-BLS
MFCC 78.85 ± 0.21 78.62 ± 0.22 79.50 ± 0.23 78.45 ± 0.22
dMFCC 79.29 ± 0.33 79.07 ± 0.34 79.89 ± 0.34 78.85 ± 0.34
dsquence 92.37 ± 0.25 91.99 ± 0.27 92.61 ± 0.29 91.59 ± 0.27
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From Table 3 and Figure 5, it shows that for each model the dsquence feature is superior
to the other two sets of features in all four evaluation indicators listed. The constructed
feature dsquence has increased by 15% in all evaluation indicators. On the aspect of standard
deviation, the dsquence is the lowest than the other two features, which reflects that it has a
more stable performance among all features. In conclusion, the dsquence feature proves to be
effective for birdsong recognition.

It can be seen from Table 3 and Figure 6 that for the constructed dsquence features,
compared with BLS and Res-BLS, the accuracy rate of RMSC-BLS is 92.37%, which is 2.38%
and 2.30% higher than that of BLS and Res-BLS, respectively. The Res-BLS has a slight
improvement over the BLS. From the comparison of Table 3, Figure 5, and Figure 6, it is
evident that RMSC-BLS outperforms all other models, exhibiting the highest accuracy with
an improvement ranging from 2.38 to 17.60%. In addition, F1, Pre, and Recall are 91.99%,
92.61% and 91.59%, respectively, which increased by 17.66–2.41%, 16.92–2.14%, 17.78–2.56%
compared with other models, respectively.

The comparison of the experimental results of different models is shown in Figure 7.
Through comprehensive analysis and comparison of the three models of experiments, it
illustrates that the proposed method has superior performance when compared with other
models. The results on Acc, F1, Pre, and Recall are superior to BLS and Res-BLS models. As a
whole, the RMSC-BLS has better generalization performance for the birdsong identification.
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From Table 4 and Figure 8, it can be observed that for the dsquence feature data, the
performance of the Res-BLS and MSC-BLS models is similar in various indicators. However,
combining Res-BLS and MSC-BLS to form the RMSC-BLS model, there is an improvement
in each indicator. In the experimental schemes, the RMSC-BLS model achieves better
classification results compared to other models, with a minimum and maximum improve-
ment Acc of 2.3% and 2.33%, respectively. Other indicators also show some improvement.
Overall, the proposed RMSC-BLS model has better classification results than other models
in experimental schemes and achieves superior recognition results.

Table 4. Performance comparison of three module experiments.

Model
Performance (%)

Acc (mean ± std) F1 (mean ± std) Pre (mean ± std) Recall (mean ± std)

Res-BLS 90.07 ± 0.29 89.58 ± 0.32 90.47 ± 0.34 89.02 ± 0.32
MSC-BLS 90.04 ± 0.30 89.56 ± 0.32 90.48 ± 0.31 88.97 ± 0.33

RMSC-BLS 92.37 ± 0.25 91.99 ± 0.27 92.61 ± 0.29 91.59 ± 0.27
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5.2.2. Comparison of RMSC-BLS with Other Methods

To verify the effective of the proposed model, we compared RMSC-BLS with four methods,
namely RF, SVM, ELM and MLP, all of which used data of dsquence.

Table 5 shows the comparative analysis of RMSC-BLS with other methods, and Figure 9
shows the confusion matrices of each model. The confusion matrix of ELM and RMSC-BLS
is the experimental results of running once on dsquence. From Table 5, we can conclude that
the RMSC-BLS performs well in all performance indicators except for the Pre, with the
highest Acc (92.37%), F1 (91.99%), and Recall (91.59%). Although the Pre of RF is 92.75%,
which is 0.14% higher than that of RMSC-BLS, RMSC-BLS outperforms the other models in
most cases. This indicates that the model has achieved the best performance in handling
this specific task and can effectively identify and classify samples.

Table 5. Comparison of RMSC-BLS with other methods.

Model
Performance (%)

Acc F1 Pre Recall

RF 91.33 91.13 92.75 90.06
SVM 85.47 84.63 86.31 83.75
MLP 90.84 90.25 90.88 90.19
ELM 86.92 86.18 87.57 85.52

RMSC-BLS 92.37 91.99 92.61 91.59

To sum up, the RMSC-BLS model demonstrates better performance in this group of
experiments, and its Acc, F1, and Recall indicators are higher than other models. Com-
pared with traditional machine learning models, such as RF, SVM, MLP, and ELM, RMSC-
BLS has significant performance improvements, highlighting its advantages in birdsong
recognition tasks.

5.3. Discussion

In this study, we demonstrate that the constructed dsquence features exhibit superior
results compared to the original MFCC feature parameters of birdsongs. The constructed
dsquence features enhance the expression ability of features, which is crucial for birdsong
identification in complex environments. Many previous studies have also used MFCC
features for birdsong recognition. For instance, Xie improved ELM by using differential
evolution to classify MFCC features of nine birdsongs, with a maximum accuracy of
89.05% [46]. Wang et al. fused Mel-spectrogram and MFCC as input features and used
LSTM to recognize 264 birdsongs, with an average accuracy of 77.43% [47]. Murugaiya
et al. combined the improved GTCC feature with probability enhanced entropy to classify
twenty bird sounds in Borneo using SVM, with an accuracy of 89.5% [48]. At the same
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time, we also use ResNet18 with MFCC spectral features, achieving an accuracy of 92.11%,
though this took a long time.
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For the application of deep learning in the field of birdsong recognition, SRA et al.
used RNN-LSTM to explore audio feature extraction techniques (Mel Spectrograms and
MFCC) for bird identification of 91 species, and ultimately achieved an accuracy of 44.26%
on the validation set [49]. Mohanty et al. used spiking neural network with permutation
pair frequency matrix to classify 14 bird species, with an accuracy of 92% [50]. Carvalho
et al. used deep learning models to identify the Mel Spectrograms and MFCC of 91 bird
species, achieving an accuracy of 44.26% [51]. Xie et al. used deep learning to combine
two acoustic and visual features for late fusion and classified 14 birdsongs. The final best
classification F1 score was 95.95% [52]. Liu et al. used CNN to identify the Wavelet trans-
form (WT) [53], short-time Fourier transform (STFT) [54], and Hilbert–Huang transform
(HHT) [55] spectral features of 16 bird species, achieving accuracy rates of 89.11%, 88.36%,
and 81%, respectively [56]. On this basis, three spectral features were further applying
CNN to obtained CNN-WT, CNN-STFT, and CNN-HHT features. The results obtained
using our proposed model RMSC-BLS were 91.22%, 90.78%, and 85.20%, respectively.

Although these studies have made significant improvements, the lack of standardized
benchmark datasets makes it difficult to directly compare methods even using the same
indicators. From the above research, it can be concluded that the proposed RMSC-BLS
model achieves a higher classification accuracy than most of these birdsong classification
methods. These results clearly indicate that the improved BLS is successful in birdsong
classification, as it can more fully express the sample information of birdsong.

6. Limitations and Future Scope

This paper constructs a differential MFCC feature sequence and proposes the RMSC-
BLS-dsquence method based on the mutual similarity between the nodes and class to carry
out research on birdsong recognition. By optimizing the nodes of BLS and proving its
effectiveness on three features, it demonstrated better performance on four evaluation
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indicators. There are still more problems to be solved in the feature works. Here are some
of the most important points:

(1) Extract more different features and extend the method to these features.
(2) The categories and sample size of birdsongs need to be expanded. The RMSC-BLS

model will be extended to encompass a wider range of birdsongs as well as other
audio recognition applications.

(3) The weights of the input layer and feature nodes in the BLS, as well as the weights from
feature nodes to enhancement nodes, are randomly generated and not interpretable.
Therefore, future research will further optimize these two parameters.

(4) Establish the connection between bird species identification results and bird biodiver-
sity assessment indicators to explore the relationship between diversity indices. The
cross-species identification contributes to a broader understanding of bird diversity
and interactions within ecosystems.

7. Conclusions

In this study, we focus on 16 kinds of bird species as research objects and construct
the differential MFCC features. To enhance the learning process, the RMSC-BLS method is
proposed by introducing residual block in BLS to learn the residuals between feature nodes
and enhancement nodes and using mutual similarity to measure the correlation between
nodes and class for nodes selection. Experiments show that the proposed method has
improved compared to the original BLS in all three features, achieving the best recognition
accuracy of 92.37%. In general, the proposed RMSC-BLS method can identify the birdsong
effectively and efficiently and has a good generalization ability.
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