Optimization of Drying Kinetics and Stone Milling of Chickpea (Cicer arietinum): An Investigation of Moisture Content and Milling Speed Effects on Mill Operative Parameters, Particle Size Distribution, and Flour Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Drying Kinetics Measurements
2.2. Experimental Design
2.3. Description of Chickpea Drying, Conditioning, and Milling Processes
2.4. Measurement of Milling Operative Parameters
2.5. Evaluation of Flour Particle Size
2.6. Flour Characterization and Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chickpea Dehydration Kinetics
3.2. Milling Operative Parameters
3.3. Particle Size Distribution
3.4. Flour Characterization and Analysis
3.5. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization. FAO Statistics Reports of Chickpea; FAO: Rome, Italy, 2021. [Google Scholar]
- Rehm, C.D.; Goltz, S.R.; Katcher, J.A.; Guarneiri, L.L.; Dicklin, M.R.; Maki, K.C. Trends and Patterns of Chickpea Consumption among United States Adults: Analyses of National Health and Nutrition Examination Survey Data. J. Nutr. 2023, 153, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Shafaei, S.M.; Masoumi, A.A.; Roshan, H. Analysis of water absorption of bean and chickpea during soaking using Peleg model. J. Saudi Soc. Agric. Sci. 2016, 15, 135–144. [Google Scholar] [CrossRef]
- Sivakumar, C.; Chaudhry MM, A.; Nadimi, M.; Paliwal, J.; Courcelles, J. Characterization of roller and Ferkar-milled pulse flours using laser diffraction and scanning electron microscopy. Powder Technol. 2022, 409, 117803. [Google Scholar] [CrossRef]
- Chenoll, C.; Betoret, N.; Fito, P. Analysis of chickpea (var.“Blanco Lechoso”) rehydration. Part I. Physicochemical and texture analysis. J. Food Eng. 2009, 95, 352–358. [Google Scholar] [CrossRef]
- Sofi, S.A.; Rafiq, S.; Singh, J.; Mir, S.A.; Sharma, S.; Bakshi, P.; McClements, D.J.; Khaneghah, A.M.; Dar, B.N. Impact of germination on structural, physicochemical, techno-functional, and digestion properties of desi chickpea (Cicer arietinum L.) flour. Food Chem. 2023, 405, 135011. [Google Scholar] [CrossRef]
- Raza, H.; Ameer, K.; Zaaboul, F.; Sharif, H.R.; Ali, B.; Shoaib, M.; Akhtar, W.; Zhang, L. Effects of ball-milling on physicochemical, thermal, and functional properties of extruded chickpea (Cicer arietinum L.) powder. CyTA-J. Food 2019, 17, 563–573. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Bonaccorsi, G.; Lorini, C.; Cini, E. Assessment of the rheological properties and bread characteristics obtained by innovative protein sources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel food or potential improvers for wheat flour? LWT–Food Sci. Technol. 2020, 118, 108867. [Google Scholar] [CrossRef]
- Cappelli, A.; Bini, A.; Cini, E. The effects of storage time and environmental storage conditions on flour quality, dough rheology, and biscuit characteristics: The case study of a traditional italian biscuit (Biscotto di Prato). Foods 2022, 11, 209. [Google Scholar] [CrossRef]
- Venturi, M.; Cappelli, A.; Pini, N.; Galli, V.; Lupori, L.; Granchi, L.; Cini, E. Effects of kneading machine type and total element revolutions on dough rheology and bread characteristics: A focus on straight dough and indirect (biga) methods. LWT–Food Sci. Technol. 2022, 153, 112500. [Google Scholar] [CrossRef]
- Choo, K.; Ramachandran, R.P.; Sopiwnyk, E.; Paliwal, J. Effects of Seed Moisture Conditioning and Mechanical Scouring Pre-Treatments on Roller-Milled Green Lentil (Lens culinaris) and Chickpea (Cicer arietinum) Flours. Food Bioprocess Technol. 2022, 15, 1311–1326. [Google Scholar] [CrossRef]
- Cappelli, A.; Guerrini, L.; Parenti, A.; Palladino, G.; Cini, E. Effects of wheat tempering and stone rotational speed on particle size, dough rheology and bread characteristics for a stone-milled weak flour. J. Cereal Sci. 2020, 91, 102879. [Google Scholar] [CrossRef]
- Thakur, S.; Scanlon, M.G.; Tyler, R.T.; Milani, A.; Paliwal, J. Pulse flour characteristics from a wheat flour miller’s perspective: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 775–797. [Google Scholar] [CrossRef]
- Sayar, S.; Turhan, M.; Gunasekaran, S. Analysis of chickpea soaking by simultaneous water transfer and water–starch reaction. J. Food Eng. 2001, 50, 91–98. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- American Association of Cereal Chemists (AACC). Official Methods of the AACC, 8th ed.; Method 44-15A, approved October 1975, revised October 1981; Method 76-30A, approved May 1969, revised October 1982, and October 1984; Method 76-31, approved September 1992; AACC: St. Paul, MN, USA, 1992. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Zanoni, B.; Peri, C. Parte prima: Modelli e Teoria delle Operazioni Unitarie. In Manuale di Tecnologie Alimentari I; CUSL: Milano, Italy, 2013. [Google Scholar]
- Lerici, C.R.; Lercker, G. Principi di Tecnologie Alimentari; Clueb: Bologna, Italy, 1984. [Google Scholar]
- Warechowska, M.; Markowska, A.; Warechowski, J.; Miś, A.; Nawrocka, A. Effect of tempering moisture of wheat on grinding energy, middlings and flour size distribution, and gluten and dough mixing properties. J. Cereal Sci. 2016, 69, 306–312. [Google Scholar] [CrossRef]
- Pandey, J.P.; Garg, S.K.; Lohani, U.C. Studies on continuous grinding process for dried. J. Eng. Sci. Technol. 2010, 5, 140–150. [Google Scholar]
- Loubes, M.A.; González, L.C.; Tolaba, M.P. Modeling energy requirements in planetary ball milling of rice grain. Part. Sci. Technol. 2022, 40, 66–73. [Google Scholar] [CrossRef]
- Vishwakarma, R.K.; Shivhare, U.S.; Gupta, R.K.; Yadav, D.N.; Jaiswal, A.; Prasad, P. Status of pulse milling processes and technologies: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1615–1628. [Google Scholar] [CrossRef]
- Ye, J.; Hu, X.; Luo, S.; Liu, W.; Chen, J.; Zeng, Z.; Liu, C. Properties of starch after extrusion: A review. Starch-Stärke 2018, 70, 1700110. [Google Scholar] [CrossRef]
- Colussi, R.; Kringel, D.; Kaur, L.; da Rosa Zavareze, E.; Dias AR, G.; Singh, J. Dual modification of potato starch: Effects of heat-moisture and high pressure treatments on starch structure and functionalities. Food Chem. 2020, 318, 126475. [Google Scholar] [CrossRef]
- Trappey, E.F.; Khouryieh, H.; Aramouni, F.; Herald, T. Effect of sorghum flour composition and particle size on quality properties of gluten-free bread. Food Sci. Technol. Int. 2015, 21, 188–202. [Google Scholar] [CrossRef]
- Loubes, M.A.; González, L.C.; Tolaba, M.P. Pasting behaviour of high impact ball milled rice flours and its correlation with the starch structure. J. Food Sci. Technol. 2018, 55, 2985–2993. [Google Scholar] [CrossRef] [PubMed]
Sample | Flour Yield (%) | Temperature Increase (°C) (∆T) | Milling Time (min) | Energy Consumption (kWh) | Average Power (kW) | Specific Milling Energy (kJ/kg) |
---|---|---|---|---|---|---|
U 8%, speed 120 RPM | 97.66 ± 1.15 | 8.97 ± 0.61 a | 47.92 ± 1.42 av | 0.222 ± 0.01 v | 0.277 ± 0.01 a | 418.36 ± 16.40 v |
U 8%, speed 220 RPM | 97.95 ± 0.91 | 9.13 ± 3.75 b | 39.19 ± 7.09 bw | 0.237 ± 0.04 w | 0.364 ± 0.01 c | 446.90 ± 75.97 v |
U 8%, speed 320 RPM | 97.17 ± 1.28 | 14.20 ± 0.92 c | 31.29 ± 7.85 bw | 0.240 ± 0.04 w | 0.466 ± 0.04 d | 455.34 ± 88.78 v |
U 10%, speed 120 RPM | 97.20 ± 1.31 | 8.13 ± 2.15 a | 63.38 ± 10.41 cx | 0.280 ± 0.04 x | 0.265 ± 0.00 b | 518.22 ± 82.44 w |
U 10%, speed 220 RPM | 97.05 ± 0.23 | 11.50 ± 2.29 ab | 48.74 ± 16.32 cx | 0.287 ± 0.09 x | 0.354 ± 0.01 c | 532.15 ± 168.20 w |
U 10%, speed 320 RPM | 98.00 ± 0.68 | 12.13 ± 1.80 bc | 37.20 ± 10.26 abvw | 0.284 ± 0.06 x | 0.461 ± 0.02 d | 521.57 ± 122.90 w |
U 12%, speed 120 RPM | 97.00 ± 0.67 | 9.83 ± 0.29 ab | 93.13 ± 4.01 dy | 0.448 ± 0.06 y | 0.288 ± 0.09 a | 812.92 ± 109.81 x |
U 12%, speed 220 RPM | 97.26 ± 1.41 | 10.90 ± 1.21 b | 58.98 ± 5.25 bcwx | 0.392 ± 0.13 z | 0.393 ± 0.09 e | 710.86 ± 239.50 x |
U 12%, speed 320 RPM | 97.91 ± 0.31 | 12.37 ± 1.15 c | 45.05 ± 12.60 bcwx | 0.397 ± 0.13 z | 0.524 ± 0.03 f | 712.70 ± 225.16 x |
Sample | <125 µm (%) | 125–250 µm (%) | 250–400 µm (%) | 400–600 µm (%) | >600 µm (%) |
---|---|---|---|---|---|
U 8%, speed 120 RPM | 8.67 ± 7.51 | 25.00 ± 2.00 a | 31.67 ± 4.04 | 28.33 ± 5.13 ax | 6.33 ± 0.58 ax |
U 8%, speed 220 RPM | 8.67 ± 7.57 | 30.83 ± 4.65 ab | 34.17 ± 2.25 | 21.83 ± 10.15 ax | 4.50 ± 0.50 by |
U 8%, speed 320 RPM | 13.00 ± 8.72 | 33.00 ± 4.00 ab | 34.00 ± 6.93 | 16.67 ± 5.51 ax | 3.33 ± 0.58 cz |
U 10%, speed 120 RPM | 14.67 ± 4.16 | 27.67 ± 3.21 a | 29.67 ± 3.51 | 23.00 ± 7.00 ax | 5.00 ± 1.00 ax |
U 10%, speed 220 RPM | 13.67 ± 4.51 | 34.00 ± 6.00 ab | 32.67 ± 2.89 | 15.33 ± 3.06 ax | 4.33 ± 1.15 by |
U 10%, speed 320 RPM | 17.67 ± 7.51 | 41.67 ± 4.04 c | 28.67 ± 2.89 | 8.00 ± 3.61 cz | 4.00 ± 1.73 by |
U 12%, speed 120 RPM | 13.33 ± 5.13 | 30.67 ± 6.81 ab | 31.00 ± 2.65 | 18.33 ± 4.16 ax | 6.67 ± 1.53 ax |
U 12%, speed 220 RPM | 15.00 ± 11.79 | 29.33 ± 7.09 ab | 31.67 ± 5.51 | 17.33 ± 2.08 ax | 6.67 ± 3.06 ax |
U 12%, speed 320 RPM | 16.67 ± 13.05 | 38.00 ± 7.00 b | 27.33 ± 7.09 | 12.67 ± 3.06 by | 5.33 ± 1.53 ax |
Sample | Starch (%) | Damaged Starch (%) | Protein (g/100 g) | Total Polyphenols (mg/kg) |
---|---|---|---|---|
U 8%, speed 120 RPM | 41.00 ± 2.17 x | 1.38 ± 0.28 a | 20.93 ± 0.38 x | 389.00 ± 15.10 |
U 8%, speed 220 RPM | 40.07 ± 2.15 x | 1.66 ± 0.28 a | 20.07 ± 0.12 y | 392.33 ± 10.02 |
U 8%, speed 320 RPM | 40.47 ± 1.05 x | 1.89 ± 0.38 a | 20.93 ± 0.40 x | 427.33 ± 28.02 |
U 10%, speed 120 RPM | 38.87 ± 2.15 x | 1.35 ± 0.43 a | 19.93 ± 0.65 y | 395.67 ± 26.10 |
U 10%, speed 220 RPM | 40.33 ± 1.45 x | 1.57 ± 0.40 a | 20.43 ± 0.38 x | 411.67 ± 7.37 |
U 10%, speed 320 RPM | 39.77 ± 1.12 x | 1.94 ± 0.15 b | 20.43 ± 0.25 x | 415.00 ± 43.27 |
U 12%, speed 120 RPM | 37.67 ± 1.52 y | 1.16 ± 0.32 a | 19.70 ± 0.40 y | 474.33 ± 142.38 |
U 12%, speed 220 RPM | 36.90 ± 2.69 y | 1.30 ± 0.35 a | 19.73 ± 0.98 y | 389.67 ± 20.50 |
U 12%, speed 320 RPM | 38.23 ± 2.67 y | 1.78 ± 0.31 a | 19.43 ± 0.86 y | 393.00 ± 7.94 |
Pearson Correlation Matrix | ||
---|---|---|
Chickpea Moisture Content | Stone Rotational Speed | |
Starch (%) | −0.57 | 0.06 |
Damaged starch (%) | −0.25 | 0.62 |
Protein (g/100g) | −0.61 | 0.05 |
Polyphenols (mg/kg) | 0.13 | −0.06 |
Flour yield (%) | −0.09 | 0.19 |
Temperature increase (°C) (DT) | 0.05 | 0.67 |
Energy consumption (kWh) | 0.74 | −0.04 |
Average power (kW) | 0.14 | 0.92 |
Specific milling energy (kJ/kg) | 0.71 | −0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappelli, A.; Zaninelli, M.; Cividino, S.; Fiscella, M.; Cini, E.; Parenti, A.; Masella, P. Optimization of Drying Kinetics and Stone Milling of Chickpea (Cicer arietinum): An Investigation of Moisture Content and Milling Speed Effects on Mill Operative Parameters, Particle Size Distribution, and Flour Composition. Appl. Sci. 2023, 13, 11084. https://doi.org/10.3390/app131911084
Cappelli A, Zaninelli M, Cividino S, Fiscella M, Cini E, Parenti A, Masella P. Optimization of Drying Kinetics and Stone Milling of Chickpea (Cicer arietinum): An Investigation of Moisture Content and Milling Speed Effects on Mill Operative Parameters, Particle Size Distribution, and Flour Composition. Applied Sciences. 2023; 13(19):11084. https://doi.org/10.3390/app131911084
Chicago/Turabian StyleCappelli, Alessio, Mauro Zaninelli, Sirio Cividino, Mattia Fiscella, Enrico Cini, Alessandro Parenti, and Piernicola Masella. 2023. "Optimization of Drying Kinetics and Stone Milling of Chickpea (Cicer arietinum): An Investigation of Moisture Content and Milling Speed Effects on Mill Operative Parameters, Particle Size Distribution, and Flour Composition" Applied Sciences 13, no. 19: 11084. https://doi.org/10.3390/app131911084
APA StyleCappelli, A., Zaninelli, M., Cividino, S., Fiscella, M., Cini, E., Parenti, A., & Masella, P. (2023). Optimization of Drying Kinetics and Stone Milling of Chickpea (Cicer arietinum): An Investigation of Moisture Content and Milling Speed Effects on Mill Operative Parameters, Particle Size Distribution, and Flour Composition. Applied Sciences, 13(19), 11084. https://doi.org/10.3390/app131911084