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Abstract: For the development of reinforced concrete structures and infrastructure construction,
traditional rebar checking and acceptance methods have shortcomings in terms of efficiency. The
use of digital image processing technology cannot easily identify a rebar configuration with complex
and diverse backgrounds. To solve this problem, an inspection method combining deep learning and
digital image processing techniques is proposed using an improved DeeplabV3+ model to identify
reinforcing bars, with the identification results subjected to digital image processing operations to
obtain the size information of the reinforcing bar. The proposed method was validated through a
field test. The results of the experiment indicated that the proposed model is more accurate than other
models, with a mean Intersection over Union (mIoU), precision, recall, and F1 score reaching 94.62%,
97.42%, 96.95%, and 97.18%, respectively. Moreover, the accuracy of the dimension estimations for
the test reinforcements met the engineering acceptance standards.

Keywords: intelligent detection; rebar size measurement; DeeplabV3+ model; attention mechanism

1. Introduction

During the construction of reinforced concrete structures and infrastructures, the
acceptance of reinforcements before concealment is one of the key tasks for quality control
in cast-in-place reinforced concrete structures. The traditional quality inspection methods
involve the inspectors climbing the buildings and using tape measures and dial calipers to
measure the size and position of the reinforcements. These approaches have disadvantages,
such as high human resource and time consumption, and low work efficiency. Mean-
while, intelligent recognition methods based on traditional image processing face many
challenges. Their image feature extraction relies mainly on manually designed feature ex-
tractors, requiring specialized image segmentation algorithms tailored to specific scenarios
and tasks. These methods are unable to simultaneously address different scenarios, and
detection accuracy is significantly affected by factors such as the background and lighting.
Therefore, exploring a more efficient, intelligent, and versatile method for rebar detection
on construction sites holds research significance and practical value.

Recently, various algorithms based on convolutional neural networks (CNNs) [1] have
begun to be applied to the construction industry, such as target detection and semantic
segmentation. Target detection is mainly divided into one-stage and two-stage detection
models. The former has shown outstanding performance in terms of detection speed,
which includes the Yolo series [2–8] and SSD [9], while the latter focuses on the accuracy of
detection, which includes Faster R-CNN [10] and Mask R-CNN [11]. Semantic segmentation
is mainly divided into segmentation methods based on region classification and pixel
classification, the former methods including multi-scale patch aggregation (MPA) [12] and
simultaneous detection and segmentation (SDS) [13], and the latter methods consisting of
the Deeplab series [14–16] and SegNet [17].
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Many attempts have been made to apply deep learning algorithms in the construction
industry. Guo et al. [18]. used an improved Faster R-CNN algorithm to extract features of
helmets using VGG16 as a feature extraction network, which can detect whether helmets
were worn or not, with high accuracy. Chen et al. [19] used the lightweight network
PP-LCNet as the backbone network of the YOLOv4 model, and used deep separable
convolution to significantly improve the detection speed while ensuring the accuracy of
helmet detection. Liu et al. [20] proposed a dense-end face detection algorithm based
on YOLOV5, which reduced repetitive gradient information by introducing cross-stage
connections and incorporating an attention mechanism to improve the feature extraction
capability of the network. In terms of structural health monitoring, Park et al. [21] designed
a real-time crack detection system using the YOLOV3-tiny model as well as laser sensors.
Ruan et al. [22] used the DeeplabV3+ model combined with unmanned aerial vehicle
inspection to identify concrete shedding and exposed reinforcements on concrete bridge
surfaces. Ahmed et al. [23] used deep learning methods to process bridge GPR data for the
rapid detection and localization of bridge deck reinforcements. Regarding rebar detection,
Zheng et al. [24] proposed a multi-scale steel bar detection network RebarNet based on the
YOLOv5 embedded attention mechanism, which can effectively reduce missed and false
detections in real-time detection-based steel bar counting detection tasks. Shin et al. [25]
developed an automated system based on convolutional neural network (CNN) computer
vision technology for estimating the size of steel bars in bundled packaging and counting
the quantity. Yan et al. [26] added bottom-up path and attention mechanisms to the Mask
R-CNN model to obtain a more accurate rebar target detection. However, their subsequent
treatment of rebars still relied on traditional image processing techniques, limiting its
applicability to relatively narrow scenarios. An et al. [27] improved the Harris corner
detection algorithm and combined it with a laser rangefinder to propose an image-based
intelligent ranging system for measuring steel bar spacing. However, this method requires
the manual setting of relevant parameters for different scenarios. While deep learning
techniques have been extensively adopted in the construction industry, there remains a
research gap in applying this technology to the detection of rebar engineering dimensions.
Currently, there is still a lack of a fast, convenient, highly efficient, and widely applicable
intelligent method for detecting rebar dimensions.

To solve the current application needs of intelligent inspection and to achieve the
detection of a concealed reinforcement’s configuration quickly and conveniently, this study
innovatively combines smartphones with advanced deep learning technology to propose a
new non-contact method for detecting the dimensions of rebars, without the need to set
specific feature extractors based on specific scenes, making it more widely applicable, and
there is very limited existing research in this area. It utilizes smartphones as capture devices
to capture photos of rebars and then employs the DeeplabV3+ [28] model for automatic
rebar configuration recognition. Compared to traditional manual measurement methods,
the approach in this paper is more efficient, convenient, and rapid. Furthermore, this study
applies advanced deep learning technology to the engineering domain, which is conducive
to advancing the intelligence in the field of engineering. However, due to the original
design intent of the DeeplabV3+ model not being focused on segmenting rebar objects, it
faces the following issues in practical applications for rebar segmentation tasks:

(1) The segmentation of rebar edges is different, resulting in missed detections in local
areas of rebars;

(2) The identification of the rebar intersections and discontinuous segmentation is incom-
plete;

(3) Due to the effects of the background and lighting, there are some instances where the
background is mistakenly checked as rebar.

Therefore, to address the aforementioned issues, this study made targeted improve-
ments to the network structure of the DeeplabV3+ model. It adopted ResNet50 as the
backbone network for the enhanced model and incorporated an attention mechanism
within ResNet50 to handle high-semantic-information feature layers. Simultaneously, the
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dilation rates of the ASPP module were reduced to allow the model to more accurately
capture information from targets of different sizes. The rebar segmentation configura-
tion obtained from the improved model was further processed using image processing
techniques, such as edge contour detection, to obtain the diameter and spacing of the
rebars. The field test results showed that the improved DeeplabV3+ model could accurately
identify the dimensional information of the rebar in line with acceptance criteria.

The overall structure of the study takes the form of six sections, including this introduc-
tory section. Section 2 is the methodology section, primarily introducing the foundational
model DeeplabV3+ and analyzing its existing issues in detail. It also focuses on providing a
comprehensive introduction to the improved DeeplabV3+ model. Section 3 offers a compre-
hensive explanation of the experimental parameters and evaluation metrics employed in
this study. Section 4 presents experimental results and analyses, validating the effectiveness
of the improvements through a comparative analysis of the results. Section 5 delves into
the aspect of rebar size measurement. The final section, Section 6, provides a conclusive
summary of this paper, outlining the limitations of this study and suggesting directions for
future research.

2. Methodology
2.1. DeeplabV3+

To achieve high-precision segmentation and recognition of the rebars, a model with
excellent performance in the field of semantic segmentation was selected as the basic
algorithm of present study. The Deeplab series was developed on the basis of a fully
convolutional network (FCN) [29], which combines deep convolutional networks and
conditional random fields (CRFs) and uses Atrous convolution to effectively enlarge the
field of view. In 2018, DeeplabV3+, the latest model in the Deeplab series introduced by the
Google team, achieved an outstanding result of up to an 87.8% mIoU on the PASCAL VOC-
2012 dataset, with segmentation results that far outperformed other models. Therefore,
DeeplabV3+ was chosen as the base algorithm. The network structure is shown in Figure 1.
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The encoder part of the network consists of a backbone and an atrous spatial pyramid
pooling (ASPP). A residual mechanism was used to connect separable convolutions, which
was divided into three flow steps: entry flow, middle flow, and exit flow. The input
image passed the backbone network to extract one high-level feature map and one low-
level feature map. The high-semantic-information feature map was passed to the ASPP
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module, which was divided into five parallel operations: normal convolution (1 × 1),
three atrous convolution groups with different rates, and image pooling. This approach
expanded the convolution field, performed multi-scale feature fusion to reduce the effects
of inconsistent input scales, and finally performed a 1 × 1 convolution operation before
passing to the decoder.

In the decoder section, the ASPP-processed feature maps were bilinearly unsampled
by a factor of 4 and were then concatenated with the low-semantic-information feature
maps output by the backbone network using a 1 × 1 convolution to the adjust channel.
After a tandem operation, the 3 × 3 convolution kernel and bilinear upsampling by a factor
of 4 were applied to obtain the final segmentation map.

While this model has achieved excellent results on the PASCAL VOC-2012 dataset, its
original design was not specifically tailored for rebar images, and its performance in rebar
image recognition is not ideal. In order to better adapt the model to the task of rebar image
segmentation, improvements and optimizations were needed.

2.2. Improved DeeplabV3+

Based on rebar feature information and segmentation detail information, DeeplabV3+
was improved, as shown in Figure 2.
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(1) The detection of rebars was the target of present study. To reduce the complexity of
original DeeplabV3+ model, ResNet50 was selected as the backbone extraction network;

(2) According to the feature information and distribution pattern of the rebar dataset, an
efficient attention module was added to the backbone network to optimize the feature
extraction pattern of the network, as well as to deepen the sensitivity of the network
to identify rebar. Thus, the redundant operations of the network to extract non-object
features could be avoided;

(3) To solve the problem of incomplete edge information and loss of detailed information
in the segmentation effect of the original DeeplabV3+ model, the convolutional di-
lation rate and convolutional density of the cavity convolution in the ASPP module
were changed from 6, 12, and 18 to 3, 6, and 9, so there was no cavity loss when
performing scale fusion.
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2.2.1. Improvement of Backbone

The deep residual network was proposed by He et al. [30]. In general, the number
of neural network layers can be increased to make the network’s prediction better, but in
practice, it has been found that deepening the number of a neural network layer creates
the problem of gradient disappearance or gradient explosion. This can cause the network
to saturate or decline in accuracy on the training set, resulting in a degradation in model
performance. The advent of deep residual networks has enabled these problems to be
solved. A residual block was added to a deep residual network, as shown in Figure 3, where
the network obtains an expected value of H(x) when the input is x. Using the characteristics
of residual learning, the residual F(x) = H(x) − x is defined, so the original expected value
becomes F(x) + x, making the network easier to optimize.
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The original DeeplabV3+ model has a complex and diverse dataset. Thus, the adopted
backbone feature extraction network required a more complex feature extraction model,
such as the structure of the original backbone network Xception, which uses a residual
mechanism to connect the depthwise separable convolutions. This network has a complex
structure with a number of parameters, which is not suitable for the detection task of rebar.
To address this problem, ResNet50, which also has a residual mechanism, was chosen
as the part of the backbone extraction network for the DeeplabV3+ model. More simple
direct connections were added to the network, which had the advantages of having fewer
parameters, being easier to train, and faster convergence in comparison with Xception,
to fully take into account the feature scale matching problem and to improve the model
inference speed.

2.2.2. Efficient Channel Attention Module

The efficient channel attention module (ECA) [31] is an adaptation of the SENet [32],
which uses one-dimensional convolution to replace the fully connected layer, to solve
the problem that the dimensionality reduction operation adversely affects the correlation
between the learning channels of the network while sharing information using local cross-
channel to reduce the complexity of the network. The mechanism can be implemented
as follows: the feature dimensions [H, W, C] of the input feature layer are pooled using
the average to obtain the aggregated features [1, 1, C], and then the correlation between
channels is obtained by performing a one-dimensional convolution of size k to generate the
channel weights w. Finally, the weights are multiplied by the original input feature layer to
form a new feature layer. The network structure of ECA is shown in Figure 4.
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The size k of the one-dimensional convolution kernel in Figure 4 was determined
adaptively using the number of channels, C, as follows:

k = |t|odd =

∣∣∣∣ log2C + b
γ

∣∣∣∣
odd

, (1)

where k denotes the convolution kernel size, C denotes the number of channels, |t|odd
denotes the nearest odd number to t, and γ and b were set to fixed values of 2 and 1,
respectively. After determining k, the channel weights w can be expressed as

w = σ[C1Dk(y)], (2)

where C1D denotes a one-dimensional convolution, σ is the sigmoid activation function,
and y is the channel aggregation feature.

Although replacing the backbone network could effectively adjust the backbone
network parameters, the sensitivity to feature information was not enhanced. To solve
this problem, some improvements were made to the backbone network, as shown in
Figure 5: the ECA was added to Resnet50 to enhance the sensitivity of the network to
feature information and to reduce the unnecessary information processing procedure.
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2.2.3. Adjusting Atrous Convolution

The ASPP (Atrous Spatial Pyramid Pooling, Figure 6) module is a critical component
of the Deeplabv3+ model used to capture multi-scale contextual information on top of the
feature maps extracted from the backbone network. Atrous convolution forms the core
of the ASPP module. Atrous convolution with a dilation rate of r expands the receptive
field of the original n × n convolution kernel to N = n + (n – 1)(r − 1) by adding r − 1 zeros
between adjacent filter values in each spatial dimension, which ensures the output feature
map size. Figure 7 shows the convolution schematic. The ASPP module uses parallel
atrous convolutions with four different atrous rates to segment objects at different scales
in combination with image-level features. The global contextual information is fused by
applying average pooling on top of the last feature map of the backbone network. The
results of each operation along the channel are concatenated, and a 1 × 1 convolution is
performed to obtain the output.
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The dilation rates for the parallel atrous convolutions of the ASPP module in the origi-
nal DeeplabV3+ were 6, 12, and 18. When the backbone network proceeded with feature
extraction, the feature map resolution gradually decreased, and the dilation rates of 6, 12,
and 18 could not effectively extract features from multi-scale images about rebar if a smaller
void rate was not set. This led to a lack of ability to segment small targets. Considering
the existence of rebar with multiple diameters, to extract multi-scale image features more
effectively and to improve the segmentation capability of targets with different size rebars,
the dilation rates of the atrous convolution were adjusted to be 3, 6, and 9.

3. Datasets and Experimental Conditions
3.1. Datasets

The main difficulties in the detection of rebar on a construction site are as follows: the
background of the rebar is complex, and there is a possibility that the background color
is similar to that of the rebar. Furthermore, pipes, pads, and other tools from utilities, as
well as shadows from light, are present with the rebar at construction site. As there is no
public rebar dataset, we used smartphones to capture a large number of rebar images at
the construction site. To prevent training overfitting and to improve the accuracy of the
model, a data enhancement approach was adopted to expand the dataset by processing the
images using flipping, exposure and perspective change, and motion blurring to enrich the
diversity of the training sample. The final dataset contained 3130 images in total, which
was divided into three groups at a ratio of 8:1:1, i.e., 2504 training images, 313 validation
images, and 313 test images.

3.2. Experimental Conditions

The data were trained using the improved DeeplabV3+ model. The input image size
was 512 × 512, the batch size was eight, the two training categories were set (i.e., rebar
and background), the weight decay index was 0.001, the learning rate was 0.0001, and the
number of iterations was set as 100. The specific training environment is shown in Table 1.
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Table 1. Experimental environment.

Configuration Parameter

CPU Intel Xeon E5-2686 v4
GPU NVIDIA GeForce RTX 3080 TI
Development environment Keras 2.3.1, TensorFlow 2.6, CUDA 11.2, cuDNN 8.0
Operating system Ubuntu 18.04

3.3. Evaluation Index

Semantic segmentation was performed as a pixel-level classification. To evaluate the
performance of rebar segmentation algorithm intuitively and quantitatively, the mean
Intersection over Union (mIoU), precision, recall and F1 score were used as evaluation
metrics, which are defined with respect to the pixel evaluation category. The corresponding
formulas are as follows:

Precision =
TP

FP + TP
, (3)

Recall =
TP

FN + TP
, (4)

mIoU =
1
k

k

∑
i=0

TP
FN + FP + TP

, (5)

F1_score =
2TP

2TP + FP + FN
(6)

where TP denotes the number of pixels of segmented rebar, FP denotes the number of
pixels of segmented background, FN denotes the number of pixels of unsegmented rebar,
and k represents the number of categories.

4. Results and Analysis

An independent comparative analysis on the test results was conducted in terms of
three aspects: backbone network, adding attention mechanism, and atrous convolutional
adjustment, to validate the effectiveness of the improved model.

4.1. Performance Comparison of Improved Backbone

Using the original DeeplabV3+ model, the detection of the rebar often resulted in
missed and false results. The main reason is that the features of the targets were not
sufficiently utilized by the backbone network, and the detection scale did not match well
with the target scale. Based on the distribution characteristics of steel rebars, to reduce the
computational time, Resnet50 was chosen as the backbone network. In such a network,
the tail pooling layer and the fully connected layer were cut and an attention mechanism
was introduced before the different convolutional stages to improve the ability to extract
feature information. To verify the effectiveness of the improved backbone network, ablation
experiments were conducted with Xception, Mobilenetv2, Resnet50, and Resnet101. The
experimental results are shown in Table 2.

Table 2. Comparison experiment of the backbone network.

Method Backbone Size Param
(M)

mIoU
(%)

Precision
(%) Recall (%) F1_Score (%)

original
DeeplabV3+

Xception

512 × 512

42.1 89.66 97.20 91.91 94.48
Mobilenetv2 2.7 84.12 94.88 89.08 91.89

Resnet50 26.9 88.58 96.16 90.43 93.21
Resnet101 45.9 90.11 94.42 93.91 94.16

Ours 27.4 92.98 97.32 95.29 96.29
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With the same input data, the improved backbone network resulted in a 3.32% im-
provement over Xception, 4.4% over Resnet50, 8.86% over Mobilenetv2, and 2.87% over
Resnet101 in terms of the mIoU. For the precision and recall, the detection performance
of the improved backbone network was also improved compared to those of other back-
bone networks. Although the precision was only slightly improved by 0.12%, the recall
was improved by 3.38% in comparison with Xception. The selection of Resnet50 and the
combination of the attention mechanism could effectively reduce the number of network
parameters and improve the detection performance.

4.2. Ablation Experiment of Improved Module

To demonstrate the effectiveness of each improvement module, ablation experiments
were conducted. The network was trained and evaluated using the corresponding datasets.
The training parameters and loss functions of each module were consistent. The comparison
of the experimental results is shown in Table 3.

Table 3. Ablation experiments of improved module.

Serial
Number IB * AT * AC * Param (M) mIoU (%) Precision

(%)
Recall

(%)
F1_Score

(%)

1 42.1 89.66 97.20 91.91 94.48
2

√
26.9 88.58 96.16 90.43 93.21

3
√ √

27.4 92.98 97.32 95.29 96.29
4

√ √ √
27.4 94.62 97.42 96.95 97.18

IB *: improved backbone network; AT *: addition of an efficient channel attention module; AC *: adjustment of
atrous convolution.

After replacing the backbone network, the mIoU value decreased from 89.66% to
88.53%, and the precision and recall values decreased slightly, mainly because the replaced
simpler backbone network reduced the complexity of the model and resulted in a significant
reduction in the number of parameters. When an efficient channel attention module
was introduced to improve the model’s sensitivity to rebar information, The mIoU value
increased from 88.53% to 92.98%, the precision value increased from 96.16% to 97.32%, the
recall value increased from 90.43% to 95.29%, and the F1 score value increased from 93.21%
to 96.29%. Finally, when the atrous convolution was adjusted the mIoU value reached
94.62%, which was 4.96% higher than that of the original model, and the precision, recall and
F1 score also had some improvement, with the values reaching 97.42%, 96.95%, and 97.18%,
respectively, while the number of parameters decreased to 27.4 M. The experimental results
showed that the improved DeeplabV3+ model could effectively improve the detection
efficiency of the rebar images.

4.3. Comparative Results of Different Models

Other advanced models, including FCN, PSPNet [33], U-Net [34], U-Net++ [35],
SegNet, and R2U-Net [36] were chosen for a comparison. Table 4 presents the diverse
performance of these eight models across four evaluation metric categories, along with
the average inference time for each model on a single image. Our proposed method was
outstanding in terms of each metric category. To illustrate the superiority of the proposed
method more intuitively, four images were randomly selected from the test set, and the
detection results of the above methods for rebar image segmentation were compared, as
shown in Figure 8. It was found that our proposed model showed better segmentation
results than the other methods when the images contained shadows, occlusion, and rebar
intersection at the rebar edges.
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Table 4. Evaluation of different models for rebar detection.

Model mIoU (%) Precision
(%) Recall (%) F1_Score (%) Time

(s/Item)

U-Net 92.88 96.42 95.98 96.20 2.37
SegNet 86.72 90.87 88.52 89.68 2.14

FCN 82.30 88.43 85.19 86.78 2.72
U-Net++ 92.81 96.56 95.67 96.11 2.11
PSPNet 81.97 91.81 87.42 89.56 2.25

Deeplab v3+ 89.66 97.20 91.91 94.48 1.86
R2U-Net 92.98 96.68 95.48 96.08 1.42

Ours 94.62 97.42 96.95 97.18 1.21
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5. Rebar Size Measurements

After an accurate rebar segmentation configuration was obtained using the improved
DeeplabV3+ model, Canny operator edge detection was applied to process the segmenta-
tion configuration to accurately locate the rebar edge information. Then, the edge contour
lines were determined for rebar dimensional measurements. As shown in Figure 9, the
blue lines show the result of the line fitting. The green box was the inner contour of the
rebar grid, and the purple line shows the rebar spacing. To convert the image size into an
actual one, rebar with a known diameter was placed on the photograph or the rebar size
specification was obtained from the design drawing.

A variety of different diameters of rebar was selected including 8, 10, 12, 14, 16, and
20 mm. For each diameter of rebar, eight isometric positions were selected to measure the
diameter, and the average value of the diameter was obtained. Both the original and the
improved DeeplabV3 + model were used to identify the rebars and obtain their diameter.
Table 5 shows the results of the diameter detection before and after the improvement
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of DeeplabV3+. According to the requirements of the rebar diameter measurements, a
diameter error should be within 0.8 mm.
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Table 5. Comparison of diameter detection results using original and improved DeeplabV3+.

Type Real Diameter
/mm Model Test Results

/mm
Error
/mm

Qualified
or Not

8 8.32
DeeplabV3+ 9.21 +0.89 No

Ours 7.61 −0.71 Yes

12 11.86
DeeplabV3+ 13.12 +1.26 No

Ours 12.44 +0.58 Yes

14 14.16
DeeplabV3+ 15.05 +0.89 No

Ours 14.55 +0.39 Yes

16 15.94
DeeplabV3+ 17.17 +1.23 No

Ours 15.48 −0.66 Yes

18 18.02
DeeplabV3+ 18.93 +0.91 No

Ours 18.44 +0.42 Yes

20 19.92
DeeplabV3+ 21.04 +1.12 No

Ours 20.68 +0.76 Yes

From Table 5, the measurement error using original DeeplabV3+ for the above six
different types of steel bars was greater than 0.8 mm, which did not meet the diameter
acceptance requirements. Meanwhile, the absolute values of the diameter detection errors
using our improved DeeplabV3+ for six types of steel bars were 0.71, 0.58, 0.39, 0.66, 0.42,
and 0.76 mm, all of which were less than 0.8 mm and met the requirements of the rebar
diameter acceptance.

Six rebar grids were randomly selected for spacing measurements using a ruler. For
each grid, five isometric positions were selected and averaged for the spacing measurement.
The spacings of the selected six locations were detected using the original and the improved
DeeplabV3+ model to record the measured values and errors. According to the require-
ments of spacing measurements, a spacing error should be within 10 mm. The spacing
detection results using the original and the improved DeeplabV3+ model are shown in
Table 6. The results showed that the minimum value of the spacing detection error of the
model before the improvement was 14.25 mm, which did not meet the spacing acceptance
requirement, while the maximum value of the error after the improvement of the model
was 7.27 mm, which was less than 10 mm and met the spacing acceptance requirement.
Therefore, the detection accuracy of our proposed improved DeeplabV3+ model can meet
the requirements of rebar detection acceptance.
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Table 6. Comparison of spacing detection results using original and improved DeeplabV3+.

Number Real Spacing
/mm Model Test Results

/mm
Error
/mm

Qualified
or Not

1 203.5
DeeplabV3+ 184.4 −19.1 No

Ours 196.2 −7.3 Yes

2 202.4
DeeplabV3+ 186.2 −16.2 No

Ours 199.6 −2.8 Yes

3 201.9
DeeplabV3+ 181.4 −15.5 No

Ours 199.3 −5.6 Yes

4 201.6
DeeplabV3+ 183.1 −18.5 No

Ours 195.0 −6.6 Yes

5 206.8
DeeplabV3+ 184.4 −12.4 No

Ours 199.4 −7.4 Yes

6 202.3
DeeplabV3+ 188.1 −14.2 No

Ours 197.2 −5.1 Yes

6. Concluding Remarks

To address the challenge of rebar size detection in construction quality acceptance, an
improved DeeplabV3+ model combined with image processing techniques was proposed
for the fast identification and measurement of rebar. ResNet50 was used as the backbone
network instead of Xception for multi-scale feature fusion. The dilation rate and density
of the atrous convolution in the ASPP was adjusted, and an attention mechanism was
added to obtain a rebar segmentation configuration with high accuracy. The recognized
segmentation configuration was then used for image processing, such as edge detection, to
obtain an accurate measurement of the rebar’s size and spacing.

In comparison with the original DeeplabV3+ model, our proposed model improved
the mIoU, precision, recall, and F1 score by 4.96%, 0.22%, 5.04%, and 2.70%, respectively,
and the number of parameters was reduced from 42.1 M to 27.4 M. Moreover, in comparison
with other algorithms, our proposed model had higher detection accuracy and shorter
inference time for a single image. Furthermore, the diameter and spacing detection accuracy
of steel rebars reached the standard of acceptance; thus, it can be effectively applied for the
intelligent detection of steel rebars.

However, our research method also has certain limitations. The images in this research
dataset were collected under clear or dry weather conditions, without considering the
interference caused by rainy weather, which would result in wet backgrounds on the
template that could lead to reflections, as well as variations in lighting at different times.
When applied in situations of excessive brightness or darkness, as well as backgrounds
with wet reflections, this method led to significant errors in segmenting rebar images.
In future studies, we plan to expand the dataset by capturing steel images in different
weather conditions and at various times. We will also use data augmentation algorithms to
enhance image features, mitigate the impact of weather and lighting factors, and improve
the model’s robustness and generalization capabilities.
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