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Viscoelastic materials are abundant in nature and present in our daily lives. Examples
include paints, blood, polymers, biomaterials or food products. It is thus important to
study and understand the viscoelastic behaviour of these different materials.

In this Special Issue, a total of eleven contributions (ten research papers and one
review paper) from different areas of viscoelasticity (mathematical modelling, numerical
simulations) are presented.

McDermott et al. [1] proposed an improved viscoelastic turbulence model in a fully
developed drag reducing channel flow, where turbulent eddies are modelled by a k-ε repre-
sentation, together with polymeric solutions described by the finitely extensible nonlinear
elastic Peterlin (FENE-P) constitutive model. The performance of the model was evaluated
using a variety of direct numerical simulation data described by different combinations of
rheological parameters and was able to predict all regimes of drag reduction (low, intermedi-
ate, and high) with good accuracy. Ingelsten et al. [2] developed a new Lagrangian–Eulerian
method for the simulation of viscoelastic free surface flows. The approach was developed
from a method in which the constitutive equation for viscoelastic stresses was solved at
Lagrangian nodes connected by flow and interpolated onto a Eulerian grid using radial
basis functions. In the new method, a backwards-tracking methodology was used to allow
fixed locations for the Lagrangian nodes to be chosen a priori. The proposed method
was also extended to the simulation of viscoelastic free surface flows with the volume
of fluid method. Bertoco et al. [3] presented the HiGTree–HiGFlow solver for numerical
simulations of the KBKZ integral constitutive equation. The numerical method used finite
differences and tree-based grids, which leads to greater accuracy in local mesh refinement.
Wojcik et al. [4] performed fluid dynamic simulations using the FENE-P model and an
incompressible Newtonian fluid to understand the role of elasticity in the formation of
vortices in a narrow channel with a 90◦ curvature. The analysis bridged the flow behaviour
of a purely elastic fluid and that of a Newtonian fluid. Their predictions were in good
agreement with previous experimental and numerical works. Liu et al. [5] investigated
singularities in the stress field of the flow of a viscoelastic fluid at the stagnation point for
various viscoelastic constitutive models. Exact analytical solutions of two-dimensional
steady wall-free stagnation point flows for the generic Oldroyd 8-constant model were
obtained for the stress field using different material parameter relationships. Compatibility
with the conservation of momentum was considered for all solutions.

Aabid et al. [6] studied and summarised the active control of high-speed aerodynamic
flows. Vishalakshi et al. [7] studied 3D MHD fluid flows under the influence of a magnetic
field with an inclined angle. Their results have been used in many real-world applications,
e.g., automotive cooling systems, microelectronics, heat exchangers, etc. Anusha et al. [8]
studied the two-dimensional magnetohydrodynamic problem for a steady incompressible
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flow over a porous medium. They concluded that the porosity and radiation parameters
enhance the temperature distribution, while the suction/injection parameter suppresses
the temperature distribution. Skinner et al. [9] developed a computational algorithm
based on an accepted analytical model to investigate the viscoelastic behaviour of carbon
fibre-reinforced polymer composite flywheel rotors with an aluminium hub mounted by
press-fit. The simulations showed that over time the viscoelastic effects are likely to reduce
the peak stresses in the composite rim. However, viscoelasticity also affects the stresses
in the hub and at the hub–rim interface, leading to rotor failure. It was also found that
the charge/discharge cycles of the flywheel energy accumulator can lead to significant
fatigue loads.

Furlan et al. [10] derived different formulations to obtain a solution for Giesekus’
constitutive model for a flow between two parallel plates. Bertoco et al. [11] presented a
numerical study of the development length (the length from channel entry required for the
velocity to reach 99% of its fully developed value) of a pressure-driven viscoelastic fluid
flow (between parallel plates) modelled by the generalised constitutive Phan–Thien–Tanner
equation (gPTT). They concluded that at low values of the Weissenberg number (Wi), the
highest value of the development length was achieved for α = β = 0.5; at high values of Wi,
the highest value of the development length was achieved for α = β = 1.5.

Although submissions for this Special Issue have now closed, research into the field of
viscoelasticity continues to address various challenges we face today: medicine (e.g., drug
delivery, foods that consider their rheology, and complex blood flow), development of new
and smart materials (e.g., paints, biomaterials, and clothing), new industrial developments.
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