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Abstract: High heat load on diesel engines is a main cause of ship failure, which can lead to ship
downtime and pose a risk to personal safety and the environment. As such, predictive detection and
maintenance measures are highly important. During the operation of marine diesel engines, operating
data present strong dynamic, time lag, and nonlinear characteristics, and traditional models and
prediction methods cause difficulties in accurately predicting the heat load. Therefore, the prediction
of its heat load is a challenging and significant task. The continuously developing machine learning
technology provides methods and ideas for intelligent detection and diagnosis maintenance. The
prediction of diesel engine exhaust temperature using long short-term memory network (LSTM) is
analyzed in this study to determine the diesel engine heat load and introduce an effective method.
Spearman correlation coefficient method with the addition of artificial experience is utilized for
feature selection to obtain the optimal input for the LSTM model. The model is applied to validate
the ship data of the Shanghai Fuhai ship, and results show that the mean absolute percentage error
(MAPE) of the model is lowest at 0.089. Compared with other models, the constructed prediction
model presents higher accuracy and stability, as well as an optimal evaluation index. A new idea
is thus provided for combining artificial knowledge experience with data-driven applications in
engineering practice.

Keywords: diesel engine heat load; intelligent detection; long short-term memory network; prediction
model; evaluation index

1. Introduction

In dealing with the increasing severity of fossil energy crisis and the strict emission
requirements of internal combustion engines, the effective use of energy and environmen-
tal protection are also increasing in importance. If the diesel engine set has insufficient
combustion, then the fuel-generated heat decreases, resources are wasted, black smoke
and a large amount of CO and other harmful gases are discharged, and the environment
is polluted, which will cause harm to human body through direct inhalation [1-3]. The
diesel engine set is an important power source for ship navigation, and its normal work-
ing cycle is a major contributor to efficient transportation by sea, saving energy, and
reducing emission [4].

Taking exhaust manifold as an example, the finite element method is used by Li et al. [5]
to verify the effect of thermal load on its fatigue life. The high efficiency heat transfer
model is used by Zhang et al. [6] to analyze the direct relationship between cylinder head
fatigue life and average gas temperature. In addition, Chaboche model is established to
analyze the local deformation and leakage of cylinder head under thermal cycle test [7].
The failure of the ship’s exhaust valve was investigated and analyzed by El-Bitar et al. [8],
and it is determined that the high temperature environment would lead to the expansion
of microcracks and easy fracture. According to the above research, main equipment of the
diesel engine set will be damaged by high heat load, the ship will be stopped, which will
greatly increase the navigation cost, and the safety of ship equipment and environment will
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be seriously affected [9,10]. Previously, a Belize foreign ship lost control of its main engine
due to excessive heat load at the floating attachment of the Yangtze River No. 20. Fortunately,
it was timely assisted by the maritime department and did not cause a second accident.
At present, ship data are detected by sensors and transmitted to terminals. However,
when excessive heat load is detected by sensors, ship equipment and personal safety
may have been damaged [11]. Therefore, the prediction of its heat load can achieve the
preventive effect.

The heat load of diesel engine can be accurately characterized by exhaust temperature,
which can be estimated by predicting the exhaust temperature. However, factors affecting
the exhaust temperature are typically influenced by uncertain dynamic environmental
factors. As such, heat load prediction of marine diesel engine units is a challenging and
meaningful task. It is usually used to analyze the heat load of marine diesel engine units
through traditional methods, such as finite element analysis and linear regression model-
ing [12]. However, the accuracy of predicted parameters, results, and complex mapping
relationships are difficult to model due to the complex process inside the combustion
chamber. Complex and variable dynamic processes and nonlinear systems are modeled by
neural network methods, and its continuous development led to various applications in
marine diesel engines [13-16].

Artificial neural network (ANN) was used by Cay to replace traditional modeling to
predict engine fuel consumption, effective power, and exhaust temperature. The mean error
percentage (MEP) of the training test data was less than 2.7% [17]. Ignition timing, engine
speed and air-fuel ratio were used as model inputs by Liu et al. [18] to analyze whether
machine learning can be used to effectively predict engine exhaust temperature. Four
different algorithm combinations were used to evaluate the applicability of ANN. ANN
was used by Uslu et al. [19] to predict the emission and performance of an ether single-
cylinder diesel engine. The maximum mean absolute error range of 5% was obtained, and
the regression coefficient (R2) was in the range of 0.9640-0.9878. Despite the use of ANN
has potential effectiveness on exhaust temperature, a large number of initial parameters are
required in this study, and gradient explosion may lead to unsuccessful training, thereby
requiring additional time in adjusting the hyperparameters. Moreover, heat load is usually
characterized by nonlinear variations; collecting and obtaining these data are necessary
under various conditions for analysis and prediction. However, only several influencing
factors are analyzed, and the dependencies between the factors are ignored. Considering
the shortage of ANN, long short-term memory network (LSTM) model is considered for
prediction analysis.

LSTM network based on recurrent neural network (RNN) with three additional thresh-
olds is a special form that can solve the problem of gradient explosion and disappearance
in training [20]. Continuous development has led to the maturity of this neural network
model. However, a large amount of raw data is not effective when processed by LSTM,
so it is used together with other methods. The Spearman correlation coefficient method
(SR) is utilized in neural networks for feature selection to effectively capture dependencies
between variables by analyzing the correlation between two variables and removing redun-
dant information. A LSTM network used to predict passenger flow at stations was proposed
by Zhang et al. Spearman correlation features were used to select time and space factor
data that significantly and effectively affect passenger flow, and the accuracy of the predic-
tion model was improved [21]. Spearman correlation coefficient method was applied by
Jiao et al. [22] to explore the temporal connection of nonresidential consumers under multi-
ple time series. Spearman’s correlation coefficient is a widely used feature selection method.
The correlation between multiple information sequences can be effectively analyzed by this
method, and the best input of the network model can be provided. However, this purely
data-driven method determines dependencies on the basis of only the correlation between
feature variables, thereby leading to the exclusion of significant variables. Hence, artificial
experience needs to be added when screening features in advance, and significance tests
must be performed to ensure that accurate input is provided to the prediction model.
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As such, a hybrid prediction model incorporating the artificial empirical Spearman
correlation coefficient method (AESR) and long short-term memory network (LSTM) is
proposed in this study to achieve accurate and stable predictions of exhaust temperature
by using the AESR-LSTM model. Redundant information is eliminated through the Spear-
man correlation coefficient method, and the optimal input is derived by adding artificial
empirical supplementary variables while retaining those with high correlation ratings.
The hyperparameters are usually selected according to experience and then set in the
combination. The combination of cross-validation and grid search methods is used to
avoid the blindness of adjusting parameters. The hyperparameters combination of neural
network is scientifically optimized and adjusted, and the robustness and accuracy of the
prediction model are ensured. After the optimal parameter set is selected by grid search
and cross-validation, the model is trained again using the optimal parameters. The trained
LSTM model is utilized to predict the exhaust temperature and highlight the advantages
of the AESR-LSTM model for data trend prediction compared with other models. The
experimental results of the selected prediction model are consistent with the actual values.
The prediction result of the model can be sent to the console as a feedback signal, and more
convenience and information can be provided to the operator. The predicted results can be
used to analyze the combustion conditions in the combustion chamber. Complex models
do not need to be used to create analysis, and such signals are difficult to obtain by physical
sensors. The predicted trend results can be adopted to analyze the working condition
and emission substances of diesel engines, implement certain avoidance measures before
failure occurs, reduce the risk of accidents, improve the safety of ship systems, and prevent
serious personal injury and economic loss. The AESR-LSTM neural network modeling is
simpler than conventional modeling analysis because the workload of heat load research is
reduced, more comprehensive influencing factors are taken into account, complex changes
in the combustion chamber are predicted by a small amount of experimental data, and
more accurate prediction results are obtained. A new idea is provided in this study, which
combines artificial experience with data driven application in engineering practice.

Accordingly, a method for predicting diesel engine exhaust temperature that integrates
feature selection, parameter combination search, and comparative analysis of multiple
model combinations is proposed in this study. The remainder of this paper is structured
as follows. Methods used and the proposed hybrid prediction system model are briefly
described in Section 2. Relevant data are collected and analyzed in Section 3, and the results
of the proposed system used to predict the thermal load of the combustion chamber of the
marine diesel engine set were displayed, and then the results were compared with those of
other models. Finally, the conclusions of this study are drawn in Section 4.

2. Prediction Method

In this section, data preprocessing method, network model, and optimization method
are introduced, and a method to predict the heat load of marine diesel engine combustion
chamber is proposed. The AESR-LSTM method is developed, which mainly consists of the
Spearman correlation coefficient method and the LSTM network, and is used to predict
heat load.

2.1. Long Short-Term Memory Network

LSTM is a neural network proposed by Hochreiter and Schmidhuber in 1997 [23,24].
This model has been continuously developed to form a systematic and complete frame-
work [25-27]. The LSTM is used in this study to compensate for the limitations of recurrent
neural network (RNN) in dealing with the dependence problem at long distances and to
solve the enlargement of and difficulty in updating partial derivatives W during training.
The internal structure of the LSTM neural unit is shown in Figure 1. The LSTM adds three
thresholds to the framework of the RNN as three logical control units, and the input and
output information of the entire network is controlled and managed by the three thresholds.
The three thresholds are described as follows:
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Figure 1. LSTM structure diagram.

Input Gate: Whether the information is stored in the storage unit is determined by the
threshold and denotes it as i;.

Forget Gate: Whether the information stored in the storage unit at the previous time is
stored in the storage unit at the current time is determined by the threshold and denotes it
as f;.

Output Gate: Whether the information in the storage unit at the current moment
enters the hidden state /; is determined by the threshold and denotes it as o;.

Historical information can be saved, read, updated, and reset by the unit; it is the core
of the LSTM unit and is denoted as C;.

The LSTM neural network at moment t is expressed as follows:

fr =Wy - [he—1, Xe] + bp), @
it = o (Wi - [le_1, Xi] + D), @)
01 = (Wo - [l_1, Xe] + bo), ©)
Ci = tanh(We - [ly_1, Xi] + be), )
Ci=fixCr1+ir®C, ®)

hy = o x tanh(Cy), (6)

where f;, iy, 0, and h; are (1), (2), (3), and (6), respectively; Wf, W;, W,, and W denote the
recursive connection weights of the corresponding thresholds; ¢ is the sigmoid function,
which is the same as the tanh function for the activation in Equations (7) and (8).

1

- _ 7
1+e—x’ ()

o(x)

sinh(x) e*—e

cosh(x)  e¥+e ¥’

tanh(x) = (8)
The state at the previous point in time needs to be discarded, and the content saved
to the memory unit is determined by the forgetting gate. The sigmoid function is used to
decide whether C;_; is cumulatively retained or not. Cumulative retention is achieved
when the sigmoid function is equal to 1 but is absent when the function is equal to 0.

The input gate contains the output /;_1 from the previous moment and the input X; at
this time, and the sigmoid function is used to control how much to add to C;. An alternative
C; is also created and then the tanh function can be used to control how much to add to
@. The two parts are then multiplied to determine the amount of influence C;, and the
influence of the forgetting gate is added to obtain the expression for C;.

The output gate is a sigmoid function that can determine which parts of C; need to be
output to describe the o; expression. C; is placed into the tanh function to determine the
final output C; and then multiplied with o; to obtain the final output ;, which signals the
end of the LSTM work for one moment. How many memory units are forgetten, retained,
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and outputted at each moment are determined and affected by the three thresholds, and
they are finally transferred to the state of this moment at the end.

The prediction results of LSTM model are affected by the learning rate, weights, activa-
tion function, step size, and number of batches in the network. For example, convergence
failure is caused by learning rate being set too high, while consuming a lot of training
time to calculate the optimal value is caused by learning rate being set too low. Problems,
such as gradient explosion and disappearance, can occur when the activation function is
poorly chosen. Therefore, LSTM prediction model needs to be trained, and appropriate
parameters are selected to improve the prediction accuracy.

2.2. Spearman Correlation Coefficient Method

As mentioned above, factors affecting the exhaust temperature are typically influenced
by uncertain dynamic environmental factors. To find them, Spearman correlation analysis
method was adopted by us. The change trend and correlation strength between the two
variables were tested by Spearman’s correlation coefficient method. This method is based
on calculating the difference of each pair of equivalents of two columns of paired ranks as
the basis. If the correlation coefficient between two variables is close to +1 and —1, then
the surface correlation is strong. The Spearman correlation coefficient r;, can be expressed
as follows: )

rp=1- 6§7di, )
n(n?—1)
where 7 is the sample size, d; is the difference of bit values of the ith data pair. The values
of r, are within the range of [-1, 1]. If r, = 1, then the correlation is perfectly positive;
if r, = —1, then the correlation is perfectly negative. The absolute value is used as the basis
to judge the correlation. The strength of correlation between variables is divided into four
categories, as shown in Table 1 [28].

Table 1. Correlation intensity.

Value of r Strength of Relationship
—1.0to —0.50r0.5t0 1.0 Strong
—0.5t0 —0.3 0r 0.3t0 0.5 Moderate
—0.3to —0.10r0.1t0 0.3 Weak
—0.1t00.1 None or very weak

2.3. AESR-LSTM Hybrid Prediction Model

AESR-LSTM hybrid prediction model is proposed to combine Spearman correlation
coefficient method with LSTM network, and artificial experience is added to conduct
exhaust temperature prediction. First, sensor data is analyzed to eliminate overlapping
features. Spearman correlation coefficient method is used to discard redundant information
in the original data because exhaust temperature will be affected by various factors and
there is correlation between various factors. Finally, the variables are supplemented by
artificial experience, and the efficiency of the algorithm and the accuracy of prediction
are improved. The cross-validation and grid search methods are used to optimize the
hyperparameters of the neural network to obtain the optimal combination of parameters
with maximum prediction accuracy. After the optimal parameter set is selected by grid
search and cross-validation, the model is trained again using the optimal parameters.
The overall framework and partial procedures of AESR-LSTM are shown in Figure 2 and
Algorithm 1. The specific modeling steps are presented as follows.

Step 1: The influencing factors related to exhaust temperature are analyzed to collect
relevant time series data X; on the basis of engineering experience.

Step 2: The training and test sets are divided into pieces in a ratio of 7:3.

Step 3: Data is preprocessed, Spearman correlation coefficient is used for feature
selection to process the original data, redundant information is eliminated, highly corre-



Appl. Sci. 2023,13, 1099 6 of 15

lated variables are extracted, and variables are supplemented by mechanisms and human
experience to obtain the best input X;.

Step 4: The hyperparameters in the LSTM neural network model are adjusted through
iterative optimization combined with cross-validation and grid search methods to select
the optimal combination of parameters and improve its prediction accuracy.

Step 5: After the optimal parameter set is selected by grid search and cross-validation,
the model is trained again using the optimal parameters.

Step 6: The test set samples are input into the prediction model to predict the combus-
tion chamber exhaust temperature of marine diesel engine sets.

Step 7: The prediction performance of the proposed model is compared with those of
other prediction models.

Dividedinto training set and
test set in the ratio of 7:3

Prediction and

Model training optimization ~~~_-~ comparison
(o A
i e ——— | LY Bredics
1 LSTM model }
| 1 N Cylinder xbaust
e | )
| EE |
i ® ® | |
| | -
|| == =] ! Comparison of models
! 1
| |
i | vs
.

Figure 2. General Framework Structure.

Algorithm 1 Partial procedures

1:  function coeff=mySpearman(X,Y)
2:  if length(X)~=length(Y)

3: error(‘Unequal dimensions’);
4. return;

5:  end

6:  N=length(X);

7:  Xrank=zeros(1,N);

8:  Yrank=zeros(1,N);

9:  fori=1:N

10: contl=1;

11: cont2=—1;

12: forj=1:N

13: if X(1)<X(j)

14: contl=contl+1;

15: elseif X(i)==X(j)

16: cont2=cont2+1;

17: end

18: end

19: Xrank(i) = contl + mean ([0:cont2]);
20: end

21: fori=1:N

22: contl=1;

23: cont2=—1;

24: forj=1:N

25: if Y(i)<Y()

26: contl=contl+1;

27: elseif Y(i)==Y(j)
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3. Case Study
3.1. Principle Analysis and Data Processing

In a ship, the power source is composed of the main engine and an auxiliary engine.
The auxiliary power system is composed of machinery other than the diesel engine (main
engine), including the fuel system, lubricating oil system, air system, cooling system, and
other mechanical equipment. The main and auxiliary engines work together to propel the
ship, and its composition structure is shown in Figure 3.

Three-way Fuel oil tank
valve Fresh water pump ue o il transfer
1y
| pamp
i)
' i
[ Lub oil filter Lub oil filter
> > > > \
i l-f
Lub o1l M A - =
| High pressure N
cooler . {ﬂ v Fuel injection
- pump
pump
Lub oil Lub il
pressure

N thermostatic

reguating
value g g

value

:I;-n.*
>l >

By-pass filter ' Boost air
: A
Lub oil i > -
pump 4
Exhaust Air cooler
Lub il tank

Figure 3. Sketch of the composition structure.

On the basis of the mechanism and data of the ship, the heat load of the marine diesel
engine during operation is accurately reflected by the exhaust temperature. The amount,
perfection, and timeliness of fuel combustion in the combustion chamber can be reflected
by the exhaust temperature, as well as the high temperature heating time and brightness of
combustion chamber components. Hence, exhaust temperature can be used to predict the
heat load of diesel engine set.

The exhaust temperature of a single cylinder is predicted as an example in this study to
analyze the trend of heat load variation and the operating performance of the combustion
chamber. The high exhaust temperature of the cylinder is due to poor internal combustion,
which is related to the amount of fresh air in the cylinder, cooler cooling effect, injector
atomization quality, fuel viscosity, and cylinder compression pressure. The sensor is used to
monitor its working condition and collect factors related to exhaust temperature, including
high-temperature cooling, freshwater outlet temperature, cylinder liner cooling water
inlet pressure, piston cooling oil outlet temperature, and fuel pressure after the fuel filter.
Determining the correlation and dependence among these data is important to predict the
exhaust temperature of marine diesel engine sets.

Sensor monitoring data of the Chinese vessel Shanghai Fuhai are used in this study,
which are uploaded every 25 min. The sampled relevant data of initial variables are listed
in Table 2. Field data for two months show that 28,160 pieces of ship data are measured via
the ship’s sensors and constitute the data set, which is randomly divided into training and
test sets at a ratio of 7:3.
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Table 2. Initial Variables.

Number Variable Description Unit
1 T Exhaust temperature °C
2 Ta1 Cylinder scavenge box temperature °C
3 To1 Diesel engine inlet oil temperature °C
4 To2 lubricating oil outlet temperature °C
5 Po1 Diesel inlet oil pressure Mpa
6 To3 Main engine inlet oil temperature Mpa
7 Tt High temperature cooling fresh water outlet temperature °C
8 Py High temperature cooling fresh water inlet pressure Mpa
9 Tuw2 Cylinder liner cooling water outlet temperature °C
10 Ta2 Pressurized air temperature after cooler °C
11 Tu3 Exhaust temperature before supercharger °C
12 Ta Fuel oil temperature at unit inlet °C
13 Toa Outlet temperature of cylinder piston cooling oil °C
14 P Fuel pressure after fuel filter Mpa
15 Pp Fuel inlet pressure of main engine Mpa
16 Py» Inlet pressure of cylinder liner cooling water Mpa
17 Py Pressurizer inlet oil pressure Mpa
18 Tas Exhaust temperature after supercharger °C
19 Nt Turbocharger speed rpm
20 Pa1 Exhaust valve air pressure Mpa

The time series correlation data X} associated with the exhaust temperature are col-
lected as follows.

XI{ = {Tll]_/ TOl/ TOZ/ PDl/ T031 Twlr Pwlr Tw2/ TﬂZr TIJ3I Tflr TD4/ Pfl/ sz/ Pw2, POZ/ Tll4/ NT, Pﬂ]}

The turbocharger is driven by the inertial impulse of the exhaust gas to drive the
turbine, and then fresh air is pressurized into the cylinder. Thus, overlapping variables
and supercharger front T,3 and rear T,4 exhaust temperatures must be eliminated to obtain
time series data as follows.

X{ = {Tur, Tor, Toa Por, Toz, T, Pat, T, Tz, Ty, Toa, P, Py Poa, Poa, N, Pan }

Spearman correlation coefficient method is used for feature selection of data, and the
input of neural network is determined by the correlation between two factors, as shown
in Figure 4.

03111

-0.0174

194 0. A 0. 0.4 2 0.03: 0.8
o5 [ 0. . E
00662 [J I -0.0456 0 0165 ! ! X sIN P

0.0327 -0.

- o100 [

-03111 -0.0174 0.038 -0. 0.0615 -0.256 -0.0448 -0.1616 -0.2097 -0.463 0.0366 -0.2844 -0.149

- 2 g P g P (e g o @ D qob 9 g0 o g E g
Figure 4. Heat map of the correlation matrix.

According to the correlation matrix in Table 1 and the above figure, the correlation
coefficient between the exhaust temperature and T, is 0.8997. Hence, the turbocharger
lubricating oil outlet temperature is highly relevant to the exhaust temperature. This
finding is consistent with the actual scenario. The viscosity of the lubricating oil will be
affected by the temperature of the lubricating oil and increase the exhaust temperature.
The correlation of the variable Ty, is 0.8639, and how much heat is taken away from
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the combustion chamber is determined by the outlet temperature of the cylinder liner
cooling water, thereby indicating its sensitivity to changes in the exhaust temperature. The
cylinder liner cooling water inlet pressure and the sweep box temperature are important
factors affecting the exhaust temperature. Six variables with correlations higher than 0.5 are
derived. The significance of their p-values is below 0.001.

If the temperature of the pressurized air after the cooler is excessively high, then the
exhaust temperature rises because the fresh gas entering the diesel engine is cooled by the
cooler after being pressurized by the turbocharger into the combustion chamber. With the
increase in supercharger speed, the increase in exhaust energy is affected by the increase
in exhaust temperature. The reason is that the high-temperature exhaust gas from the
combustion chamber flows through the supercharger. Another factor to be considered is
the fuel pressure after the diesel filter. This refers to whether the faulty filter is reflected by
the fuel pressure. Fuel quality and exhaust temperature can be affected by damaged filters.

The three variables T, N1, and Pp mentioned above are all important with a sig-
nificance of less than 0.001, and the predictive variables will be affected, although their
correlations are below 0.5, 0.1117, 0.1863, and 0.3574, respectively. Therefore, these factors
are considered when deriving the final set of variables for the input model as follows.

X = {To1, Toa, Toa, Tuwn Tua, Tos, Pry, Pun, Nr }

3.2. Analysis of Modeling and Prediction Results

On the basis of Spearman correlation analysis, the top nine positively correlated
parameters are selected as model inputs in predicting the target output exhaust temperature
T. The inputs are divided into training and test sets in a ratio of 7:3 given the impact of
data volume on learning ability in the data drive. A combination of grid search and
tenfold cross-validation methods is applied to improve the prediction performance of the
model. The number of times to calculate the set of hyperparameters X = {X1, X, ..., Xy} is
IT; -1'="Ih;|, where (i=1,2,... ) and /; is the number of hyperparameter values. Five
parameters are selected in this study to set the hidden layers, hidden units, training rounds,
learning rate, and batch size of the LSTM prediction network. The change trend of the loss
function is affected by five super parameters, which are divided into two groups. See the
change in loss function under the change in hyperparameters.

The influence of the number of units and learning rounds of the five-layer neural
network on RMSE is shown in Figure 5. With the increase in the number of learning rounds,
the RMSE decreases first and then increases, and the RMSE of 100 units is generally lower
than that of other units. From Figure 6, we can see that the loss function is affected by
different hidden layers. Usually, higher values are caused by the low learning rate of 0.001.
Among the 0.01 learning rate and 0.005 learning rate, the number of hidden layers of five
layers is better than other layers.

®— 50 Units
3 e— 100 Units n 7
|—&— 150 Units]

1 L I L L
200 250 300 350 400

Figure 5. Influence of Unit Number and Learning Round Number on RMSE.
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Figure 6. Influence of hidden layer on RMSE.

In the process of hyperparameters optimization, the combination with low RMSE
value is selected as the best hyperparameters combination. Some adjustment results of
cross-validation grid search optimization are shown in Table 3 below.

Table 3. Cross-Validation grid search optimization and tuning results.

Learning Hidden Hidden Training .
Rate Layers Units Rounds Batch Size RMSE
0.01 4 150 200 128 27.82
0.005 5 50 400 64 27.92
0.001 4 150 200 256 34.25
0.005 3 150 300 128 26.44
0.001 3 50 300 64 33.35
0.005 4 100 200 64 26.35
0.01 5 100 300 128 25.21
0.001 3 100 300 64 30.48
0.01 5 50 200 256 29.15
0.001 4 50 400 128 32.19

After optimization, the best hyperparameter combination of RMSE is obtained. The
hyperparameter candidate values and optimal values of the prediction model LSTM are
shown in Table 4 below.

Table 4. Candidate and optimal sets of hyperparameters for the LSTM model.

Hyperparameter Name Hyperparameter Values Hsgzlrlll)la)alreelzfe?ell?t\l:lfes
Learning rate {0.01, 0.005, 0.001} 0.01
Hidden layers {3,4,5} 5
Hidden units {100, 150, 200} 100
Training rounds {100, 200, 300} 300
Batch size {64, 128, 256} 128

After the optimal parameter combination is selected, the training set is input into the
LSTM model for training. At the same time, discard technology is introduced to prevent
the model from over fitting. The training curve and training relative error scatter diagram
are shown in Figures 7 and 8 below. From the figure, we can see that the predicted value
basically coincides with the actual value in the training, and the error in the training finally
approaches the zero line.



Appl. Sci. 2023,13, 1099 110f15

Training result
400 ;

—Tr;nining data
—o—Predict data

o ——_

350

g

™)
17
S

7
S

Temperature(°C)
%]
=

100
50 J &_.

0 100 200 300 400 500 600 700 800 900 1000
Sampling points

J

Figure 7. Model training result curve.
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Figure 8. Relative error of model training.

The test set is fed into the trained model for exhaust temperature prediction. The
prediction results are illustrated in Figure 9. The strong generalization ability of the
prediction model is reflected by the consistency between the predicted and measured
temperature values. The results of the selected forecasting model are subsequently analyzed
by comparison with those of traditional forecasting methods, as described in detail below.
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Figure 9. Model prediction outcomes.
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3.3. Multimodel Comparative Analysis

In this study, Spearman correlation coefficient method and LSTM network are com-
bined to predict a time series data. Other prediction models are input into the same data
set, and the results of other prediction methods are compared with the results of the pro-

posed methods for further analysis. The results of each prediction model are shown in
Figures 10 and 11.
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Figure 10. Comparison of prediction results.
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Figure 11. The forecasting and actual temperature for different models: (a) Training and test results
of AESR-LSTM, (b) Training and test results of SR-LSTM, (c) Training and test results of LSTM, and
(d) Training and test results of BP.

From Figure 10, the prediction curve (red line) of AESR-LSTM model with human
experience is closer to the true value (blue line). As can be seen in Figure 11, except for a
few predicted outliers, the system’s scatter plot of forecasting and actual values is closest to
the diagonal, which indicates that the difference between the forecasting value and actual
value is the smallest.

At the same time, several commonly used evaluation indicators were cited to further
verify the prediction performance of the AESR-LSTM model. The prediction performance
of the four models is used for comparison, as shown in Table 5.

Table 5. Evaluation indicators.

Indicators Formula
N
Mean absolute error (MAE) % ‘21 Tyi — Tpi
i=
Mean absolute percentage error (MAPE) 1013% g Ti—Tyi
=1 "
Root-mean-square error (RMSE) % 'gl (T, — Tpi)2
i=
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N is the number of predicted values, T}, is the original data value, T},; is the predicted
value. The prediction performance of the prediction model is indicated by the value of
MAPE, MAE and RMSE. The MAPE, MAE, and RMSE of the four models were calculated
separately to reflect the goodness of the prediction model through the indexes. Figure 12
shows the values of the four prediction models the evaluation indexes. The error bars in the
figure represent 95% confidence intervals. The mean absolute percentage, mean absolute,
and root-mean-square errors of the proposed AESR-LSTM model are 0.089, 10.5403, and
27.5408, respectively, and the best indicators among several prediction models. The feature
inputs selected by the improved AESR-LSTM model are better than those obtained by
traditional methods for data trend prediction, so the method optimization is effective.

T 20 T T T 40 T T T

1]

35 T

1]

”

AESR-LSTM

SR-LSTM

(a)

LSTM

=)

0
AESR-LSTM SR-LSTM LSTM BP AESR-LSTM SR-LSTM LSTM BP
(b) ()

Figure 12. Comparative results histogram of model evaluation metrics: (a) MAPE value histogram of

different models, (b) MAE value histogram of different models, and (c) RMSE value histogram of
different models.

4. Conclusions

According to the data set collected in the marine cabin system, an AESR-LSTM data
trend prediction model with artificial experience is constructed in this study. The model
can be used for heat load prediction, fault detection, and diagnosis of marine diesel engines.
Spearman correlation coefficient method is used to collect relevant raw data for feature
selection, and the optimal input is selected by artificial empirical and significance check.
The cross-validation and grid search methods are combined, and the hyperparameters are
adjusted scientifically to avoid the randomness of the validation set. After the optimal
parameter set is selected by grid search and cross-validation, the model is trained again
with the optimal parameters, and the test set data is input into the training model to obtain
the prediction results. The findings are subsequently compared and analyzed with those of
other prediction models.

(1) The Spearman correlation coefficient method incorporating artificial experience
was proposed to select features on the basis of operational monitoring data collected from
the sensors. The correlation, redundancy, and significance of variable sets are analyzed
separately, and the nine monitoring characteristic parameters with the maximum influence
on the exhaust temperature are selected. Data-driven analysis and human experience are
combined to provide optimal input features for the predictive models.

(2) The LSTM prediction model is trained with parameter tuning in combination with
cross-validation grid search to obtain the prediction and evaluation metrics. The results
and indicators of several models were compared. The results show that predicted value of
AESR-LSTM are closest to the true value, and its evaluation indicators MAPE, MAE and
RMSE are the best, which are 0.089, 10.5403, and 27.5408, respectively.

(3) The shortcomings of only using a single method can be overcome by the fusion of
multiple methods, and the data can be scientifically and effectively screened to improve the
effectiveness of the model in data prediction and fault diagnosis of marine diesel engines.
Thus, the hybrid algorithm model is stable, and the error tolerance of the prediction results
is reduced.



Appl. Sci. 2023,13, 1099 14 0of 15

(4) The proposed method is based on the mechanism and data of the ship. All factors
that may cause thermal load failure of the diesel engine are taken into account and can
be used to analyze and refer to the working performance of the marine diesel engine.
The prediction data can achieve effective fault detection and maintenance of ships for
the implementation of preemptive corrective measures before ship failure, prevent ship
downtime due to damaged components caused by excessive heat load, improve fuel
economy and equipment reliability of ship diesel engines, and reduce economic losses.

A novel method combining artificial experience and data-driven is proposed. The
selected optimal feature set is input into the model for prediction, and the better prediction
results are obtained. As such, a feasible extended method of machine learning in marine
diesel engine thermal load prediction and fault diagnosis is provided. Future research
can focus on the optimization of methods, better operation parameter combination will be
obtained through data mining techniques, and independent fault detection system will be
developed to provide more convenience and information for ship operators.
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