Some Dynamic Aspects of a Sextic Galactic Potential in a Rotating Reference Frame
Abstract
:1. Introduction
2. Integrability Analysis
- (1)
- , where ;
- (2)
- , where .
- (1)
- If , then the Hamiltonian in Equation (1) takes the form below in polar coordinates :
- (2)
- If and , then the Hamiltonian in Equation (1) is separable into Cartesian coordinates. As a result of the separability of the Hamiltonian, the additional integral is quadratic in momentum. The integrals of the motion for this case are
3. Equilibria
- 1.
- If , or if , then is the only equilibrium point;
- 2.
- If , then there is an equilibrium point ;
- 3.
- If , then there is an equilibrium point ;
- 4.
- If such that , then there is an equilibrium point .
4. Stability Analysis
4.1. Application of the Lagrange Theorem
- 1.
- The equilibrium is stable if . If , then is an unstable maximum critical point;
- 2.
- The equilibrium is unstable when . If , then is a stable position. If and , then the point is unstable and maximally critical;
- 3.
- The equilibrium is unstable when . If , then is a stable position. The positions are maximally unstable if and ;
- 4.
- The equilibrium is unstable when . The case where implies that the point is stable if . The positions are unstable and maximally critical if and .
- If , then is an indefinite matrix, and the point is a saddle and hence unstable.
- If , the point is a local minimum and hence stable if . If , then it is a local maximum and hence unstable.
4.2. Linear Stability
- 1.
- If all the coefficients and , then is a linearly stable maximum.
- 2.
- Assuming , the positions are linearly stable maximums if and . Otherwise, they are Lyapunov unstable.
- 3.
- Assuming , the positions are linearly stable maximums if and . Otherwise, they are Lyapunov unstable.
- To find the conditions for , we write as a function in the two variables and to obtainFor each fixed , the sign of is determined by the sign ofSince the discriminate of is , there are two different roots for , given byIt is easy to verify that for , where at . For each fixed such that , the function is , and hence is non-negative on and negative on . Therefore, we have to exclude the interval from the possible values of .
- On the interval , we investigate the sign of M. By writing M as a function in the two variables and , we obtainFor each , all the quantities , and are positive, and the map is decreasing on . For a fixed , the quantity if and only if . Direct computations show the following:
- –
- At the fixed value , we have for all . Therefore, for each and , we have , and then . Therefore, we must also exclude the interval from the possible values for .
- –
- At the fixed value , we have for each . Therefore, for each and , we have , and then . The case where yields and must be excluded.
- –
- At the fixed point , we have for . Therefore, for each and , we have , and then . Therefore, we must also exclude the interval from the possible values of . Note that even though is not included in the interval under consideration, is continuous at , so we can study the relation between and when tends toward 1.
Therefore, all the three quantities are non-negative if and .
5. Periodic Motion
- If , this means is an extreme point for the effective potential in Equation (19). Thus, we have two frequencies if the condition
- If , then the point is a saddle point for the effective potential in Equation (19). There is a unique value for the frequency which is obtained from Equation (46), which takes the positive sign. Hence, there is exactly one periodic orbit around the saddle point for the equilibrium point.
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Contopoulos, G. Order and Chaos in Dynamical Systems. Milan J. Math. 2009, 77, 101. [Google Scholar] [CrossRef]
- Arnold, V.; Kozlov, V.; Neishtadt, A. Dynamical system III. In Mathematical Aspects of Classical and Celestial Mechanics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ignacio, F. Fundamentals of Galaxy Dynamics, Formation and Evolution; UCL Press: London, UK, 2019. [Google Scholar]
- Rastorguev, A.; Utkin, N.; Zabolotskikh, M.; Dambis, A.; Bajkova, A.; Bobylev, V. Galactic masers: Kinematics, spiral structure and the disk dynamic state. Astrophys. Bull. 2017, 72, 122–140. [Google Scholar] [CrossRef] [Green Version]
- Caranicolas, N. A mapping for the study of the 1:1 resonance in a galactic type Hamiltonian. Celest. Mech. Dyn. Astron. 1989, 47, 87–96. [Google Scholar] [CrossRef]
- Caranicolas, N. Exact periodic orbits and chaos in polynomial potentials. Astrophys. Space Sci. 1990, 167, 305–313. [Google Scholar]
- Caranicolas, N. Global stochastically in a time-dependent galactic model. Astron. Astrophys. 1990, 227, 54–60. [Google Scholar]
- Caranicolas, N.; Innanen, K. Chaos in a galaxy model with nucleus and bulge components. Astron. J. 1991, 102, 1343–1347. [Google Scholar] [CrossRef]
- Karanis, G.; Caranicolas, N. Transition from regular motion to chaos in a logarithmic potential. Astron. Astrophys. 2001, 367, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Habib, S.; Kandrup, H.; Mehon, M. Chaos and noise in galactic potentials. Astron. J. 1997, 480, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Llibre, J.; Valls, C. On the analytic integrability of the cored galactic Hamiltonian. Appl. Math. Lett. 2014, 33, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Bajkova1, A.; Smirnov1, A.; Bobylev1, V. Study of the Influence of an Evolving Galactic Potential on the Orbital Properties of 152 Globular Clusters with Data from the Gaia EDR3 Catalogue. Astron. Lett. 2021, 47, 454–473. [Google Scholar] [CrossRef]
- Alfaro, F.; Llibre, J.; Pérez-Chavela, E. Periodic orbits for a class of galactic potentials. Astrophys. Space Sci. 2013, 344, 39–44. [Google Scholar] [CrossRef]
- Llibre, J. Averaging theory and limit cycles for quadratic systems. Rad. Math. 2002, 11, 215–228. [Google Scholar]
- Llibre, J.; Makhlouf, A. Periodic orbits of the generalized Friedmann- Robertson-Walker Hamiltonian systems. Astrophys. Space Sci. 2013, 344, 45–50. [Google Scholar] [CrossRef]
- Llibre, J.; Roberto, L. Periodic orbits and non-integrability of Armbruster-Guckenheimer-Kim potential. Astrophys. Space Sci. 2013, 344, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Llibre, J.; Vidal, C. Periodic orbits and non-integrability in a cosmological scalar field. J. Math. Phys. 2012, 53. [Google Scholar] [CrossRef]
- Llibre, J.; Vidal, C. New 1:1:1 periodic solution in 3-dimensional galactic-type Hamiltonian systems. Nonlinear Dyn. 2014, 78, 968–980. [Google Scholar] [CrossRef] [Green Version]
- Llibre, J.; Pa¸sca, D.; Valls, C. Periodic solutions of a galactic potential. Chaos Solitons Fractals 2014, 61, 38–43. [Google Scholar] [CrossRef] [Green Version]
- El-Sabaa, F.; Hosny, M.; Zakria, S. Bifurcations of Armbruster Guckenheimer Kim galactic potential. Astrophys. Space Sci. 2019, 364, 1–9. [Google Scholar] [CrossRef]
- Llibre, J.; Valls, C. Global dynamics of the integrable Armbruster-Guckenheimer-Kim galactic potential. Astrophys. Space Sci. 2019, 364, 1–6. [Google Scholar] [CrossRef]
- De Zeeuw, T.; Merritt, D. Stellar orbits in a triaxial galaxy. I-Orbits in the plane of rotation. Astrophys. J. 1983, 267, 571–595. [Google Scholar] [CrossRef]
- Bertola, F.; Capaccioli, M. Dynamics of early type galaxies. I-The rotation curve of the elliptical galaxy NGC 4697. Astrophys. J. 1975, 200, 439–445. [Google Scholar] [CrossRef]
- Caranicolas, N.; Barbanis, B. Periodic orbits in nearly axisymmetric stellar systems. Astron. Astrophys. 1982, 114, 360–366. [Google Scholar]
- Iñarrea, M.; Lanchares, V.; Palacián, J.F.; Pascual, A.I.; Salas, J.P.; Yanguas, P. Lyapunov stability for a generalized Hénon–Heiles system in a rotating reference frame. Appl. Math. Comput. 2015, 253, 159–171. [Google Scholar] [CrossRef]
- Elmandouh, A. On the dynamics of Armbruster Guckenheimer Kim galactic potential in a rotating reference frame. Astrophys. Space Sci. 2016, 361, 1–12. [Google Scholar] [CrossRef]
- Elmandouh, A.; Ibrahim, A. Non-integrability, stability and periodic solutions for a quartic galactic potential in a rotating reference frame. Astrophys. Space Sci. 2020, 365, 1–11. [Google Scholar] [CrossRef]
- Lanchares, V.; Pascual, A.I.; Iñarrea, M.; Salas, J.P.; Palacián, J.; Yanguas, P. Reeb’s theorem and periodic orbits for a rotating Hénon–Heiles potential. J. Dyn. Differ. Equa. 2021, 33, 445–461. [Google Scholar] [CrossRef]
- El-Sabaa, F.; Amer, T.; Gad, H.; Bek, M. Existence of periodic solutions and their stability for a sextic galactic potential function. Astrophys. Space Sci. 2021, 366, 1–11. [Google Scholar] [CrossRef]
- Abraham, R.; Marsden, J.E. Foundations of Mechanics; Number 364; American Mathematical Soc.: Providence, RI, USA, 2008. [Google Scholar]
- Tabor, M. Chaos and Integrability in Nonlinear Dynamics: An Introduction; Wiley Interscience: Hoboken, NJ, USA, 1989. [Google Scholar]
- Elmandouh, A. New integrable problems in a rigid body dynamics with cubic integral in velocities. Results Phys. 2018, 8, 559–568. [Google Scholar] [CrossRef]
- Elmandouh, A. First integrals of motion for two dimensional weight-homogeneous Hamiltonian systems in curved spaces. Commun. Nonlinear Sci. Numer. Simul. 2019, 75, 220–235. [Google Scholar] [CrossRef]
- Elmandouh, A. On the integrability of new examples of two-dimensional Hamiltonian systems in curved spaces. Commun. Nonlinear Sci. Numer. Simul. 2020, 90, 105368. [Google Scholar] [CrossRef]
- Szumiński, W. On certain integrable and superintegrable weight-homogeneous Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 600–616. [Google Scholar] [CrossRef]
- Yehia, H.; Elmandouh, A. A new conditional integrable case in the dynamics of a rigid body-gyrostat. Mech. Res. Commun. 2016, 78, 25–27. [Google Scholar] [CrossRef]
- Yoshida, H. A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential. Phys. D Nonlinear Phenom. 1987, 29, 128–142. [Google Scholar] [CrossRef]
- Yoshida, H. A criterion for the non-existence of an additional analytic integral in Hamiltonian systems with n degrees of freedom. Phys. Lett. A 1989, 141, 108–112. [Google Scholar] [CrossRef]
- Ziglin, S.L. Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I. Funktsional’nyi Analiz i ego Prilozheniya 1982, 16, 30–41. [Google Scholar] [CrossRef]
- Gantmacher, F. Lectures in Analytical Mechanics; Mir Publishers: Moscow, Russia, 1970. [Google Scholar]
- Chetayev, N.; Nadler, M.; Babister, A.; Burlak, J.; Teichmann, T. The stability of motion. Phys. Today 1962, 15, 70. [Google Scholar] [CrossRef]
- Liapunov, A. The General Problem of the Stability of Motion. Int. J. Control 1992, 55, 531–534. [Google Scholar] [CrossRef]
- Yehia, M. On periodic, almost stationary motions of a rigid body about a fixed point: PMM vol. 41, n≗ 3, 1977, pp. 556–558. J. Appl. Math. Mech. 1977, 41, 571–573. [Google Scholar]
- El-Sabaa, F. About the periodic solutions of a rigid body in a central Newtonian field. Celest. Mech. Dyn. Astron. 1993, 55, 323–330. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfadhli, M.; Elmandouh, A.; Al Nuwairan, M. Some Dynamic Aspects of a Sextic Galactic Potential in a Rotating Reference Frame. Appl. Sci. 2023, 13, 1123. https://doi.org/10.3390/app13021123
Alfadhli M, Elmandouh A, Al Nuwairan M. Some Dynamic Aspects of a Sextic Galactic Potential in a Rotating Reference Frame. Applied Sciences. 2023; 13(2):1123. https://doi.org/10.3390/app13021123
Chicago/Turabian StyleAlfadhli, Munirah, Adel Elmandouh, and Muneerah Al Nuwairan. 2023. "Some Dynamic Aspects of a Sextic Galactic Potential in a Rotating Reference Frame" Applied Sciences 13, no. 2: 1123. https://doi.org/10.3390/app13021123
APA StyleAlfadhli, M., Elmandouh, A., & Al Nuwairan, M. (2023). Some Dynamic Aspects of a Sextic Galactic Potential in a Rotating Reference Frame. Applied Sciences, 13(2), 1123. https://doi.org/10.3390/app13021123