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Abstract: The methods of complex networks have been extensively used to characterize information
flow in complex systems, such as risk propagation in complex financial networks. However, network
dynamics are ignored in most cases despite systems with similar topological structures exhibiting
profoundly different dynamic behaviors. To observe the spatiotemporal patterns of risk propagation
in complex financial networks, we combined a dynamic model with empirical networks. Our
analysis revealed that hub nodes play a dominant role in risk propagation across the network and
respond rapidly, thus exhibiting a degree-driven effect. The influence of key dynamic parameters,
i.e., infection rate and recovery rate, was also investigated. Furthermore, the impacts of two typical
characteristics of complex financial systems—the existence of community structures and frequent
large fluctuations—on the spatiotemporal patterns of risk propagation were explored. About 30% of
the total risk propagation flow of each community can be explained by the top 10% nodes. Thus, we
can control the risk propagation flow of each community by controlling a few influential nodes in the
community and, in turn, control the whole network. In extreme market states, hub nodes become
more dominant, indicating better risk control.

Keywords: complex financial systems; complex financial networks; econophysics; risk propagation;
network dynamics

1. Introduction

Unlike simple networks such as lattices and random graphs, complex networks are
networks with nontrivial topological properties, which generally correspond to networks
representing real systems [1–5]. The methods of complex networks are widely applied in
different disciplines [6–11]. Early research on complex networks often focused on the extrac-
tion of topological structures [12–18]. For example, the visualization of information flow
in complex networks has received much attention from scholars in different fields [19–25].
The complex networks of diverse systems exhibit universal topological characteristics,
while the nonlinear interactions of systems with similar structures can produce completely
different dynamic properties [26–29]. However, in most cases, network dynamics are
usually ignored due to the limitations of the method; thus, functional predictions based on
information flow are difficult to make. One reason is that the previous complex network
methods are not sufficient to discuss the problems of network dynamics. This situation
has been improved in recent years. One of the study focuses of complex networks has
shifted to the problem of combining structure and dynamics, due to the development of
complex network methods [30–37]. Specifically, a perturbative approach to linking network
dynamics and their topology was proposed, allowing for the spatiotemporal spread of
perturbative signals across networks to be tracked and the network’s role in information
propagation to be determined [29,38].

A financial system is a typical complex system. Many attempts have been made to un-
cover the information flow of risk propagation in this field [21,22,24,25]. From the perspective
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of the network topology, a typical characteristic of complex financial systems is the existence
of community structures [39–44]. Stocks in the same community share common economic
properties and information; thus, the stock prices in a community tend to move simulta-
neously. Based on the random matrix decomposition (RMD) method, the cross-correlation
matrix can be decomposed into three categories of modes: market mode, sector mode, and
random mode [43–47]. In particular, local interactions among the communities are mainly
included in sector mode [43,44]. In terms of dynamics, frequent large fluctuations, such as
a financial crisis and a financial bubble, are another distinctive feature of complex financial
systems [48–50]. Additionally, investigating the non-stationary dynamic properties is very
important in understanding financial systems comprehensively [50–56].

On the one hand, the research on complex financial systems is still focused on a
pure structure [21–24] or a pure model [25,57–63]. The new method of complex networks
combining structure and dynamics has not been applied to complex financial systems
[29,38]. On the other hand, we still do not know exactly what role each node and link in
the network plays in the risk propagation processes and how much time each node takes to
respond. In this paper, we are mainly committed to solving these two problems. Due to
the similarity between the spread of financial risk and infectious disease, epidemic models
are widely applied to financial systems [58,62,63]. Therefore, we combined the susceptible–
infected–susceptible (SIS) infectious disease model with the empirical networks to explore
the spatiotemporal patterns of risk propagation flow in complex financial networks.

In Section 2, we review the literature. Section 3 presents the data and methods. In
Section 4, we conduct the empirical analysis: First, we obtain the risk propagation flow of
complex financial networks, and then, we investigate the influence of two key dynamic
parameters. Next, we detect the communities in the sector mode and further characterize
the risk propagation flow between and within different communities. Lastly, we classify
different categories of large fluctuations with the threshold method and explore the risk
propagation flow in extreme market states. The conclusions are stated in Section 5.

2. Literature Review

Complex financial systems are made up of multiple components (nodes), which is a
typical example of complex networks. In a complex financial network, the allocation of
resources and the interaction between elements imply the flow of information. The study
of information flow such as risk propagation flow in the financial system is very important,
attracting researchers from various fields. In the past, the research mainly focused on two
aspects: either the topological structure or modeling.

The research methods of the topological structure are mainly divided into three
categories: correlation coefficient, Granger causality test, and entropy-like method. The
correlation coefficient method is the main method used in early research. For example,
the information flow between stock markets and future markets were explored in [64].
The correlation coefficient method is useful and easy to implement, whereas it cannot
capture the causal relationship between different components. Therefore, the Granger
causality test is introduced to describe the information flow in the financial system. For
example, Reference [65] utilized this method to characterize information flow for global
markets, analyzing the influence of the time scale and efficiency on the flow. In the past
decade, physicists have introduced the concept of information entropy into the financial
system. A stream of research utilizes entropy-like methods such as the transfer entropy
(TE) to characterize information flow in financial systems. The TE can estimate the impact
of the history for one time series on another time series, quantifying the direction of
information flow. The strengths and directions of information flow between worldwide
stock indices has been investigated [21]. Likewise, global information transfer networks
(GITN) for different time periods or market states have been constructed with the TE [66,67].
The information flow between bitcoin and other financial assets was studied by [68].
Reference [69] proposed the transfer entropy coefficient to quantify multi-scale information
flow in financial systems. The Rényi transfer entropy (RTE) is applicable to asymmetric and
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nonlinear data, which can emphasize a special part of the distributions for observations,
with wide applicability to various distributions such as fat-tailed distribution. This method
is employed to analyze the information flow between different stock markets based on
intraday stock data, considering the impact of a crisis [70]. Although the last few decades
have witnessed a deeper understanding of topological structures, topological structure
analysis cannot identify the specific role of nodes and edges in information flow networks,
as well as the dynamic characteristics such as the response time of nodes, due to the
financial system evolving with time and being full of random disturbance and complexity.

On the other hand, researchers in different fields have adopted different models to
study information flow in the financial system. Statistical models are utilized to describe the
information flow between various elements. For example, a multi-period continuous infor-
mation diffusion model was proposed to reveal the term structure of information flow [71].
Besides, agent-based models act as a powerful simulation technique to explore the micro-
scopic mechanism of financial systems [57,59–61]. To unveil the microscopic mechanism
behind information flow in financial systems, an artificial stock market comprised of agents
with limited information has been presented [72]. Epidemic models are also widely applied
in the investigation of financial information flow, especially the financial risk propagation
information flow [58,62,63]. Reference [58] explored how social influence affects individual
investors’ trading and stock returns with epidemic models [58]. A modeling framework
based on epidemic models was proposed to analyze financial contagion during financial
crises in [62]. An epidemic model was presented to characterize the globally operating
stock markets in [63]. From the model perspective, we can understand the dynamic nature
of the financial system more deeply. However, the model is generally simulated on a simple
network or some random networks, which is inconsistent with real financial systems.

3. Data and Methods
3.1. Data

We collected the daily closing prices of components from the S&P500 and HS300
Indices from January 2016 to December 2020. Stocks with data missing for more than 100
consecutive trading days in the corresponding time period were deleted. Finally, 483 indi-
vidual stocks were left for the S&P500 market, and 240 were left for the HS300 market. The
stock names and stock tick names are summarized in Supplementary Material S2. All of the
data were retrieved from the WIND terminal. If the stock price was missing for a particular
day, we set the stock price to be the same as the previous day. The previous study showed
that these missing data did not result in artifacts [47].

Here, we use Pi(t′) to denote the closing price of the i-th stock on day t. To avoid
long-term trends, we define the logarithmic price return as

Ri(t′) = ln[Pi(t′)/Pi(t′ − 1)]. (1)

To compare different time series, we introduce the normalized returns:

r(t′) =
[
R(t′)−

〈
R(t′)

〉]
/σ. (2)

where 〈· · · 〉 represents calculating the mean value over time t′ and σ is the standard
deviation of R(t′). For simplicity, the volatility is defined as |r(t′)|.

3.2. Method and Basics

In this section, we combine the dynamic differential equations of the SIS infectious
disease model with the empirical networks of financial systems and use Monte Carlo
simulation to reveal the spatiotemporal patterns of risk propagation in complex financial
networks [29,38].
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First, we constructed an empirical financial network with N components (nodes),
linked via the cross-correlation matrix Cij of returns [73–76], which is defined by

Cij =< ri(t′)rj(t′) > . (3)

where Cij measures the equal-time correlation between the i-th stock and the j-th stock. The
Planar Maximally Filtered Graph (PMFG) tool is often implemented to filter redundant
information in complex networks [77]. Taking the absolute values of the negative matrix
elements, we pruned the modified cross-correlation matrix |Cij| with the PMFG method
and generated the PMFG graph Aij [44].

Epidemic models are widely applied to financial systems [58,62,63] due to the similar-
ity between the spread of financial risk and infectious diseases. Thus, we combined the
susceptible–infected–susceptible (SIS) infectious disease model with empirical networks
to obtain the risk propagation flow of complex financial networks. In the SIS infectious
disease model, each node exhibits two distinct states: susceptible (S) and infected (I) [78–81].
Analogically, a stock is infected if the stock is exposed to risk, and the remaining stocks that
have not been exposed to risk yet are susceptible. Two key parameters exist in this model,
i.e., the infection rate R and recovery rate B. A susceptible node may become infected
through interaction with an infected individual at an infection rate R.

I(j) + S(i) R−→ I(j) + I(i). (4)

An infected node recovers at a recovery rate B, becoming susceptible again:

I(i) B−→ S(i) (5)

Here we introduce the dynamic differential equations for the SIS model [38]:

dxi(t)
dt

= −Bxi(t) + ΣN
j=1 AijR(1− xi(t))xj(t). (6)

where xi(t) is the probability of infection for stock i, i.e., the probability of the stock i being
exposed to a risk. −Bxi(t) represents the recovery process of stock i, proportional to the
ratio of infected (exposed) xi(t). The second term describes the process of infection, which
depends on i’s neighbor j being infected (probability xi(t)) and on i being susceptible
(probability 1− xi(t)). The weighted link of the PMFG graph Aij represents the rate of
influence between xi and xj.

Once stock i is exposed to a risk, the risk spreads to stocks adjacent to stock i in the
network. Increasingly more stocks will progressively become exposed to the risk. Hence,
we introduce a perturbation (risk) ∆xj to the j-th stock and, then, track its propagation
across the network. To explore the temporal patterns of risk propagation in complex
financial networks, the individual response time is defined as τi:

∆xi(t = τi) = η∆xi(t→ ∞), (7)

where τi represents the time when stock i reaches an η-fraction of its final response to the
perturbation (risk) from i’s neighbor j [29]. For the simplicity of notation, we use t → ∞
to represent the time when stock i has reached its final response to the perturbation (risk)
from stock j. Typically, the half-life of i’s response corresponds to η = 0.5.

Over time, the perturbation (risk) ∆xj leads to a cascade of responses; then, the whole
network reaches a steady-state. To capture the spatial patterns of risk propagation, we
introduce the linear response matrix [26,82]:

Gmn = |dxm/xm

dxn/xn
| = |dlogxm

dlogxn
|. (8)
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where Gmn represents how a local perturbation from the source n in the stationary state
impacts a specific target node m.

To quantify the influence of path Π to the risk propagation from the source n, we can
freeze the risk propagation flow through a node Π = i or a link Π = Aij:

FΠ
n =

∑N
m=1 Gmn −∑N

m=1,Π Gmn

∑N
m=1 Gmn

, (9)

which represents the fraction of risk propagation that was mediated through the Π path-
way [38]. Averaging over different n, we obtain Π’s overall risk propagation flow [38]:

FΠ =
1
N

N

∑
n=1

FΠ
n . (10)

Specifically, Fi is the risk propagation flow through the i-th stock, and Fij is the risk propa-
gation flow between the i-th stock and the j-th stock.

4. Results
4.1. Quantifying Risk Propagation Flow

As the representatives of emerging and mature markets, Chinese and American stock
markets are two typical complex financial networks. Based on the historical data of the
components of the S&P500 and HS300 Indices, we calculated the risk propagation flow
through all nodes and links, i.e., Fi and Fij, for each market. For simplicity, here, we take
B = 1 and R = 1. The larger the risk propagation flow of a node (link), the more important
the corresponding individual stock (interaction between the two stocks) in the information
dissemination of the entire market. Thus, we can identify the influential nodes and links
in the propagation of information, which may be applicable to portfolio optimization and
risk management.

The results for the HS300 market and the S&P500 market are displayed in the Figure 1.
There are 483 nodes and 1443 links in the S&P500 risk propagation flow network and
240 nodes and 714 links in the HS300 network. The nodes correspond to individual stocks,
and the links represent the risk propagation flow between two stocks. In both markets, a
few influential nodes play dominant roles in the risk propagation flow networks.

We sorted the nodes and links of different networks according to the size of risk
propagation flow and list the top 10 nodes and links in Table 1. For the HS300 market, the
top 10 nodes mainly came from the business sectors—healthcare, information technology,
and consumer staples—and most of the top 10 links were found within or between the
healthcare and consumer staples sectors. For the S&P500 market, the top 10 nodes were
mainly distributed in the business sectors—consumer staples, healthcare, consumer dis-
cretionary, and information technology—and most of the top 10 links were found within
the business sectors—consumer discretionary, finance, utilities, consumer staples, etc. The
distribution of the top 10 nodes for the two markets was similar, while the top 10 links in
the S&P500 market were much more dispersed than those in the HS300 market because the
American market, as a mature market, has better risk diversification.

To understand the spatiotemporal patterns of risk propagation in complex financial
networks, we first investigated the dependence of Fi on the degree distribution of the
network by linking it with the weighted degrees of all nodes Si = ∑N

j=1 Aij. Next, we
focused on the dependence of the individual response time τi on the weighted degree
Si. As displayed as triangles in Figure 2a,c, Fi positively scales with Si, and as shown as
triangles in Figure 2b,d, τi negatively scales with Si. In brief, hub nodes (high-degree nodes)
played a more important role in risk propagation across the network and respond rapidly,
indicating a degree-driven effect. We also linked Fij with the product of i and j’s weighted
degree, and the results are listed in Supplementary Material S1. The links first exhibited a
link-driven effect and, then, an anti-link-driven effect as SiSj increased.
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(a) (b)

Figure 1. (a) Risk propagation flow network of the HS300 market. (b) Risk propagation flow network
of the S&P500 market. The size of nodes and the width of links represent the Fi of a stock and the Fij

between two stocks, respectively. For simplicity, here, we take B = 1 and R = 1.

Table 1. This table lists the stock tick names corresponding to the top 10 nodes (links) of risk
propagation flow networks, ranked by the size of Fi(Fij) for the S&P500 market and HS300 market.
For simplicity, here, we take B = 1 and R = 1.

Market Top 10 Nodes Top 10 Links

S&P500

CAG.N
CPB.N
DG.N
MNST.O
AMGN.O
GIS.N
K.N
REGN.O
MSFT.O
ABT.N

CZR.O←→ VFC.N
CZR.O←→ SPGI.N
CNP.N←→ CZR.O
AME.N←→ PM.N
FITB.O←→ IQV.N
PM.N←→ TXT.N
CNP.N←→ VFC.N
BXP.N←→ FITB.O
CZR.O←→ DHR.N
BXP.N←→ IQV.N

HS300

002773.SZ
600521.SH
002555.SZ
600763.SH
002624.SZ
600196.SH
300498.SZ
002008.SZ
600436.SH
603939.SH

002714.SZ←→ 300498.SZ
000876.SZ←→ 300498.SZ
002311.SZ←→ 300498.SZ
002157.SZ←→ 300498.SZ
600196.SH←→ 600521.SH
600196.SH←→ 601607.SH
002773.SZ←→ 600079.SH
600763.SH←→ 603939.SH
000876.SZ←→ 002714.SZ
002773.SZ←→ 600763.SH

As mentioned above, a susceptible node may become infected through interaction with
an infected node at a rate R. An infected node recovers at a rate B, becoming susceptible
again. Analogically, a stock is infected if the stock is exposed to a risk, and the remaining
stocks that have not yet been exposed to a risk are considered susceptible. We further
investigated how the infection rate R and the recovery rate B influence the risk propagation
flow of complex financial networks. Varying the dynamic parameters R and B from 0 to 1,
we investigated the spatiotemporal patterns of the risk propagation flow for the S&P500
and HS300 markets. As displayed in Figure 2, the spatiotemporal patterns remained
qualitatively consistent for different R and B, i.e., the nodes exhibit a degree-driven effect.
In contrast, spatiotemporal patterns were quantitatively inconsistent for different R and
B. As shown in Figure 2a–d, when the recovery rate R decreased, two effects occurred:
(i) Fi of the hubs increased, indicating that the nodes tended to be more degree-driven as R
decreased; (ii) τi of the hubs also increased as R decreased, weakening the degree-driven
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effect of nodes. Figure 2e–h demonstrate that Fi and τi of the hubs both increased, meaning
that the degree-driven effect also had two effects as the recovery rate B increased. The
impacts of these two dynamic parameters on the degree-driven effect of the nodes were
almost opposite.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Spatiotemporal patterns of risk propagation with different dynamic parameters. We
measured the risk propagation flow Fi and the local response times τi of all nodes/links with different
dynamic parameters for the S&P500 market and the HS300 market. (a) Fi vs. the weighted degree
Si for the S&P500 market with different infection rates R. (b) τi vs. Si for the S&P500 market with
different infection rates R. (c) Fi vs. Si for the HS300 market with different infection rates R. (d) τi

vs. Si for the HS300 market with different infection rates R. (e) Fi vs. Si for the S&P500 market with
different recovery rates B. (f) τi vs. Si for the S&P500 market with different recovery rates B. (g) Fi

vs. Si for the HS300 market with different recovery rates B. (h) τi vs. Si for the HS300 market with
different recovery rates B.

As reported in [38], on average, risk propagation flow and the node degree obey the
relationship Fi ∼ Sω

i , and the contribution of Aij link to Fij follows Fij ∼ AijSω−1
i Sω−1

j . For
the SIS model of epidemic spread, ω = 0 [38]. In this case, Fi is independent of Si, which
represents homogeneous flow. Based on linear response theory, τi is linked with Si through
the relationship τi ∼ Sθ

i [29]. In other words, τi is determined by the interaction between
topology Si and dynamics θ. θ was determined to be -1 for the SIS model here [29]. However,
our empirical results for financial networks were slightly different from the theoretical
derivation in References [29,38], which may arise from the complexity of financial networks,
such as an obvious community structure and frequent large fluctuations. In future research,
we can determine the values of these two parameters based on data from the real market to
describe the risk propagation flow of complex financial networks more accurately.

4.2. Risk Propagation Flow of Communities

A distinctive feature of complex financial networks is the existence of community
structures. A community is a group of nodes linked with high-density internal edges,
which often corresponds to different business sectors in financial markets. Therefore, when
calculating risk propagation flow, we need to consider the influence of community structure.
We first detected the communities in the sector mode and, then, characterized the risk prop-
agation flow between and within different communities of the complex financial networks.
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The Wishart matrix is Cij of N non-correlated time series with length L [83,84]. In the
constraints of N >> 1, L >> 1, and Q = L/N ≥ 1, the probability distribution of the
eigenvalue λ is given by

Prm(λ) =
Q
2π

√
(λran

max − λ)(λran
min − λ)

λ
. (11)

The upper and lower bounds of λ are

λran
max(min) = [1± 1/

√
Q]2, (12)

Based on the RMD method, we decompose Cij into N-dimensional orthogonal eigen-
modes:

Cij = ΣN
α=1λαCα

ij, Cα
ij = uα

i uα
j , (13)

where λα is the α-th largest eigenvalue, uα
i is the i-th component in the eigenvector of

λα, and Cα
ij represents the cross-correlation in the α-th eigenmode [45–47]. According to

the size of the eigenvalue λα, the eigenmodes of real financial markets can be divided
into three categories: market mode, sector mode, and random mode [43,44]. For the
market mode, Cmar

ij = Σmode
α=1 Cα

ijλα, which represents the global price movement of the
entire market. The sector mode corresponds to the local price motion of business sectors,
Csec

ij = Σn−1
α=1Cα

ijλα. Here, λα > λran
max, where λran

max is the upper bound of the Wishart
matrix [83,84]. n is the number of large eigenvalues exceeding λran

max. For the random
mode, we take Cranc

ij = ΣN−1
α=n Cα

ijλα. The random mode contains the non-stationary random
background of complex financial systems.

Taking the absolute values of the negative matrix elements, we then generated the
PMFG graph Asector,ij from |Csector,ij| [44,77,85]. Next, the community structure was ex-
tracted in the Gephi software [86]. After removing the non-stationary random background,
we can see the community structure more clearly, and the sector mode further removed
the influence of the macro changes of the entire market on the network, allowing us to see
the local interactions of communities. Lastly, we characterized the risk propagation flow
between and within different communities of the complex financial networks.

The risk propagation flow within communities for the S&P500 market and the HS300
market is displayed in Figure 3. Additionally, the risk propagation flow in each community
for the two markets are is displayed in Supplementary Material S1. There are 12 communi-
ties and 10 communities for the S&P500 network and the HS300 network. The larger the
risk propagation flow of a node (link), the more important the corresponding community
(interaction between the two communities) in the information dissemination of the entire
market is. For the S&P500 market, the finance community plays a dominant role and the
real estate, medical device and service, software and service, and consumer durables and
apparel communities play relatively important roles. In contrast, for the HS300 market, the
securities community plays a dominant role, followed by the capital goods and utilities,
real estate, and automobile communities.

As shown in Table 2, the weight of Fi for the top 10% nodes in each community ranges
from 21.30% to 32.52% and from 21.82% to 37.20% for the S&P500 market and the HS300
market, respectively, and the average weights of Fi for the top 10% nodes were 26.49%
and 27.46% for the S&P500 market and the HS300 market, respectively. Overall, about
30% of the total risk propagation flow Fi can be explained by the top 10% nodes. The high
proportions indicate that the influential nodes in each community play very important
roles for both the HS300 market and the S&P500 market. Hence, we may control the
risk propagation flow of each community by controlling a few influential nodes of the
community and, in turn, the whole network. Potentially, the results can help us build a
diversified portfolio in order to manage financial risk.
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(a) (b)

Figure 3. (a) Risk propagation flow within communities for the S&P500 market. (b) Risk propagation
flow within communities for the HS300 market. The size of the nodes and the width of links denote
the Fi of a community and the Fij between two communities, respectively.

Table 2. This table lists the community name, the stock tick name corresponding to the top 1 node,
the node/stock number, and the weight of the top 10% stocks’ Fi in each community for the S&P500
market and the HS300 market.

Market Community Name Top 1 Node Nodes No. Weight

S&P500 Medical device and service BXP.N 59 27.75%
Finance LNC.N 40 22.81%
Food and daily necessities CAG.N 37 29.42%
Consumer durables and apparel GPS.N 14 25.18%
Pharmaceuticals and biotechnology LLY.N 28 23.84%
Energy and materials CTSH.O 27 21.30%
Retailing, capital goods, and media DLTR.O 27 25.02%
Software and service AJG.N 63 30.42%
Tourism and transportation PENN.O 44 28.43%
Utilities AEE.N 75 32.52%
Real estate ITW.N 48 25.74%
Semiconductors AMAT.O 21 25.51%

HS300 Securities 601211.SH 22 26.39%
Food and daily necessities 600050.SH 25 24.35%
Healthcare 600763.SH 28 27.90%
Energy and materials 000876.SZ 29 33.58%
Real estate 002271.SZ 14 24.43%
Information technology 600584.SH 35 27.40%
Transportation 601021.SH 15 37.20%
Capital goods 601618.SH 15 21.82%
Automobiles 000625.SZ 11 24.43%
Banks, insurance, and industrials 601818.SH 46 27.07%

4.3. Risk Propagation Flow in Extreme Market States

Frequent large fluctuations are another typical characteristic of complex financial
network dynamics. A large fluctuation is identified when the volatility is sufficiently large
compared with the average one [51].

First, we filtered out large fluctuations in extreme market states by taking different
thresholds. For two tails, we assigned r(t′) = 0 for |r(t′)| < σ, where σ is the threshold.
For the negative (positive) tail, we used r(t′) = 0 for r(t′) > −σ (r(t′) < σ). Then, we
calculated the cross-correlation matrix Cij of r(t′) [73–76]. Then, we pruned the modified
cross-correlation matrix |Cσ,tail

ij |with the PMFG method and generated the threshold PMFG

graph Aσ,tail
ij .
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Thus, threshold risk propagation flow networks were constructed from the threshold
PMFG graph Aσ,T

ij . As shown in Figure 4a–d, Fi positively scaled with Si, and τi negatively
scaled with Si, i.e., the nodes exhibited a degree-driven effect. When the threshold σ
increased, two effects were observed: (i) the Fi of the hubs increased, indicating that the
nodes tended to be more degree-driven; (ii) the τi of the hubs also increased, weakening the
degree-driven effect of the nodes. The former effect was stronger by comparison. Therefore,
hub nodes were more dominant in extreme market states, indicating that we may achieve
better control using hub nodes in these cases.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Spatiotemporal patterns of risk propagation in extreme market states. We measured the risk
propagation flow Fi and the local response times τi of all nodes for the S&P500 market and the HS300
market in extreme market states. For comparison, the results of the original network are displayed in
triangles. (a) Fi vs. the weighted degree Si for the S&P500 market with different threshold σ for two
tails, T. (b) τi vs. Si for the S&P500 market with different threshold σ for two tails, T. (c) Fi vs. Si for
the HS300 market with different threshold σ for two tails, T. (d) τi vs. Si for the HS300 market with
different threshold σ for two tails, T. (e) Fi vs. Si for the S&P500 market for two tails, T; the negative
tail, N; and the positive tail, P. (f) τi vs. Si for the S&P500 market for two tails, T; the negative tail, N;
and the positive tail, P. (g) Fi vs. Si for the HS300 market for two tails, T; the negative tail, N; and the
positive tail, P. (h) τi vs. Si for the HS300 market for two tails, T; the negative tail, N; and the positive
tail, P. For (a–d), σ ∈ [0.5, 2], while for (e–h), σ = 1.5.

Furthermore, we distinguished between crashes and bubbles and calculated the risk
propagation flow with the threshold PMFG graph Aσ,N

ij and Aσ,P
ij . As shown in Figure 4e–h,

Fi and τi of the hubs both increased in the order of two tails, the negative tail, and then, the
positive tail. The hub nodes were more dominant, on the one hand, but responded more
slowly, on the other hand, during bubbles than during crashes. The dependence of the link
Fij on the product of i and j’s weighted degree is listed in Supplementary Material S1.

5. Conclusions

To explore the spatiotemporal patterns of risk propagation in complex financial net-
works, we combined the SIS infectious disease model with empirical networks. We revealed
that hub nodes (high-degree nodes) play important roles in risk propagation across the
network and respond rapidly, exhibiting a degree-driven effect. Moreover, we investigated
the influence of two key dynamic parameters. The impacts of the two dynamic parameters
on the degree-driven effect of the nodes were almost opposite.
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Furthermore, we explored the impacts of two typical characteristics of complex finan-
cial systems— the existence of community structures and frequent large fluctuations—on
risk propagation flow. First, we characterized the risk propagation flow between and
within different communities of the complex financial networks. About 30% of the total
risk propagation flow of each community can be explained by the top 10% nodes. Thus, we
can control the risk propagation flow of each community by controlling a few influential
nodes in each community and, in turn, control the whole network. Then, we classified
different categories of large fluctuations with the threshold method and explored the risk
propagation flow in extreme market states. As the threshold increased, the degree-driven
effect of the nodes became greater. In other words, hub nodes become more dominant
in extreme market states, indicating that better control may be achieved by hub nodes in
these cases.

The results shed light on the underlying mechanisms of risk propagation flow in complex
financial networks, answering the questions about which nodes are more important in the risk
propagation process and which nodes have a shorter response time. One limitation of our work
is that, although the SIS model is an appropriate approximation to describe the risk propagation
process of the financial system for now, it is not very accurate. In the future, we can replace it
with a more accurate dynamic equation of the financial system. Moreover, we can design a risk
management scheme based on our results and control the influential nodes to slow down or
curb the spread of financial risk in the whole network. New methods may also be developed
and applied to portfolio optimization based on our results.

Supplementary Materials: The following Supporting Information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13021129/s1, Supplementary Material S1: Figure S1: Spa-
tiotemporal patterns of risk propagation with different dynamic parameters; Figure S2: Spatiotem-
poral patterns of risk propagation in extreme market states; Figure S3: Risk propagation flow in
each community for S&P500 market; Figure S4: Risk propagation flow in each community for HS300
market. Supplementary Material S2: The stock names and stock tick names are summarized.
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