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Abstract: Solving a scalar wave equation by the finite-difference (FD) method is a key step for
advanced seismic imaging, in which the numerical accuracy is significantly affected by the FD
stencil. High-order spatial and temporal approximations of the FD stencil can effectively improve the
numerical accuracy and mitigate dispersion error. However, the huge costs of high-order stenciling
in computation and storage hinder the application of large-scale modeling. In this paper, we propose
a new efficient FD stencil with high-order temporal accuracy for numerical seismic modeling. The
new stencil has a radial shape, including a standard cross-stencil and a rotated cross-stencil with a
(π/4) degree, and it can reach sixth-order accuracy in the time approximation. Compared with the
well-known temporal high-order cross-rhombus stencil, the new stencil involves fewer grid nodes
and thus has higher computational efficiency, especially in high-order cases. Dispersion and stability
analyses show that the new stencil has great improvements in mitigating the dispersion error and
stability problem compared with the conventional methods. Numerical accuracy and execution time
analyses show that the new stencil is an economical and feasible method for large-scale modeling.

Keywords: finite-difference stencil; high-order temporal approximation; numerical accuracy;
dispersion analysis

1. Introduction

Finite-difference methods are the most popular tool for understanding complex wave
phenomena due to their straightforward implementation and relatively small compu-
tational cost [1–7]. Solving scalar wave equations through FD methods is a basic step
in seismic depth migration [8] and velocity modeling [9–11]. An FD stencil defines the
grid nodes related to the FD operator, such as the widely used cross-stencil involving a
series of horizontal and vertical grid nodes. High-order FD stencils for approximating
temporal derivatives have practical advantages in mitigating dispersion errors and stability
problems.

To obtain an FD stencil with high-order time approximation, the authors of [1] pre-
sented a Lax–Wendroff scheme in which the high-order FD operators of the temporal
derivatives are transformed into the FD operators of the mixed spatial derivatives. The
authors of [12,13] further developed this method with fourth- and sixth-order temporal
accuracies and derived a stability formula for the scalar wave equation. Afterward, in [14],
the authors presented a new FD stencil with a rhombus shape. The rhombus stencil is also
similar to the Lax–Wendroff method, and it can reach arbitrary even-order accuracy for
both the temporal and spatial accuracies. To improve the computational efficiency, the
authors of [15] presented a mixed stencil with a small rhombus stencil and a large cross
stencil. They demonstrated that this cross-rhombus stencil can reach (2M)th-order spatial
and (2N)th-order temporal accuracies with the time–space domain FD coefficients. The
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authors of [16,17] further developed the cross-rhombus stencil in a staggered grid and
gave the analytical formula for solving FD coefficients with fourth- and sixth-order tempo-
ral accuracies. Then, the authors of [18] presented a method for solving FD coefficients
with arbitrary even-order accuracies in a staggered grid and investigated the optimal FD
coefficients using a combination of the Taylor series expansion and least squares method.

A standard cross-rhombus stencil with a high-order time approximation will involve
more grid nodes, thus increasing the cost exponentially. For the problem of low computa-
tional efficiency in high-order cases, we propose a new temporal high-order FD stencil. The
new stencil has a radial shape, including a standard cross-stencil and a rotated cross-stencil
with a (π/4) degree, in which the rotated cross stencil is similar to the Lax–Wendroff
approach to improve the temporal accuracy. Compared with the standard cross-rhombus
stencil method, the new stencil involves fewer grid nodes, and this is significant for reduc-
ing computational costs in large-scale seismic modeling. We prove that the new stencil can
reach sixth-order temporal accuracy with the time–space domain FD coefficients. Although
the new stencil cannot guarantee higher accuracy than the sixth-order time approximation,
it is a compromise scheme which sacrifices a little accuracy in exchange for a large increase
in computational efficiency. Then, we use the Taylor-series expansion (TE) method [19]
to obtain the FD coefficients of the proposed FD stencil. As an alternative, we present the
dispersion relationship-preserving (DRP) method [6,7,20,21] to obtain the FD coefficients
satisfying more elevated wavenumbers in the dispersion relationship. The DRP-based
FD coefficients can effectively mitigate the dispersion errors from the high-wavenumber
components. To verify the feasibility of the proposed method, we designed a series of
experiments to analyze the performance of the new stencil. The results indicate that the
new stencil is a significant improvement in mitigating dispersion error and computational
efficiency compared with the conventional methods.

2. Method
2.1. Review of the Staggered-Grid FD Scheme with the Cross-Rhombus Stencil

The 2D constant density scalar wave equation for space (x, z) and time t can be
expressed as follows:

1
v2

∂2 p
∂t2 =

∂2 p
∂x2 +

∂2 p
∂z2 , (1)

where p(x, z, t) is the scalar wavefield and v is the velocity. The Taylor expansion of
Equation (1) with respect to time [1] yields

p1 − 2p0 + p−1

∆t2 ≈ v2
(

∂2 p0

∂x2 +
∂2 p0

∂z2

)
+

N

∑
j=0

wj
∂2N p0

∂x2j∂z2N−2j . (2)

Here, pl = p(x, z, t + l∆t) is the discretized scalar wavefield, ∆t is the time step, and
wj represents the weights of the spatial mixed derivatives. Then, Equation (2) can be
approximated by the FD operator with a cross-rhombus stencil such that

a0 p0
0,0 +

M

∑
m=1

am

(
p0
−m,0 + p0

m,0 + p0
0,−m + p0

0,m

)
︸ ︷︷ ︸

cross stencil

+
N−1

∑
m=1

N−m

∑
n=1

bm,n

(
p0
−m,−n + p0

m,n + p0
−m,n + p0

m,−n

)
︸ ︷︷ ︸

rhombus stencil

≈ r−2
(

p1 − 2p0 + p−1
)

,

(3)

Here, pl
m,n = p(x + mh, z + nh, t + l∆t), h represents the grid spacing and r = v∆t/h

is the Courant number, where the parameters M and N define the size of the cross- and
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rhombus stencils, respectively. The cross-rhombus stencil can achieve (2M)th-order spatial
and (2N)th-order temporal accuracies when the FD coefficients are derived from the time–
space domain dispersion relation [15].

2.2. A New Efficient FD Stencil with High-Order Spatial and Temporal Accuracies

To further improve the computational efficiency, we simplify the cross-rhombus stencil
to a new FD stencil with a radial shape. As shown in Figure 1, the new stencil involves
grid nodes only with (πn/4) degrees, where n is an arbitrary integer. Compared with the
standard cross-rhombus stencil, the new stencil has less grid nodes, especially in the high-
order cases. We can prove that the stencil still has a higher-order temporal approximation,
and the details of the proof are shown in Appendix A.

a1aM a2 aMa1 a2 aMa1 a2

a1a1

a2

aM

a1

a2

aM

b 1

b N

b 2

b N

b 1

b 2

b 1

b 2

b N

b 1

b 2

b N

a1aM a2 aMa1 a2 aMa1 a2

a1a1

a2

aM

a1
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b 1

b N

b 2

b N

b 1

b 2

b 1

b 2

b N

b 1

b 2

b N

a0

cross stencil ( /4)-degree rotated cross stencilπ

radiation stencil

Figure 1. Schematic diagram of the new stencil, where the new radiation stencil is composed of a
standard cross-stencil and a rotated cross-stencil of (π/4) degrees.

According to the definition of the new stencil (Figure 1), we obtained the new FD scheme:

a0 p0
0,0 +

M

∑
m=1

am

(
p0
−m,0 + p0

m,0 + p0
0,−m + p0

0,m

)
︸ ︷︷ ︸

cross stencil

+
N−1

∑
n=1

bn

(
p0
−n,−n + p0

n,n + p0
−n,n + p0

n,−n

)
)︸ ︷︷ ︸

rotated cross stencil with a (π/4)−degree

≈ r−2
(

p1 − 2p0 + p−1
)

.

(4)
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The new radiation stencil is a combination of a standard cross-stencil and a rotated
cross-stencil with (π/4) degrees (Figure 1). Let am represent the FD coefficients of the
standard cross-stencil and bn represent the FD coefficients of the rotated cross-stencil. In
the following parts, we present two methods to obtain the FD coefficients of the proposed
stencil and analyze the approximate accuracy theoretically.

2.3. Determining FD Coefficients of the New Stencil through Taylor-Series Expansion

Assuming the plane wave propagates in the grid, we let

pl
i,j = ei[kx(x+ih)+kz(z+jh)−ω(t+l∆t)]. (5)

Here, kx = k cos(θ), kz = sin(θ), and θ is the propagation direction of the plane wave,
while ω represents the angular frequency. By substituting Equation (5) into Equation (4),
we obtain

a0 + 2
M

∑
m=1

am[cos(mkxh) + cos(mkzh)]

+ 4
N−1

∑
n=1

bn[cos(nkxh) cos(nkzh)]

≈ r−2[−2 + 2 cos(ω∆t)].

(6)

Equation (6) represents the time–space domain dispersion relation of our new FD
scheme. Let v = ω/k. The Taylor-series expansions of the cosine functions cos(mkxh),
cos(mkzh) and cos(ω∆t) give

a0 + 2
M

∑
m=1

[
am

∞

∑
j=0

(−1)jm2j(k2j
x + k2j

z )h2j

(2j)!

]

+ 4
N−1

∑
n=1

[
bn

∞

∑
ξ=0

∞

∑
ζ=0

(−1)ξ+ζ n2(ξ+ζ)

(2ξ)!(2ζ)!
k2ξ

x k2ζ
z h2(ξ+ζ)

]

≈ 2
∞

∑
j=1

(−1)jr2j−2(kh)2j

(2j)!
.

(7)

When comparing the coefficients of h0(j = 0), we obtain

a0 + 4
M

∑
m=1

am + 4
N−1

∑
n=1

bn = 0. (8)

Let

k2j =
(

k2
x + k2

z

)j
=

j

∑
ξ=0

j!
ξ!(j− ξ)!

k2ξ
x k2j−2ξ

z . (9)

By substituting Equation (9) into Equation (7) and comparing the weights of h2j(j > 0),
we obtain

M

∑
m=1

am
(−1)jm2j(k2j

x + k2j
z )

(2j)!

+ 2
N−1

∑
n=1

[
bn

j

∑
ξ=0

(−1)jn2j

(2ξ)!(2j− 2ξ)!
k2ξ

x k2j−2ξ
z

]

≈
j

∑
ξ=0

(−1)j j!r2j−2

(2j)!ξ!(j− ξ)!
k2ξ

x k2j−2ξ
z .

(10)
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When comparing the weights of k2ξ
x k2j−2ξ

z , we obtain
M

∑
m=1

m2jam + 2
N−1

∑
n=1

n2jbn = r2j−2 (ξ = 0 or ξ = j)

2
N−1

∑
n=1

n2j

(2j− 2ξ)!(2ξ)!
bn =

j!r2j−2

(2j)!ξ!(j− ξ)!
(ξ = 1, 2, . . . , j− 1).

(11)

We only need M + N − 1 independent equations to solve the FD coefficients am and
bn. Through redundancy analysis, we simplify Equation (11) as

M

∑
m=1

m2jam + 2
N−1

∑
n=1

n2jbn = r2j−2 (j = 1, 2, . . . , M);

N−1

∑
n=1

n2jbn =
j!(2ξ)!(2j− 2ξ)!
2(2j)!ξ!(j− ξ)!

r2j−2 (j = 2, 3, . . . , N);

and ξ = int(j/2)).

(12)

where int represents a function to find the integer part of the real value. In Appendix A,
we prove that the FD coefficients obtained by Equation (12) can reach at least sixth-order
temporal accuracy. Aside from that, we give the solution of Equation (12) in an analytic form
when N = 2, and the details are shown in Appendix B. Next, we analyze the relationship
between the new stencil and some existing methods:

(1) When M > 0 and N > 0 (for example, M = 3 and N = 3), this is a general
situation, and Equation (12) can be expressed as

1 4 9 2 8 18
1 16 81 2 32 162
1 16 81 2 128 1458
0 0 0 1 16 81
0 0 0 1 64 729
0 0 0 1 256 6561





a1
a2
a3
b1
b2
b3

 =



1
r2

r4

r2/6
r4/10

3r6/10

. (13)

The FD coefficients am and bn can be determined by solving the above linear equation,
and a0 can be determined by Equation (8).

(2) When N = 0, there is no rotated cross-stencil. Equation (12) can be simplified
as follows:

M

∑
m=1

m2jam = r2j−2 (j = 1, 2, . . . , M). (14)

The new FD scheme is simplified to the conventional time–space domain FD scheme
with a cross-stencil [19].

(3) When N = 1, Equation (12) becomes the fourth-order temporal accuracy FD scheme
with a cross-rhombus stencil [14,15].

(4) When r = 0, the FD coefficients bn = 0, Equation (12) can be expressed as
M

∑
m=1

m2am = 1 (j = 1)

M

∑
m=1

m2jam = 0 (j = 2, . . . , M)

. (15)

In this case, the new FD scheme is simplified to the space domain FD scheme with a
cross-stencil.
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2.4. Determining the FD Coefficients of the New Stencil with the Dispersion
Relationship-Preserving Method

TE-based FD coefficients are prone to dispersion errors for the high-wavenumber
components [17,22]. As an alternative, we present the dispersion relationship-preserving
method to obtain FD coefficients satisfying more elevated wavenumbers in the dispersion
relationship [6,7,20,21]. The DRP-based FD coefficients can effectively mitigate the disper-
sion errors from the high-wavenumber components. Following our previous work [7],
we define a new function ψm,β,θ to represent the weights of the FD coefficients am in the
dispersion relation (Equation (6)). Then, ψm,β,θ can be defined as

ψm,β,θ = 2[cos(mβ cos(θ)) + cos(mβ sin(θ))]. (16)

Here, β = kh, and θ represents the propagation angle. Similarly, we define another
function ϕn,β,θ to represent the weights of bn. The function ϕn,β,θ can be defined as

ϕn,β,θ = 4[cos(nβ cos(θ)) cos(nβ sin(θ))]. (17)

Then, we can extend ψm,β,θ to matrix A(θ) involving a series of β and a fixed angle θ.
Matrix A(θ) is

A(θ) =


1 ψ1,β1,θ ψ2,β1,θ · · · ψM,β1,θ
1 ψ1,β2,θ ψ2,β2,θ · · · ψM,β2,θ
...

...
...

...
...

1 ψ1,βξ ,θ ψ2,βξ ,θ · · · ψM,βξ ,θ

, (18)

where βi = βmax/ξ ∗ i and βmax can be obtained by the optimization algorithm [23]. We
also extend the function ϕn,β,θ to the matrix

B(θ) =


ϕ1,β1,θ ϕ2,β1,θ · · · ϕN−1,β1,θ
ϕ1,β2,θ ϕ2,β2,θ · · · ϕN−1,β2,θ

...
...

...
...

ϕ1,βξ ,θ ϕ2,βξ ,θ · · · ϕN−1,βξ ,θ

. (19)

Additionally, the right-hand side of Equation (6) is expanded to

D(θ) =


r−2[−2 + 2 cos(β1r)]
r−2[−2 + 2 cos(β2r)]

...
r−2[−2 + 2 cos(βξr)

]
. (20)

Thus, the time–space domain dispersion relation of our new method involving ξ
wavenumbers and ζ angles can be expressed as follows:

A(θ1) B(θ1)
A(θ2) B(θ2)

...
...

A(θζ) B(θζ)




a0
a1
...

bN−1

 =


D(θ1)
D(θ2)

...
D(θζ)

. (21)

Then, numerically solving this over-determined system can yield the DRP-based
FD coefficients.

3. Dispersion Analysis

We denote the phase velocity vFD = ω/|k| and then yield the phase velocity ratio

δ(β, θ) =
vFD

v
=

1
rβ

arccos(1 + 0.5r2q(β, θ)). (22)
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Here, q is

q = a0,0 + 2
M

∑
m=1

am[cos(mβ cos(θ)) + cos(mβ sin(θ))]

+ 4
N−1

∑
n=1

bn[cos(nβ cos(θ)) cos(nβ sin(θ))],

(23)

In addition, β = kh. We analyze and compare the ratios δ of different FD methods,
and the abbreviations of these FD methods are listed in Table 1. Figure 2 shows the ratios δ
varying with parameters β and θ.

Table 1. Abbreviation table of different FD methods used for dispersion analyses.

Abbreviations FD Coefficients FD Stencils

TE-C TE-based FD coefficients Cross-stencil
TE-CR TE-based FD coefficients Cross-rhombus stencil
TE-R TE-based FD coefficients Radiation stencil
DRP-R DRP-based FD coefficients Radiation stencil

0 0.5 1 1.5 2 2.5 3

0.92

0.94

0.96

0.98

1

1.02

1.04

F
D

/

TE-C,  =0.0015s

  =0

  = /16

  =2 /16

  =3 /16

  =4 /16

(a)

0 0.5 1 1.5 2 2.5 3

0.92

0.94

0.96

0.98

1

1.02

1.04

F
D

/

TE-R,  =0.0015s

  =0

  = /16

  =2 /16

  =3 /16

  =4 /16

(b)

0 0.5 1 1.5 2 2.5 3

0.92

0.94

0.96

0.98

1

1.02

1.04

F
D

/

DRP-R,  =0.0015s

  =0

  = /16

  =2 /16

  =3 /16

  =4 /16

(c)

Figure 2. Dispersion curves varying with the parameters β = kh and propagation angle θ. Here,
∆t = 0.0015 (s), υ = 1500 (m/s), h = 6 (m), M = 8, and N = 8: (a) TE-C method, (b) TE-R method
and (c) DRP-R method.

It is clear that the ratios δ of the TE-C method were far larger than one for the high-
wavenumber region (Figure 2a), resulting in a serious temporal dispersion error. The
corresponding ratios of the new method (Figure 2b) were significantly improved, indicating
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that the TE-R method can effectively mitigate the temporal dispersion error for the high-
wavenumber components. Figure 2c shows that the DRP-R method had the smallest
dispersion error compared with the other methods.

The TE-CR method will multiply the computational cost by the increase in the temporal
order N. Then, we analyzed the ratios δ of the TE-CR and TE-R methods with different
orders N, and the results are shown in Figure 3. It can be seen that the performance of the
TE-R method was slightly less than that of the TE-CR method, but the cost of the TE-CR
method increased exponentially in the high-order cases. Although the new stencil sacrificed
a little approximation accuracy, it had great improvement in computational efficiency.

0 0.5 1 1.5 2 2.5 3
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

F
D

/

TE-CR, N=2

TE-CR, N=3

TE-CR, N=4

TE-CR, N=5

TE-CR, N=6

TE-C

(a)

0 0.5 1 1.5 2 2.5 3
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

F
D

/

TE-R, N=2

TE-R, N=3

TE-R, N=4

TE-R, N=5

TE-R, N=6

TE-C

(b)

Figure 3. Dispersion curves of TE-CR and TE-R methods with different orders N. Here,
υ = 1500 (m/s), h = 6 (m), M = 8, and propagation angle α = π/16: (a) TE-CR method and
(b) TE-R method.

4. Stability Analysis

The function cos(ω∆t) in Equation (6) must lie in the interval [−1, 1], where

− 1 ≤ cos(ω∆t) = 1 + 0.5r2q ≤ 1. (24)

We mostly use the Nyquist wavenumber to analyze the stability [19,24] such that

kxh = kzh = π. (25)

By substituting Equation (25) into Equation (24), we obtain the 2D stability condition
of the proposed FD scheme as follows:

r ≤
{

M

∑
m=1

am

[
(−1)m−1 + 1

]
+

N

∑
n=1

bn

[
(−1)2n−1 + 1

]}−1/2

. (26)

Then, the 2D stability factor s can be defined as

s =

{
M

∑
m=1

am

[
(−1)m−1 + 1

]
+

N−1

∑
n=1

bn

[
(−1)2n−1 + 1

]}−1/2

, (27)

where the stability factor s is related to the FD coefficients, and these FD coefficients are
determined by the Courant number r. Therefore, the FD scheme must satisfy the following
stability condition:

r ≤ s. (28)

In the following, we analyze the stability factors s varying with the Courant number r,
and the results are shown in Figure 4. It can be seen that the TE-C method had the smallest
stability factor, indicating that it is prone to instability. The stability factors of the TE-R and
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DRP-R methods were slightly less than the TE-CR method but much larger than that of the
TE-C method. Figure 4b shows the maximum factor s satisfying r ≤ s for different orders
M. The maximum stability factors of the TE-R and DRP-R methods were obviously larger
than that of the TE-C method, which showed an improvement in stability.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
(r

)

s=r

TE-C

TE-CR, N=4

TE-R, N=4

DRP-R, N=4

(a)

4 5 6 7 8 9 10 11 12

M

0.5

0.55

0.6

0.65

0.7

s
m

a
x

TE-C

TE-CR, N=4

TE-R, N=4

DRP-R, N=4
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Figure 4. Stability curves of different FD methods: (a) stability factors varying with the Courant
numbers r and (b) maximum stability factors satisfying r ≤ s with different orders M.

5. Numerical Experiments
5.1. Seismic Modeling of a 2D Homogeneous Velocity Model

In this section, we use a 2D homogeneous velocity model to examine our new stencil.
The 2D homogeneous model had 512× 512 grid nodes with a velocity υ = 1500 (m/s). We
set M = 8, N = 8 and a time step ∆t = 0.0015 (s) for the FD methods. A Ricker wavelet
with 40 (Hz) was injected as an explosion source. Figure 5 shows the snapshots of different
methods with grid sampling h = 4 (m) and h = 6 (m).
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Figure 5. Numerical experiments of the homogeneous model with grid sampling h = 4 (m) and
h = 6 (m). The left panel shows the snapshots with the grid sampling h = 4 (m), and the right
panel represents the grid sampling h = 6 (m): (a,b) TE-C method, (c,d) TE-R method and (e,f) DRP-
R method.

It can be seen that the TE-C method had visible temporal dispersion errors (red arrows)
with the grid sampling h = 4 (m) and had both serious spatial (white arrows) and temporal
dispersion errors with the grid sampling h = 6 (m). The corresponding temporal dispersion
errors were reduced in the TE-R method, indicating that the new stencil had better temporal
accuracy. The spatial dispersion errors were significantly reduced in the DRP-R method.
Thus, the DRP-based FD coefficients could effectively mitigate the spatial dispersion with a
large grid spacing.

5.2. Numerical Accuracy and CPU Execution Time Analyses

An increase in the temporal order N will significantly increase the computational cost.
In this part, we set a series of temporal orders N to analyze the relative errors and CPU
execution times (CPU: AMD 5600h) of the cross-rhombus stencil and our new stencil. Here,
we adopted h = 6 (m), ∆t = 0.0015 (s) and υ = 1500 (m/s) for all FD methods. We set
up three receivers at positions (768, 1536) (m), (1536, 768) (m) and (768, 768) (m), which
represent the simulations of different propagation angles. We calculated their total relative
errors with the reference method [7], and the total relative error was defined as

E =
3

∑
i=1
‖ti − ri‖2, (29)
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where ti represents the records of the three receivers and ri represents the records of
the references.

Table 2 lists the total relative errors and CPU execution times of the TE-R and TE-CR
methods with different orders N. It can be seen that the relative errors of the TE-CR method
were slightly less than that of the TE-R method (Table 2). However, the CPU execution times
of the TE-CR method were much larger than that of the TE-R method. Table 2 demonstrates
that the numerical accuracy of the new method was slightly lower than that of the standard
cross-rhombus stencil, but its computational efficiency was greatly improved, especially in
the high-order cases.

Table 2. Relative errors and CPU execution times of the TE-CR and TE-R methods with different
orders N.

Cases Methods M N Total Relative Errors (10−1 Pa) Execution Times (s)

1 TE-C 12 \ 42.63832 41.22905
2 TE-CR 12 6 2.02534 80.51018
3 TE-R 12 6 3.86926 53.72843
4 TE-CR 12 8 1.48282 109.32694
5 TE-R 12 8 2.51165 61.30650
6 TE-CR 12 10 0.85564 156.39934
7 TE-R 12 10 1.52663 65.83632
8 TE-CR 12 12 0.24282 204.95636
9 TE-R 12 12 0.72446 70.14191

5.3. Seismic Modeling of the 2D Inhomogeneous Velocity Model

We used a modified 2D Sigsbee velocity model to test the new stencil in the complex
velocity model. The modified Sigsbee model (Figure 6) has 500× 1200 grid nodes, with
the velocities varying from 1550 to 4500 (m/s). We set M = 8, N = 8, grid spacing
h = 8.5 (m) and the time step ∆t = 0.0009 (s) for all FD schemes. The source with the
peak frequency fp = 30 (Hz) (Ricker wavelet) was injected at the center of the surface. For
convenience, we ignored the influence of the discrete grid representation on the strong
material interfaces [25,26].

Figure 6. The 2D Sigsbee model had 500× 1200 grid nodes with a grid spacing h = 8.5 (m) and
variation in the velocities from 1550 to 4500 (m/s).

Figure 7 shows the snapshots and seismic records of different FD methods. The TE-C
method had obvious dispersion errors in the low-velocity layers, while the corresponding



Appl. Sci. 2023, 13, 1140 12 of 16

dispersion errors were reduced in the TE-R and DRP-R methods. Figure 8 shows the seismic
records at position (2125, 0) (m), at which the reference trace r used a high-order temporal
and spatial FD scheme (M = 12, N = 12) with the DRP-based coefficients [7]. Traces a-r
b-r and c-r represent the relative errors of the TE-C, TE-R and DRP-R methods compared
with the reference method, respectively. The dispersion errors of the TE-C method were
serious for the first arrival waves and reflection waves. The corresponding errors were
significantly alleviated in the TE-R and DRP-R methods. Table 3 lists the relative errors of
all FD methods. It is clear that the relative errors of the TE-R and DRP-R methods were
far less than that of the TE-C method. The numerical experiments with the Sigsbee model
demonstrated that the new stencil also had better performance in the complex velocity
model for mitigating dispersion errors.
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Figure 7. Snapshots and corresponding seismic records of the 2D Sigsbee velocity model. Here,
M = 8, N = M, ∆t = 0.0009 (s) and h = 8.5 (m). (a,b) The TE-C method. (c,d) The TE-R method.
(e,f) The DRP-R method.
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Figure 8. Seismogram at position (0, 2125) (m) of different FD methods. Trace a represents the record of
the TE-C method. Trace b represents the TE-R method. Trace c represents the DRP-R method. Trace r
represents the reference trace. Trace a-r represents the relative error between trace a and reference trace r.
Trace b-r represents the relative error of trace b. Trace c-r represents the relative error of trace c.

Table 3. Relative errors of different FD methods in the 2D Sigsbee velocity model.

Orders Total Relative Errors (Pa)

M N TE-C TE-CR TE-R DRP-R

8 8 7.974763 2.203247 2.348245 0.715832
8 4 \ 2.390345 2.499854 0.846557
6 6 12.522196 4.380239 4.473768 1.091585
6 3 \ 4.502392 4.628571 1.154466

6. Conclusions

In this work, we proposed a new FD stencil with high-order temporal and spatial
accuracies. The new stencil can reach at least sixth-order temporal accuracy and involves
fewer grid nodes than that of the well-known cross-rhombus stencil. We presented two
methods to solve the FD coefficients of the new stencil by Taylor-series expansion and
the dispersion relationship-preserving method, in which the DRP-based FD coefficients
can effectively mitigate the dispersion errors from the high-wavenumber components.
Dispersion, stability analyses and numerical experiments demonstrated that the new stencil
had better accuracy and stability than those of the conventional cross-stencil. Numerical
accuracy and execution time analyses proved that the accuracy of the new stencil was
slightly lower than that of the standard cross-rhombus stencil in the high-order cases, but its
computational efficiency was greatly improved. Thus, the new stencil is a more economical
and feasible method for large-scale modeling.
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Appendix A

In this part, we analyze the accuracy of our new stencil with the time–space domain
TE-based FD coefficients (Equation (12)). First, we define the absolute error ε according to
Equation (6) as follows:

ε =

∣∣∣∣ a0 + 2 ∑M
m=1 am[cos(mkxh) + cos(mkzh)]

+4 ∑N−1
n=1 bn[cos(nkxh) cos(nkzh)]− r−2[−2 + 2 cos(ω∆t)]

∣∣∣∣. (A1)

By substituting Equations (7) and (10) into Equation (A1), we obtain

ε =

∣∣∣∣∣∣∣∣
a0 + 2 ∑M

m=1

[
am ∑∞

j=0
(−1)jm2j(k2j

x +k2j
z )h2j

(2j)!

]
+

4 ∑N−1
n=1

[
bn ∑∞

ξ=0 ∑∞
ζ=0

(−1)ξ+ζ n2(ξ+ζ)

(2ξ)!(2ζ)! k2ξ
x k2ζ

z h2(ξ+ζ)

]
− 2r−2 ∑∞

j=1
(−1)jr2j(kh)2j

(2j)!

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
a0 + 2 ∑M

m=1

[
am ∑∞

j=0
(−1)jm2j(k2j

x +k2j
z )h2j

(2j)!

]
+ 4 ∑N−1

n=1

[
bn ∑∞

j=1
(−1)jn2j(k2j

x +k2j
z )h2j

(2j)!

]
+4 ∑N−1

n=1

[
bn ∑∞

ξ=1 ∑∞
ζ=1

(−1)ξ+ζ n2(ξ+ζ)

(2ξ)!(2ζ)! k2ξ
x k2ζ

z h2(ξ+ζ)

]
− 2r−2 ∑∞

j=1
(−1)jr2j(kh)2j

(2j)!

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 + 4 ∑M
m=1 am + 4 ∑N−1

n=1 bn

+2 ∑∞
j=1(−1)j

[
∑M

m=1 am
m2j(k2j

x +k2j
z )

(2j)! + 2 ∑N−1
n=1 bn

n2j(k2j
x +k2j

z )
(2j)!

]
h2j

+4 ∑N−1
n=1

[
bn ∑∞

ξ=1 ∑∞
ζ=1

(−1)ξ+ζ n2(ξ+ζ)

(2ξ)!(2ζ)! k2ξ
x k2ζ

z h2(ξ+ζ)

]
−2r−2 ∑∞

j=1
(−1)jr2j(k2j

x +k2j
z )h2j

(2j)! − 2r−2 ∑∞
j=1 ∑

j−1
ξ=1

(−1)jr2jk2ξ
x k2j−2ξ

z j!h2j

(2j)!(ξ)!(j−ξ)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

≈

∣∣∣∣∣∣∣∣∣∣∣
2 ∑∞

j=M+1(−1)j
[

∑M
m=1 am

m2j(k2j
x +k2j

z )
(2j)! + 2 ∑N−1

n=1 bn
n2j(k2j

x +k2j
z )

(2j)!

]
h2j

+4 ∑N−1
n=1

[
bn ∑ ∑∞,∞

ξ=1,ζ=1,ξ+ζ>3
(−1)ξ+ζ n2(ξ+ζ)

(2ξ)!(2ζ)! k2ξ
x k2ζ

z h2(ξ+ζ)

]
−2r−2 ∑∞

j=M+1
(−1)jv2j∆t2j(k2j

x +k2j
z )

(2j)! − 2r−2 ∑∞
j=4 ∑

j−1
ξ=1,ξ 6=int(j/2)

(−1)jv2j∆t2jk2ξ
x k2j−2ξ

z j!
(2j)!(ξ)!(j−ξ)!

∣∣∣∣∣∣∣∣∣∣∣
≈
[
o(h2M) + o(h6)− o(∆t2M)− o(∆t6)

]
≈ o(h6) + o(∆t6).

(A2)

where the minimum power of h and ∆t is six, and thus the modeling accuracy is of the
sixth order.

Appendix B

When N = 2, Equation (12) gives

b1 =
r2

6
. (A3)
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Then, we rewrite Equation (12) as the following Vandermonde matrix form:
10 20 · · · M0

12 22 · · · M2

...
...

...
...

12M−2 22M−2 · · · M2M−2




12a1 + r2/3
22a2

...
M2am

 =


1
r2

...
r2M−2

. (A4)

By solving this linear system, we obtain the analytic FD coefficients:

b1 =
r2

6
;

am = (−1)m+1 ∏
1≤n≤M,n 6=m

| n2 − r2

n2 −m2 | −
r2

3
(m = 1);

am =
(−1)m+1

m2 ∏
1≤n≤M,n 6=m

| n2 − r2

n2 −m2 | (m = 2, . . . , M).

(A5)
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