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Abstract: Every biological system on the planet is severely impacted by environmental change, and
its primary driver is deforestation. Meanwhile, quantitative analysis of changes in Land Use and
Land Cover (LULC) is one of the prominent ways to manage and understand land transformation;
thus, it is essential to inspect the performance of various techniques for LULC mapping to recognize
the better classifier to more applications of earth observation. This article develops a Tunicate Swarm
Algorithm with Deep Learning Enabled Land Use and Land Cover Change Detection (TSADL-
LULCCD) technique in Nallamalla Forest, India. The presented TSADL-LULCCD technique mainly
focuses on the identification and classification of land use in the Nallamalla forest using LANDSAT
images. To accomplish this, the presented TSADL-LULCCD technique employs a dense EfficientNet
model for feature extraction. In addition, the Adam optimizer is applied for the optimal hyper
parameter tuning of the dense EfficientNet approach. For land cover classification, the TSADL-
LULCCD technique exploits the Deep Belief Network (DBN) approach. To tune the hyper parameters
related to the DBN system, the TSA is used. The experimental validation of the TSADL-LULCCD
algorithm is tested on LANDSAT-7-based Nallamalla region images. The experimental results stated
that the TSADL-LULCCD technique exhibits better performance over other existing models in terms
of different evaluation measures.

Keywords: land use; land cover classification; Nallamalla forest; deep learning; parameter optimization

1. Introduction

Depending on the usefulness of Earth’s observational data, various fields such as
regional and urban planning, impact assessment, environmental vulnerability, monitoring
of hazards and natural disasters, and the prediction of salinity and soil erosion, among
others, require an understanding of LULC change [1]. Potential approaches to compre-
hending and managing landscape data include quantitative LULC dynamics prediction
and assessment [2]. It was discovered that mapping LULC change is a crucial component
of a wide range of applications and activities, including global warming mitigation and
land use planning. Evaluation of LULC change is therefore crucial for a number of reasons
related to human wellbeing, including unchecked and rapid population expansion as well
as industrial and economic development, especially in emerging countries with amplified
LULC shifts [3].

Such changes have effects on the environment and human society in several ways,
such as groundwater depletion, rising drought and flood vulnerability, landslide hazards,
loss of ecosystem services, soil erosion, environmental degradation, and many more [4].

Many approaches were advanced to map LULC dynamics and patterns from satellite
observations which include conventional terrestrial mapping along with satellite-related
mapping [5]. Terrestrial mapping, otherwise called a field survey, is a straight way of
mapping where the map is generated at numerous scales integrating data with distinct
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accuracy levels, though it is a manpower-related, money-and-time-consuming way to map
big regions [6]. In contrast, the aerial-and-satellite photograph-related maps of LULC are
multi-temporal, inexpensive, time-saving, and spatially extensive [7]. Remote Sensing
(RS) presents the chance for fast data acquisition on LULC at an affordable cost than other
techniques, such as ground surveys. The satellite images have the merits of multitemporal
accessibility along with extensive spatial coverage for LULC mapping [8]. Previously,
more advanced techniques, such as decision trees, Artificial Neural Networks (ANNs),
Random Forest (RF), and other methods, have grabbed special attention in RS-oriented
applications, such as LULC classification. The classification of remote-sensing images (RSI)
is generally attained through Machine Learning (ML) techniques and Deep Learning (DL)
will be the correct pattern. DL has recently developed as a discipline utilized in Earth
sciences and RS [9]. Many geoscience topics deal with precipitation nowcasting, extreme
weather patterns, carbon fluxes prediction, and climate change projections found in the
literature. Similarly, there is a wide range of RS topics, such as registration and image
fusion, image segmentation, and (drought) forecasting change identification, that include
DL techniques [10].

The [11] explored deep semantic data of high-spatial and temporal resolution time
series power datasets for exploring its association with socio-economic features and framed
a Neural Network (NN) (TR-CNNs) is integrate fuse time-series electricity datasets and
RSI for detecting urban land-use types. In [12], new multi-scale DL methods, ResASPP-
Unet and ASPP-Unet, were devised for LULC. In [13], the authors compared the classifier
performance of four non-parametric methods; they are Xgboost, Support Vector Machine
(SVM), DL, and RF. The study area selected is a complicated mixed-use land in south-
central Sweden, having eight LCLU classes. The satellite images utilized for classifying
are multitemporal scenes from Sentinel-2 that cover autumn, spring, winter, and summer
conditions. In [14], the authors initially devised a Siamese global learning (Siam-GL)
structure, which is a new semantic change detection structure for HSR- RSI.

In [15], OpenStreetMap (OSM) is utilized for delineating parcels that are identified
as basic mapping units. The semantic segment of street view imageries is integrated to
boost the multi-dimensional descriptions of urban parcels, plus Luojia-1 nighttime light
data, Sentinel-2A, and point of interest (POI). Additionally, RF is enforced for determining
the urban land use classes. The [16] study was meant to explore the minor disparities of
ecosystem services rendered by the specific land use varieties of the study region. The
LCLU classifications were executed through SVM approaches from 1999 to 2019. Based on
multitemporal LCLU cover maps, the authors leveraged the global coefficient value of 2003
and 1997 for evaluating ecosystem services for different land use types.

In [17], a new Object-based Convolutional Neural Network OCNN was presented for
urban land use classifiers utilizing Very Fast Simulated Reannealing (VFSR) images. Instead
of a Pixel-wise convolution process, the OCNN is dependent upon segmented substances
since its CNN networks and functional units were employed for examining and labeling
objects for partitioning between-object and within-object variation. To predict linearly
shaped and other objects, two CNN networks with different window sizes and model
structures were developed. The [18] address this problem by using three distinct Deep NN
Ensemble (DNNE) techniques and providing concise research for the LCLU classifier task.
DNNE enables enhancement of the act of DNNs by guaranteeing the different methods
that are integrated. Therefore, increases the model’s generalization and generates more
generalizable and robust results for LCLU classifier tasks.

This article develops a Tunicate Swarm Algorithm with Deep Learning Enabled Land
Use and Land Cover Change Detection (TSADL-LULCCD) technique in Nallamalla Forest,
India. The presented TSADL-LULCCD technique employs a dense EfficientNet model
for feature extraction. In addition, the Adam optimizer is applied for the optimal hyper
parameter tuning of the dense EfficientNet approach. For land cover classification, the
TSADL-LULCCD technique exploits the Deep Belief Network (DBN) model. To tune the
hyper parameters compared to the DBN approach, the TSA is used. The experimental
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validation of the TSADL-LULCCD system is tested on LANDSAT-7-based Nallamalla
region images.

2. Materials and Methods

The presented TSADL-LULCCD technique mainly focuses on the identification and
classification of land use in the Nallamalla forest using LANDSAT 7 images. The pre-
sented TSADL-LULCCD technique encompasses dense EfficientNet feature extractor, DBN
classification, and TSA-based hyper parameter tuning. Figure 1 depicts the workflow of
TSADL-LULCCD approach.
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2.1. Optimal Feature Extraction

For feature extraction, the TSADL-LULCCD technique uses dense EfficientNet model.
A novel dense CNN approach was utilized to mix the existing EfficientNetB0 with dense
layers. An EfficientB0 has 230 layers and 7MB Conv blocks [19]. It features a thick block
infrastructure containing 4 tightly connected layers with rate of development is 4. All
the layers under this infrastructure utilize the resultant mapping features of the previous
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levels as input mapping features. The dense block attains benefits of earlier convolutional
layer resultant mapping features for generating further mapping features with some con-
volutional kernels. This CNN method recovered LANDSAT 7 image database. The dense
EfficientNet is an alternative drop-out and dense layer. The dense layer is fundamental
layer that provides every result in the preceding layer to every neuron, all the neurons
offering one outcome to next layer. It starts by adding a pooling layer, then 4 dense layers
and 3 drop-out layers to ensure the method runs smoothly. At the final stage, a dense layer
collected of 4 FC neurons in conjunction with Softmax outcome layer for computing and
classifying the probability score to each class.

In order to change the hyper parameters related to the dense efficient approach, the
Adam optimizer is used [20]. The Adam algorithm performs dynamic adjustment of
different parameters by evaluating mt and vt first-order and second-order moment estimate,
as given in Equations (1)–(3), where β1 and β2 correspondingly describe the first-order and
the second-order exponential damping decrement. Parameter gt is a gradient at t timestep
in Jsparse(W, b) loss function.

mt = β1mt−1 + (1− β1) · gt (1)

vt = β2vt−1 + (1− β2) · g2
t (2)

gt ← ∇θ Jt(θt−1) (3)

Computer bias-corrected for mt and vt:

ḿt =
mt

1− βt
1

(4)

v́t =
vt

1− βt
2

(5)

Update parameter:
θt+1 = θt −

γ√
v́t + ξ

· ḿt (6)

γ represents the update stepsize, ξ takes a smaller constant to prevent the denomina-
tors to be 0

2.2. Image Classificaion Using DBN Model

In this study, the DBN model is exploited for land cover classification. Deep Belief
Network (DBN) is a probabilistic generalization mechanism that has multiple hidden
layers [21]. Through updating the weights amongst neurons and training the network, the
whole network is capable of recovering input dataset by the maximum probability. The
DBN is made up of two networks. A number of Restricted Boltzmann machine (RBMs) are
superimposed at the bottom of the network, and the RBM of every layer alter the variable
θ, such that the feature of the sampling data is transmitted to the hidden layer through the
maximum probability, and later the extracted feature values are considered as an input
of the succeeding RBM. The data are extracted layer-wise through several RBMs, and
lastly, higher-level data feature values are attained. Along with the DBN is a BPNN entity
classifier. Now, a label set is attached to the topmost layer. Simultaneously, the high-level
eigenvalue extracted by several RBMs is considered the input of BPNN for supervised
learning. Now, the network adjusts the parameter value between different networks based
on the BP and, lastly, constructs the DBN. Figure 2 showcases the framework of DBN.
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DBN is composed of stacked RBM that is learned layer-wise via unsupervised greedy
method. Assume the initial weight, train the initial RBM and utilize the output as an input
to following layer. The output of lowermost RBM is frequently applied as an input of
uppermost RBM. In this circumstance, assume that the neuron of the hidden layer h and
visible layer v of RBM use binary numbers within [0, 1]. Assume (v, h), the energy function
can be determined:

E(v, h|θ) = −
m

∑
i=1

n

∑
j=1

νiωijhj −
m

∑
i=1

aiνi −
n

∑
j=1

bjhj (7)

From the expression, aj and bj denotes the deviation parameter of the i-th visible unit
and jth hidden unit correspondingly, where m, n represents the maximum possible range
of visible and hidden layers; ωij indicates the connection weight; {aj, ωij, bj} shows the
parameters θ of RBM.

P(v, h|θ) = 1
Zθ
− e−E(v,h|θ) (8)

Zθ = ∑
v

∑
h

e−E(v,h|θ) (9)

Now Zθ represent the regularization factor.
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RBM has two-layer NN such as h and v hidden and visual layers. The unsupervised
learning capability of RBM has gained popularity; Hinton 2002 introduced contrast diver-
gence (CD) algorithm, a fast-learning mechanism for RBM. The conditional probability is
based on the principles of Bayesian formula:

p
(
hj = 1

∣∣v) = σ

(
bj + ∑

i
ωijvi

)
(10)

p(vi = 1|h) = σ

(
ai + ∑

i
ωijhj

)
(11)

where σ(x) shows the logistic function.

σ(x) =
1

1 + e−x (12)

Hinton introduced CD algorithm to calculate the updated formula of every parameter.
Especially initialization of the visible layer based on the initial input sample; then, evaluate
the equation of conditional probability and the conditional probability of hidden neurons
based on value of visible layer; last, Gibbs sampling is utilized for extracting a sample by
the computed probability.

Wij = E
(〈

Vihj
〉

data −
〈
Vihj

〉
recon

)
(13)

ai = E(〈Vi〉data − 〈Vi〉recon) (14)

bj = E
(〈

hj
〉

data −
〈

hj
〉

recon
)

(15)

Now, ε represents the learning rate, 〈·〉_data and 〈·〉_recon is the mathematical expecta-
tion of the data itself and after model reconstruction, correspondingly. With that condition,
appropriate weight was attained, and the same technique was used until the entire weight
of RBM was rehabilitated.

2.3. Hyper Parameter Tuning Using Truncate Swarm Algorithm (TSA)

Finally, the TSA is used for optimal hyper parameter tuning of the DBN model.
Ref. [22] proposed a TSA based on the social behaviors of tunicate looking for prey. During
hunting, marine invertebrate makes use of water jet and swarm intelligence to find prey.
Every tunicate might rapidly discharge formerly inhaled seawater via the siphons of
atrium, which generate a type of jet propulsion that propels it quickly. Furthermore,
tunicate displays SI while they share searching information regarding the food position.
The tunicate was needed to meet the subsequent 3 essential constraints to establish the
mathematical modeling of jet propulsion model:

• Avoid clashes between every searching agent.
• Every agent is assured of moving towards the optimum individual.
• Make the searching agent converges to the area nearby the optimum individual.

2.3.1. Elude Clashes between Every Searching Agent

The subsequent formula is used to evaluate the new position of the agent to prevent
searching agent from generating unwanted clashes:

⇀
A =

⇀
G
⇀
M

(16)

⇀
G = c2 + c3 −

⇀
F (17)

⇀
F = 2 · c1 (18)
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where
⇀
A represents a vector used to search for the novel location of every agent;

⇀
G represent

gravity;
⇀
F shows the water flow in the deep sea; c1, c2, and c3 denotes three randomly

generated numbers within [0, 1]. M indicates a vector the value where it is formulated by
the social strength betwixt the searching agent and is determined by:

⇀
M = Pmin + c1 · (Pmax − Pmin) (19)

where the incipient and secondary speed enables searching agent to form social interaction
can be represented as Pmin and Pmax are set to 1 and 4, correspondingly.

2.3.2. Pathfinding to the Optimal Individual

After solving clashes between nearby searching agents, the agents must move toward
the nearby individual having the maximum fitness values. The mathematical modeling of
moving to the better searching agent can be formulated by:

⇀
PD =

∣∣∣∣ ⇀
Xbest − rrand ·

⇀
X(t)

∣∣∣∣ (20)

This is Equation (20),
⇀

PD represent the vector that characterizes the spatial distance

between the tunicate and the target food;
⇀

Xbest refers to food that is at the location of the

existing optimum individual; rrand indicates a random integer within [0, 1] and
⇀

X(t) store
the position data of the existing searching agent from the t-th iteration.

2.3.3. Make the Searching Agent Converge to the Optimal Individual

In order to make the searching agent perform adequate local exploration nearby the
optimum individual to search for the optimum solution of the existing iteration [23], their
positions are evaluated by Equation (21):

X(t) =


Xbesi −

⇀
A ·

⇀
PD, i f rrand < 0.5

Xbesi +
⇀
A ·

⇀
PD, i f rrand ≥ 0.5

(21)

At ‘t’ iteration, every searching agent explores the area nearby the optimum individual
Xbest and assign the outcome to X(t) for updating its location.

2.3.4. Swarm Behavior

The swarming behaviors of tunicate transmit position data betwixt the searching
agents. This can be performed through the optimum individual and the location upgraded
by prior individual based on swarming performance, and it can be mathematically modeled
in the following:

Xi

(⇀
t + 1

)
=→


⇀
Xi(t)+Xi−1

(⇀
t +1

)
→2+c1

→→ i f i > 1
⇀
Xi(t) i f i = 1

(22)

whereas i = 1, . . . , N, N refers to the size of tunicate population, Xi

(⇀
t + 1

)
indicates the

location of present searching agent, Xi−1

(⇀
t + 1

)
denotes the location of the preceding

searching agent, and Xi

(⇀
t
)

is evaluated using Equation (21). To demonstrate the step-by-
step process of TSA, the major step to upgrade the position of searching agent is as follows:

Step 1: Initialize the original population of searching agent X.
Step 2: Assign value to max-iteration and other initial variables.
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Step 3: Calculate the fitness values of every tunicate and choose the individual with the
better fitness values as the optimum searching agent.
Step 4: Upgrade the position of every searching agent using Equation (22).
Step 5: Keep every search agent in the search space.
Step 6: Evaluate the fitness values of every upgrade searching agent; if there is the best
individual than the preceding optimum searching agent in the population, upgrade Xbesi.
Step 7: If the maximal iteration is attained, then the procedure stops. Or else, continue with
steps 4–7.
Step 8: Output the better individual (Xbesi).

Selective fitness is a vital factor in the TSA system. The solution encoder was used for
measuring the aptitude (goodness) of candidate results. At this point, the accuracy value is
the important state employed to design a fitness function.

Fitness = max (P) (23)

P =
TP

TP + FP
(24)

From the expression, TP represents the true positive, and FP denotes the false posi-
tive value.

3. Data and Data Processing
3.1. Study Area

Nallamalla Forest is the largest stretch of undisturbed forest in South India. It is found
on Nallamalla hills which are part of Eastern Ghats and spread over Kadapa, Kurnool, Gun-
tur, Prakasam, and Mahabubnagar districts. The largest part of the forest is Nagarjunsagar-
Srisailam Tiger Reserve which has a feasible tiger population. Leopard sightings are more
common. Between the streams Krishna and Pennar, they follow a near north-south align-
ment that roughly corresponds to the Coromandel Coast for a distance of about 430 km. Its
northern bounds are defined by the Palnadu bowl’s plain terrain, while its southern bound-
ary is formed by the Tirupati slopes. Its coordinates are 16.0131 North and 78.9717 East.
The slopes are an older structure that has generally persisted and crumbled over time.
The modern standard increase is about 520 m, reaching 1100 m at Bhairani Konda and
1048 m at Gundla Brahmeswara. The town of Cumbum is located northwest of each of
these pinnacles. Moreover, there are a variety of summits above 800 m. Typically, the forests
have huge expanses of greenery, grass, and mountains.

3.2. Satellite Images

Images from the LANDSAT 7(ETM+) satellite were utilized to analyze the LULC.
On 15 April 1999, NASA launched LANDSAT 7, which is equipped with the ETM+ (En-
hanced Thematic Mapper plus) with four modes: SWIR (Shortwave Infrared), TIR (Thermal
infrared—Thermal infrared range), PAN (Panchromatic—Panchromatic range), and VNIR
(Visible and Near Infrared). The Thermal spectral bands are provided by the LANDSAT
7 ETM+ instruments, which offer an improvement from 120 m to 60 m. From GloVis,
EarthExplorer, and LandsatLook Viewer, users can access the LANDSAT 7 ETM+ scenes.

The research study has been conducted by LANDSAT 7 images from [https://www.
usgs.gov/landsat-missions/landsat-data-access]. On every occasion the image is oriented
North Up, there is an overall of 11 bands or projection units in meters. Band 4 provides
vegetation-related geographical features in TIFF format. The scenes that are pulled are TIFF
files that are RASTER pictures of Bands 1, 2, 3, 4, 5, and 7. Multiple pages and layers, as
well as red, blue, and green, are supported by the scenes. Multiple layer images with a
depth of either 8 bits per channel or 16 bits per channel can be found in a single TIFF file.
LANDSAT 7 scenes were taken from the time period of 2014 to 2022 for the analysis of the
LULC over the years.

https://www.usgs.gov/landsat-missions/landsat-data-access
https://www.usgs.gov/landsat-missions/landsat-data-access
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4. Results and Discussion

In this section, the performance of the TSADL-LULCCD model is tested using the data
collected from Nallamalla forest, India. The details related to the target region used for
simulation analysis are shown in Table 1. Figure 3 illustrates the sample images.

Table 1. Details on Database.

Class Area (km2) Size % of Area

Grassland 321.30 321.00 30.20
Agriculture 182.90 183.00 17.19
Barren land 231.90 232.00 21.80
Water 327.70 328.00 30.80

Total 1063.80 1064.00 100.00
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The confusion matrices of the TSADL-LULCCD model are clearly demonstrated
in Figure 4. On 80% of the TR database, the TSADL-LULCCD method has recognized
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243 samples in grassland, 129 samples in agriculture, 177 samples in barren land, and
259 samples in water. Simultaneously on 20% of the TS database, the TSADL-LULCCD
technique has recognized 66 samples in grassland, 43 samples in agriculture, 43 samples in
barren land, and 54 samples in water. Concurrently on 70% of the TR database, the TSADL-
LULCCD method has recognized 212 samples in grassland, 115 samples in agriculture,
145 samples in barren land, and 231 samples in water. Finally, on 20% of the TS database,
the TSADL-LULCCD approach has recognized 100 samples in grassland, 50 samples in
agriculture, 74 samples in barren land, and 88 samples in water.
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In Table 2 and Figure 5, the overall classification outcomes of the TSADL-LULCCD
model with 80:20 of the TR/TS database are provided. On the TR database, the TSADL-
LULCCD model has recognized grassland samples with accuy of 97.30%, precn of 95.29%,
recal of 95.67%, Fscore of 95.48%, AUCscore of 96.83%, and MCC of 93.55%. Meanwhile, the
TSADL-LULCCD model has identified agriculture samples with accuy of 97.88%, precn
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of 94.16%, recal of 92.81%, Fscore of 93.48%, AUCscore of 95.84%, and MCC of 92.22%. Fur-
thermore, the TSADL-LULCCD model has categorized barren land samples with accuy
of 97.06%, precn of 92.19%, recal of 94.65%, Fscore of 93.40%, AUCscore of 96.20%, and MCC
of 91.53%.

Table 2. Classification outcome of TSADL-LULCCD approach on 80:20 of TR/TS databases.

Class Accuy Precn Recal Fscore AUC Score MCC

Training Phase
Grassland 97.30 95.29 95.67 95.48 96.83 93.55
Agriculture 97.88 94.16 92.81 93.48 95.84 92.22
Barren land 97.06 92.19 94.65 93.40 96.20 91.53
Water 97.65 97.00 95.57 96.28 97.10 94.57

Average 97.47 94.66 94.67 94.66 96.49 92.97

Testing Phase
Grassland 98.12 95.65 98.51 97.06 98.23 95.70
Agriculture 98.59 95.56 97.73 96.63 98.27 95.75
Barren land 98.59 97.73 95.56 96.63 97.48 95.75
Water 98.12 98.18 94.74 96.43 97.05 95.18

Average 98.36 96.78 96.63 96.69 97.76 95.60
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On the TR database, the TSADL-LULCCD technique has recognized grassland samples
with accuy of 98.12%, precn of 95.65%, recal of 98.51%, Fscore of 97.06%, AUCscore of 98.23%,
and MCC of 95.70%. In the meantime, the TSADL-LULCCD approach has identified
agriculture samples with accuy of 98.59%, precn of 95.56%, recal of 97.73%, Fscore of 96.63%,
AUCscore of 98.27%, and MCC of 95.75%. Furthermore, the TSADL-LULCCD method has
categorized barren land samples with accuy of 98.59%, precn of 97.73%, recal of 95.56%,
Fscore of 96.63%, AUCscore of 97.48%, and MCC of 95.75%.

The TACC and VACC of the TSADL-LULCCD approach are inspected on 80:20 of
TR/TS databases in Figure 6. The outcomes implied that the TSADL-LULCCD methodology
had shown improved performance with increased values of TACC and VACC. Notably, the
TSADL-LULCCD method has reached maximum TACC outcomes.
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Figure 6. TACC and VACC analysis of TSADL-LULCCD method on 80:20 of TR/TS databases.

The TLS and VLS of the TSADL-LULCCD approach are tested on 80:20 of TR/TS
databases in Figure 7. The figure exhibited shows that the TSADL-LULCCD method
has revealed better performance with the least values of TLS and VLS. Seemingly, the
TSADL-LULCCD algorithm has resulted in reduced VLS outcomes.
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A clear precision-recall investigation of the TSADL-LULCCD approach on 80:20 TR/TS
databases is seen in Figure 8. The results show the TSADL-LULCCD method has enhanced
values of precision-recall values.
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The detailed ROC study of the TSADL-LULCCD technique on 80:20 TR/TS databases
is shown in Figure 9. The outcomes denoted the TSADL-LULCCD algorithm has shown its
ability to categorize different classes under a test database.
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Figure 9. ROC analysis of TSADL-LULCCD approach on 80:20 of TR/TS databases.

In Table 3 and Figure 10, the overall classification outcomes of the TSADL-LULCCD
method with 70:30 of the TR/TS database are provided. On the TR database, the TSADL-
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LULCCD approach has recognized grassland samples with accuy of 96.37%, precn of 91.77%,
recal of 96.36%, Fscore of 94.01%, AUCscore of 96.37%, and MCC of 91.47%. In the meantime,
the TSADL-LULCCD method has identified agriculture samples with accuy of 96.64%,
precn of 92.74%, recal of 87.79%, Fscore of 90.20%, AUCscore of 93.16%, and MCC of 88.22%.
Additionally, the TSADL-LULCCD model has categorized barren land samples with accuy
of 98.12%, precn of 96.67%, recal of 94.16%, Fscore of 95.39%, AUCscore of 96.65%, and MCC
of 94.23%.

Table 3. Classification outcome of TSADL-LULCCD approach on 70:30 of TR/TS databases.

Training/Testing (70:30)

Classes Accuy Precn Recal Fscore AUC Score MCC

Training Phase
Grassland 96.37 91.77 96.36 94.01 96.37 91.47
Agriculture 96.64 92.74 87.79 90.20 93.16 88.22
Barren land 98.12 96.67 94.16 95.39 96.65 94.23
Water 97.85 96.65 96.65 96.65 97.53 95.07

Average 97.24 94.46 93.74 94.06 95.93 92.25

Testing Phase
Grassland 98.44 96.15 99.01 97.56 98.59 96.43
Agriculture 99.38 100.00 96.15 98.04 98.08 97.69
Barren land 98.44 98.67 94.87 96.73 97.23 95.74
Water 98.75 96.70 98.88 97.78 98.79 96.92

Average 98.75 97.88 97.23 97.53 98.17 96.70
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Figure 10. Average outcome of TSADL-LULCCD approach on 70:30 of TR/TS databases.

On the TR database, the TSADL-LULCCD method has recognized grassland samples
with accuy of 98.44%, precn of 96.15%, recal of 99.01%, Fscore of 97.56%, AUCscore of 98.59%,
and MCC of 96.43%. In the meantime, the TSADL-LULCCD approach has identified
agriculture samples with accuy of 99.38%, precn of 100.00%, recal of 96.15%, Fscore of 98.04%,
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AUCscore of 98.08%, and MCC of 97.69%. Additionally, the TSADL-LULCCD technique
has categorized barren land samples with accuy of 98.44%, precn of 98.67%, recal of 94.87%,
Fscore of 96.73%, AUCscore of 97.23%, and MCC of 95.74%.

The TACC and VACC of the TSADL-LULCCD approach are investigated on 70:30
of TR/TS databases in Figure 11. The figure shows the TSADL-LULCCD technique has
shown improved performance with increased values of TACC and VACC. Notably, the
TSADL-LULCCD approach has achieved maximum TACC outcomes.
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The TLS and VLS of the TSADL-LULCCD technique are tested on 70:30 of TR/TS
databases in Figure 12. The figure designated the TSADL-LULCCD method has revealed
better performance with the least values of TLS and VLS. Seemingly, the TSADL-LULCCD
approach has reduced VLS outcomes.

A clear precision-recall inspection of the TSADL-LULCCD method on 70:30 TR/TS
databases is seen in Figure 13. The outcomes show the TSADL-LULCCD approach has
enhanced values of precision-recall values.

Next, a detailed ROC study of the TSADL-LULCCD method on 70:30 TR/TS databases
is shown in Figure 14. The outcomes exhibit the TSADL-LULCCD technique has shown its
ability to classify different classes.

Finally, an extended comparative study of the TSADL-LULCCD model with recent
models is given in Table 4 [24]. Figure 15 represents accuy examination of the TSADL-
LULCCD model with recent models. The results signified that the DT and LR models
had reported worse outcomes with minimum accuy of 91.18% and 92.03%, respectively.
Followed by the SGD and ExGBT models, which have certainly accomplished closer accuy
of 93.11% and 93.13%, respectively. Meanwhile, the GA and DL models have revealed
reasonable outcomes with accuy of 95.24% and 97.88%, respectively. However, the TSADL-
LULCCD model has exhibited its improved performance with accuy of 98.75%.
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Evaluation of our TSADL with LULCCD gives against SGD and GA algorithms
insights to learn the time taken to analyze the characteristics of satellite images and to
classify the nature of lands (Tables 5 and 6).
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Table 4. Time Comparison between KNN, LSH with TRT, LSH without TRT Models.

Algorithm Average CPU
Utilization (%)

Average GPU
Utilization (%)

Time Taken
(in ms)

TSADL-LULCCD 71.3 21.1 353.176

Stochastic Gradient Descent (SGD) 27.3 50.6 150.577

Symbolic ML via Genetic
Algorithms (GA) 33.5 40.7 268.784
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Figure 15. Accuy analysis of TSADL-LULCCD approach with other approaches.
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Table 5. Comparative analysis of TSADL-LULCCD approach with other approaches.

Methods Accuy Precn Recal Fscore

TSADL-LULCCD 98.75 97.88 97.23 97.53
Decision Tree (DT) 91.18 91.92 93.56 91.82
Logistic Regression (LR) 92.03 93.41 93.66 94.95
Stochastic Gradient Descent (SGD) 93.11 94.06 93.10 95.08
Extreme Gradient Boosted Trees (ExGBT) 93.13 96.42 93.75 95.98
Symbolic ML via Genetic Algorithms (GA) 95.24 95.75 95.79 95.88
Deep Learning (DL) 97.88 96.51 95.94 96.30

Table 6. Training and Validation process results.

Algorithm Epoch Iterations RMSE Log-Loss
(%)

Validation
Loss

TSADL-LULCCD

10 150 87.86 31.51 0.30

20 300 66.76 29.88 0.32

30 450 45.84 28.69 0.34

Stochastic Gradient
Descent (SGD)

10 150 88.17 31.59 0.49

20 300 67.51 29.96 0.47

30 450 48.04 28.77 0.46

Symbolic ML via Genetic
Algorithms (GA)

10 150 89.33 31.44 0.52

20 300 67.93 29.80 0.53

30 450 46.56 28.62 0.65

Figure 16 signifies precn inspection of the TSADL-LULCCD method with recent ap-
proaches. The results signified that the DT and LR methods had reported worse outcomes
with minimum precn of 91.92% and 93.41%, correspondingly. Then, the SGD and GA
models have exhibited certainly closer precn of 94.06% and 95.75% correspondingly. In the
meantime, the ExGBT and DL models have revealed reasonable outcomes with precn of
96.42% and 96.51%, respectively. However, the TSADL-LULCCD method has exhibited its
improved performance with precn of 97.88%.
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Figure 17 represents recal inspection of the TSADL-LULCCD model with recent mod-
els. The results signified that the SGD and DT approaches had reported worse outcomes
with minimum recal of 93.1% and 93.56%, respectively. Followed by the LR and ExGBT
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models, which have accomplished certainly closer recal of 93.66% and 93.75%, respectively.
In the meantime, the GA and DL models have revealed reasonable outcomes with recal of
95.79% and 95.94% correspondingly. However, the TSADL-LULCCD method has shown
its improved performance with recal of 97.23%.
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Figure 17. Recal analysis of TSADL-LULCCD approach with other approaches.

Figure 18 denotes Fscore investigation of the TSADL-LULCCD model with recent
methods. The results signified that the DT and LR approaches had reported worse outcomes
with minimum Fscore of 91.82% and 94.95%, correspondingly. Followed by the SGD and
ExGBT models, which have certainly accomplished closer Fscore of 95.08% and 95.88%
correspondingly. Meanwhile, the GA and DL methods have revealed reasonable outcomes
with Fscore of 95.98% and 96.3%, correspondingly. However, the TSADL-LULCCD method
has exhibited improved performance with Fscore of 97.53%. These results assured the better
performance of the TSADL-LULCCD model compared to recent approaches.
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5. Conclusions

Remote sensing (RS) is a very reliable and efficient method for monitoring environ-
mental and terrain changes. Topographic maps are crucial to science, research, planning,
and administration in the modern world. It is entirely feasible to discern changes based
on RS data collected at two distinct periods. In this article, we have developed a new
TSADL-LULCCD technique for land cover classification in Nallamalla Forest, India. The
presented TSADL-LULCCD technique mainly focuses on the identification and classifica-
tion of land use in the Nallamalla forest using LANDSAT 7 images. Primarily, the presented
TSADL-LULCCD technique employed an Adam optimizer with a dense EfficientNet model
for feature extraction. For land cover classification, the TSADL-LULCCD technique ex-
ploited the TSA with the DBN model. The experimental validation of the TSADL-LULCCD
technique is tested on LANDSAT-7-based Nallamalla region images. The experimental
results stated that the TSADL-LULCCD technique exhibits better performance over other
existing models in terms of different evaluation measures. In the future, we are planning
to include forest classification with the help of hybrid DL fusion techniques that can be
employed to improve classification performance.
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