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Abstract: Infrared point-target detection is one of the key technologies in infrared guidance systems.
Due to the long observation distance, the point target is often submerged in the background clutter
and large noise in the process of atmospheric transmission and scattering, and the signal-to-noise
ratio is low. On the other hand, the target in the image appears in the form of fuzzy points, so that
the target has no obvious features and texture information. Therefore, scholars have proposed many
object detection methods for dimming infrared images, which has become a hot research topic on
account of the flow-rank model based on the image patch. However, the result has a high false alarm
rate because the most low-rank models based on the image patch do not consider the spatial-temporal
characteristics of the infrared sequences. Therefore, we introduce 3D total variation (3D-TV) to
regularize the foreground on account of the non-convex rank approximation minimization method,
so as to consider the spatial-temporal continuity of the target and effectively suppress the interference
caused by dynamic background and target movement on the foreground extraction. Finally, this
paper proposes the minimization of the non-convex spatial-temporal tensor low-rank approximation
algorithm (MNSTLA) by studying the related algorithms of the point infrared target detection, and
the experimental results show strong robustness and a low false alarm rate for the proposed method
compared with other advanced algorithms, such as NARM, RIPT, and WSNMSTIPT.

Keywords: complex background; infrared image; MNSTLA; point target detection

1. Introduction

The infrared detection system has the advantages of not being affected by light and,
therefore, being capable of working at all times of the day [1]; not emitting electromagnetic
waves and, therefore, being a system using a non-automatic detection method [2]; and
having a strong penetrability and, therefore, being capable of penetrating the covers of
dust, clouds, and smoke so as to better identify false camouflage targets, making it an
effective supplement or substitute for the traditional visible light detection system and the
radar detection system [3]. Therefore, the infrared point and moving target detection on
account of the infrared detection system has always been an important topic and hotspot
of research.

The infrared images have a low rank feature due to the many repetitive elements in
the background, and they have a sparse feature due to the few feature points of infrared
points and moving targets [4,5]. In this case, the detection of infrared points and moving
targets is transformed into a classification task on account of the good performance of
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sparse representation in the classification task, which is what the method on of low-rank
sparse is concerned about.

A sparse representation-based multispectral image target detection method was first
proposed by the US Army Sensor Research Laboratory in 2014 [6]. He adopted the aug-
mented Lagrange multiplier method to perform the optimization on account of the SR
theory and the low-rank matrix [7] in 2015 based off the LRSR mode. This method can
detect dim and point targets in a background with strong noise but does not have a good
background suppression effect.

To overcome the limitations of conventional methods, Gao put forward an IPI (In-
frared Patch-Image) model on account of the image segmentation by means of a sliding
window, and the method can detect dim and point targets according to the targeted sparse
feature of each patch image [8]. Considering the non-local autocorrelation structure for
the background, the assumptions of the infrared patch image (IPI) model are in excellent
agreement with the true scenario, which rephrases:

DP = BP + TP + NP (1)

where DP, BP, TP, and NP are patch-images corresponding to the original, background,
target, and random noise images, which are shown separately. Furthermore, the features of
low-rank for the background B, and the target T, which is sparsity.

Dai et al. of Nanjing University introduced a structural prior model into the detection
process of infrared points and moving targets, namely WIPI (Weighted Infrared Patch-
Image). This method can better preserve the infrared point and moving targets while
suppressing the strong edges [9]. Dai proposed an RIPT model. Furthermore, in view of
the detection of infrared points and moving targets with insufficient prior information
and strong edges [10], the SNN is used to separate the real target from the background by
combining the non-local and local spatial priors. In order to solve the problems that the
observation values of strong edge information are insufficient and the implicit assumptions
do not match, The NIPPS model put forward by Dai, which can detect the residual error in
the target image and is used for singular values [11]. As the SNN is not a convex envelope
of low-rank background, and in view of the fact that the traditional IPT method only uses
spatial information, Sun proposed the WNRIPT model [12].

In order to adapt to different images and solve the problem of images with strong
edges, Xiong Bin used adaptive weights and an augmented Lagrange multiplier method [13].
Wang put forward an IPI model-based detection method for infrared point and moving
targets, which maintains the spatial correlation among images, constructs a patch image
form, and uses the ADMM multiplier method to optimize the solution finding so as to deal
with the non-smooth and non-uniform background by the TV-PCP method [14].

Wang used different multi-subspaces for the areas to reduce the interference in each
area, combined the APG with the patch coordinate descent method, and used the SMSL
method to improve the accuracy of heterogeneous background [15]. However, for the
infrared images with a complex background, and especially for those that contain clut-
ter signals, as the noise also has a sparse feature as the target, the false alarm rate will
increase. For complex scenarios, Zhang et al. put forward a non-convex rank approxi-
mation minimization (NRAM) detection method for infrared points and moving targets,
which introduces extra regular terms into the edges [16]. Although the NRAM method has
achieved good results in single image frame detection, the false alarm rate of this method
is still high in complex and changing scenarios because it does not consider spatial and
temporal information.

The above methods only vectorize the infrared image into a matrix, but do not well
consider the temporal information. Therefore, many methods on account of the tensor
analysis are applied in the IRST system, such as multi-view clustering [17], subspace
clustering [18], super-resolution image generation [19], and image video processing [20].
Tensor analysis not only considers the spatial information of image sequences but also the
temporal information thereof.
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First, to fully exploit the inter-frame correlation between infrared image sequences,
considering the time consistency and local spatial smoothness between the consecutive
frames of the target, we introduced the spatial-temporal tensor into the NRAM model. To
obtain more precise background estimations in the detection of infrared points and moving
targets, as there was considerable noise in the infrared scenario, the norm was introduced
because, compared with the norm, the norm requires not only sparse columns but also
sparse rows, which can better remove the strong edge non-target noise. In order to simplify
the computational complexity, we introduced the Frobenius norm. Finally, we proposed a
minimization of the non-convex spatial-temporal tensor low-rank approximation algorithm
(MNSTLA). The main contributions of the MNSTLA model are:

(1) A non-convex spatial-temporal tensor low-rank approximation minimization method
for the detection of infrared points and moving targets in the sequence scenarios was
proposed. We introduced 3D-TV regularization into the NRAM model. The 3D-TV
constraint on the background is helpful for keeping the image details and removing
the noise, so it can achieve better detection performance under complex backgrounds.

(2) The norm is introduced into the detection of IR points and moving targets to better
describe the target components. By combining structured sparsity terms, non-target
components, especially those with strong edges, can be eliminated.

(3) The ADMM is used to efficiently reduce the computational complexity and solve the
low-rank component recovery problem.

The paper is organized as follows: in Section 2, the work related to the MNSTLA
method-based detection of infrared dim and point targets is briefly described; in Section 3,
the proposed MNSTLA model; in Section 4, the extensive experiments carried out on
various sequence scenarios are described to illustrate the efficiency of the MNSTLA model,
and the results are evaluated subjectively and objectively; and in Section 5, we give the
discussion and conclusion.

2. Related Work

In this section, we first briefly introduce how to construct an image sequence into
a spatial-temporal patch tensor model of image tensors. Furthermore, we introduce the
3D-TV regularization model and the tensor kernel norm model, respectively, and model
the foreground and background of the sequence image tensor considering both models.

2.1. Spatial-Temporal Patch Tensor Model

Generally speaking, given an image sequence f1, f2, . . . , fp ∈ Rm×n and a cube patch
tensor F ∈ R, the frames can be obtained by stacking them in time order. The tensor of the
IR point target image can be expressed as:

DT = BT + NT + TT (2)

where DT , BT , NT , TT ∈ Rm×n×L present the original patch-tensor, background tensor,
target-tensor, and noise-tensor. According to the infrared imaging mechanism, the relative
motion between the imaging sensor and the target is usually due to small changes at a
long distance, such as an early warning system. Therefore, it is generally believed that
the backgrounds of different frames change slowly in the whole sequence images, which
means that there is a correlation between adjacent sequences [8,21]. For the reason that
images containing infrared points and moving targets are considered to be of low rank,
the constructed background tensor can also be considered a low-rank tensor. Compared
with the matrix model, constructing a tensor model can not only mine the internal relations
between data from more angles in the tensor domain but also further improve the capability
of target detection by combining the spatial-temporal information.
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2.2. Foreground Modeling on Account of 3D-TV Regularization

Total variation (TV) regularization is widely used to detect the sharp edges and corners
of images, which can represent the desired spatial smoothness. In this study, we use 3D-TV
to leverage spatio-temporal information. Assuming N ∈ Rm×n×t, we define the 3D-TV
norm as:

||T||3D−TV = ∑
m,n,t

TVm,n,t(T) = |Tm+1,n,t − Tm,n,t|+ |Tm,n+1,t − Tm,n,t|+ |Tm,n,t+1 − Tm,n,t| (3)

where Tm,n,t represents the intensity of the pixels (m, n, t); at the same time, the differ-
ence operator along the temporal direction shows that it considers the persistence of the
foreground target in time.

We introduced the vector difference operators for the horizontal, vertical and
time directions: 

Vh||T|| = vec(|Tm+1,n,t − Tm,n,t|)
Vv||T|| = vec(|Tm,n+1,t − Tm,n,t|)
Vt||T|| = vec(|Tm,n,t+1 − Tm,n,t|)

(4)

Then, the Formula (3) can be rewritten as:

||T||3D−TV = ||VT||1 = ||VhT||1 + ||VvT||1+||VtT||1 (5)

2.3. Background Modeling on Account of the Tensor Nuclear Norm

In the TRPCA model [22], the tensor nuclear norm is usually used instead of the rank
function to constrain the background. However, the general tensor nuclear norm is used to
matrix the tensor, and using the singular value of matrix to define the tensor nuclear norm
will destroy the spatial structure of the video, and the degree of approximation to the rank
function will be insufficient. On account of the t-product, Lu, et al. [23] an improved tensor
nuclear norm is proposed:

||B||∗∗ =
r

∑
i=1

S(i, i, 1) (6)

where r = rankt(B), B = U ∗ S ∗V. and converted into the nuclear norm of the matrix:

||B||∗∗ =
1
N
||bcric(B)||∗ =

1
N
∣∣∣∣B∣∣∣∣∗ (7)

From the Formulas (6) and (7), we obtain:

||B||∗∗ =
1
n3

r

∑
i=1

n3

∑
j=1

S(i, i, j) (8)

where bcric(B) represents the patch cyclic matrix of B, and B represents the patch diagonal
matrix of B.

It can be seen from the Formula (6) that the improved tensor nuclear norm is directly
defined by the singular value tensor S, and it can be seen from the patch cyclic matrix and
patch diagonal matrix of the Formula (7) that the above tensor nuclear norm is defined
on account of the front-side slicing (the third-dimension time). In addition, the improved
tensor nuclear norm ||B||∗∗ is a convex envelope of the average rank in the unit sphere
of the tensor spectral norm, which has a better approximation to the rank function [23]
on account of the above considerations; this paper uses the above tensor nuclear norm
to perform low-rank constraining on the background, which strengthens the low rank of
the background.
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3. Methods

The spatial-temporal infrared patch-tensor model is described as:

fD = fB+ fT+ fN (9)

where fD, fB, fT, and fN represent the original, background, target, and noise images,
respectively. As shown in Figure 1, each image frame is split into small image patches,
and all the small image patches of consecutive L frames are superimposed into the 3D
patch-tensor. Therefore, the above formula can be rewritten into a tensor form as shown in
Formula (2) in Section 2.2.
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In the WNRIPT model, the problem of point target detection is expressed as:

B.T =
min
B.T
||B||WB ,∗ + λ||WT � T|| (10)

where

∣∣∣∣∣
∣∣∣∣∣B
∣∣∣∣∣
∣∣∣∣∣WB ,∗ =

1
L

r
∑

i=1

L
∑

j=1
WB(i, i, j)S(i, i, j) .

In order to further improve the performance and efficiency of point target detection,
the 3D-TV regularization is introduced into the spatial-temporal tensor model, and its
expression is:

B.T.N =
arg min
B.T.N ||B||WB ,∗ + λ1||V(B)||3D−TV + λ2||T||1 + λ3||N||2F

s.t. F = B + T + N (11)

where k× || ∗ ||3D−TV is the norm of 3D-TV, and λ1, λ2, and λ3 represent the regularization
parameters of the 3D-TV term, target component, and noise component.

As the Frobenius norm [24,25] has a good noise suppression effect, the Frobenius norm
term is further introduced:

B.T.N =
arg min
B.T.N ||B||WB ,∗ + λ1||V(B)||1 + λ2||T||1 + λ3||N||2F

s.t. F = B + T + N (12)
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In this model, the 3D-TV regularization term is introduced, which can fully capture
the spatial-temporal information of infrared sequence images, so it is expected to achieve
better performance.

3.1. Low Rank and Sparse Frame Model

Different values of singularities in the conventional convex kernel norm solve the
imbalance penalty. Due to the equal treatment mechanism, if singular values are far from 1,
the nuclear norm will have a considerable deviation. Each time the nuclear norm weight
is determined, additional SVD will appear [26], which increases the running time of the
method. Zhao proposed the γ norma which is a new rank of non-convex function [27].
The γ norm is unitarily invariant. The γ norm is almost in agreement with the true rank
(γ = 0.002), and the heuristic of the log-det performs poorly at minimal singular values [28],
in particular when the value is close to 0; the γ norm of the matrix B is described as:

||B||γ = ∑
i

(1 + γ)σi(B)
γ + σi(B)

(13)

For the reason the l0 norm is NP-hard, the l1 norm [29] assigns the same weight to
each single element. Therefore, many other methods use the l1-norm to characterize the
sparsity of the target patch-image [30–32], and the target T with the l1-norm is described
as follows:

||T||1 = ∑
i,j

Wij|Tij (14)

where Wij = C/
(∣∣Tij

∣∣+ εT
)

is an element at position (i, j), C is a compromise constant;
moreover, εT is a small positive number.

Infrared images also have a lot of strong edge noise, which makes many advanced
methods [33–35] leave residual errors in the target image. The strong edge E is linearly
sparse relative to the whole image, and each line (i.e., line vector) is described by the vector

l2 norm, wi =
√

∑
j

∣∣Ei,j
∣∣2, that is, the vector w = [w1, w, . . . , wd]

T , and then the whole matrix

E needs to be described by the norm. Therefore, the l1 norm is used to describe w, that is,
the l2,1 norm of the strong edge E:

||E||2,1 = ||w||1 =
d

∑
i=1

√√√√ n

∑
j=1

∣∣Ei,j
∣∣2 (15)

According to the foregoing discussion, the patch-tensor model for the infrared image
sequences is proposed on account of the minimization of the non-convex spatial-temporal
tensor low-rank approximation algorithm (MNSTLA), that is, Formula (10) is redefined as:

B.T.E =
arg min
B.T.E ||B||γ,∗ + λ1||L||γ + λ2||T||1 + λ3||E||2,1

s.t. D = B + T + E (16)

3.2. Solution Finding of MNSTLA Model

The optimization method based on the ADMM is used to work out Formula (16).
Formula (16) can be rewritten as an augmented Lagrange function:

L(D, B, T, E, L, Z, Y, µ)

= ||Z||γ,∗ + λ1||L||γ + λ2||T||w,1 + 〈Y1, Z− B〉+ 〈Y2, L−V(B)〉+ 〈Y3, D− B− T − E〉
+ µ

2

(
||Z− B||2F + ||L−V(B)||2F + ||D− B− T − E||2F

)
+ λ3||E||2,1
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s.t. D = B + T + E, Z = B, L = V(Z) (17)

where Y∗, µ are an Lagrange multiplier and a positive penalty scalar, 〈∗〉 represents the
inner product, and || ∗ ||F is the norm for Frobenius.

The ADMM method is used to iteratively update the Z and L by the Formula (17),
respectively:

Zk+1 =
arg min

Z
||Z||γ,∗ +

µk

2
||Z− Bk +

Y1
k

µk ||
2
F (18)

Lk+1 =
arg min

L
||L||γ +

µk

2
||L−V(Bk)− Y1

k

µk ||
2
F (19)

Find their solutions by t-SVD [20] operation and unit contraction operator, respectively:

Zk+1 = DW/µk (Bk −
Yk

1
µk ) (20)

Lk+1 = Thλ1/µk

(
V(Bk

)
− Y2

k

µk ) (21)

where D(*) represent the t-SVD operation and Th(*) represent the unit contraction operator.
Extract the term containing B from the Formula (17):

Bk+1 =
µk

2
(||D− B− Tk − Ek +

Yk
1

µk ||
2
F + ||Zk+1 − B +

Yk
2

µk ||
2
F + ||Lk+1 −V(B) +

Yk
3

µk ||
2
F) (22)

The Formula (22) is equivalent to the following linear equations:

(2I + V(B))Bk+1 = D− Tk − Ek +
Yk

1
µk + Zk +

Yk
2

µk + VT(Vk
B +

Yk
3

µk ) (23)

The closed form of the Formula (23) can be obtained by 3D Fast Fourier Transform:

Bk+1 = i f f tn(
f f tn(D− Tk − Ek +

Yk
1

µk + Zk +
Yk

2
µk + VT(Vk

B +
Yk

3
µk ))

2µk I + µk
∣∣ f f tn(V(B)

∣∣2 ) (24)

where f f tn is the fast 3D Fourier transform and i f f tn is the inverse transform of the f f tn.
Variables T and E are corrected:

Tk+1 =
arg min

T
λ2||T||W,1 +

µk

2
||D− Bk+1 − T − Ek +

Yk
3

µk ||
2
F (25)

Ek+1 =
arg min

E
λ3||E||2,1 +

µk

2

∣∣∣∣∣∣D− Bk+1 − Tk+1 − E
∣∣∣|2F (26)

By using the element-by-element shrinkage operation method in references [29,36],
we obtain:

Tk+1 = ThλW/µk (D− Bk+1 − Ek −
Yk

3
µk ) (27)

Ek+1 =
µk(D− Bk+1 − Tk+1 − Yk

µk ) + Yk
3

µk + 2λ3
(28)

3.3. The Processing of the MNSTLA

The steps of the MNSTLA model (Algorithm 1):
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Algorithm 1: The Minimization of Non-Convex Spatial-Temporal Tensor Low-Rank
Approximation Algorithm(MNSTLA)

Input: Input the f1, f2, . . . , fp ∈ Rm×n, λ1, λ2, λ3, L and tol = 10−7

Initialize: Original patchtensorD ∈ Rm×n×L, B0 = T0 = E0 = Y1
k = Y2

k = Y3
k = 0, µ = 1e− 2

ADMM for solving the Equation (17)
while

(1) Fix the others and update and Lby (20) and (21) Zk+1, Lk+1

(2) Fix the others and update B by (24) Bk+1

(3) Fix the others and update Tby (25) Tk+1

(4) Fix the others and update E by (26) Ek+1

(5) Check the convergence conditions ||D−Bk+1−Tk+1||2F
||D||2F

≤ tol

(6) Update k = k + 1.
Output Bk+1, Tk+1

The flow chart of the MNSTLA model is shown in Figure 1.
The specific detection steps are as follows:

(1) The original infrared image sequences f1, f2, . . . , fp ∈ Rm×n are sequentially arranged
by n3 adjacent frames and are converted into several patch-tensor tensors D ∈ Rm×n×L.

(2) The original patch-tensor is decomposed into the target patch-tensor T, background
patch-tensor B, and structural noise (strong edge) patch-tensor E by using the method 1.

(3) The target image IT and the background image IB are reconstructed by inverse operation.
(4) In the last step, we segment the target using the adaptive threshold [8]:

tseg = mean(C) + λ× std(C) (29)

where mean(C) is the mean value of the reconstructed confidence map, std(C) is the
standard deviation, and λ is a constant.

4. Experiment and Analysis of Experimental Results

Where mean(C) is the mean value of the reconstructed confidence map, std(C) is the
standard deviation, and λ is a constant.

4.1. Data Set and Evaluation Indicators
4.1.1. Test Data Set

In the experiment, the “A data set for infrared detection and tracking of dim-small
aircraft targets underground/air background [37]” collected by Hui Bingwei et al. was used.
The sensors used for data acquisition were refrigerated medium-wave infrared cameras
with a resolution of 256 × 256 pixels.

There are 22 data scenarios in this dataset. The 22 image sequences of data 1–data 22
of this data set data are described and shown in Table 1:
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Table 1. Detailed Description of 22 Real Scenarios.

Data No. Frame Scenario Description

data1 399 Close range, single target, sky background
data2 599 Close range, two targets, sky background, cross flight

data3 100 Close range, single target, air-ground interface background, the target enters the field of view
again after leaving the field of view.

data4 399 Close range, two targets, sky background, cross flight
data5 3000 Long range, single target, ground background, long time
data6 399 From near to far, single target, ground background
data7 399 From near to far, single target, ground background
data8 399 From far to near, single target, ground background
data9 399 From near to far, single target, ground background
data10 401 Target from near to far, single target, ground-air interface background
data11 745 Target from far to near, single target, ground background
data12 1500 Target from far to near, single target, target mid-course maneuver, ground background
data13 763 Target from near to far, single target, dim target, ground background
data14 1462 Target from near to far, single target, ground background, target interfered by ground vehicles
data15 751 Single target, target maneuver, ground background
data16 499 Target from far to near, single target, extended target, target maneuver, ground background
data17 500 Target from near to far, single target, dim target, ground background
data18 500 Target from far to near, single target, ground background
data19 1599 Single target, target maneuver, ground background
data20 400 Single target, target maneuver, air-ground background
data21 500 Long range, single target, ground background
data22 500 Target from far to near, single target, ground background

As can be seen from the above table, data1–data 4 all have a sky background. As they
have a single background and large targets as shown by Figure 2, they are not suitable for
our set conditions and are not used.
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Figure 2. Data1–data 4 Sequence Images.

Six sequences of data 6, data10, data13, data14, data17 and data 22 were selected from
data 5–data 22 as the sequence images of our experiment. As shown by Figure 3a–f, they
are six representative images in the six sequences of the selected six data sets, namely,
data 6, data 10, data 13, data 14, data 17, and data 22. The point-target is in the white boxes.
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4.1.2. Evaluation Indicators

The performance of dim object detection methods is generally evaluated using three
criteria: background suppression, target enhancement, and detection accuracy.

(1) Background suppression factor (BSF) [9]:

The BSF is defined as follows:

BSF =
δout

δin
(30)

where δout and δin represent the local background standard deviation around the target of
the output image and the original image.

(2) Local contrast gain (LCG)

The SCRG represents the signal and noise ratios (SCR) before and after processing:

SCRG =
SCRout

SCRin
(31)

In which the SCR uses the same expression as in reference [38]:

SCR =
|µt − µb|

δb
(32)

where µt , µb and δb represent the average gray values of the targets in the image.
In this paper, both BSF and SCRG need the determination of the background range

around the target. Figure 4 shows the background around the target calculated in this
paper, where d takes 20.



Appl. Sci. 2023, 13, 1196 11 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 22 
 

The local background

d

The target area

Whole image

d

 
Figure 4. Local Background around the point targets in the Infrared Image. 

For the reason the 𝛿 is close to zero in the Formula (32), it is difficult to evaluate the 
performance as the SCR approaches infinity. Therefore, we evaluate the performance of 
the target augmentation using LCG: 𝐿𝐶𝐺 = 𝐿𝐶௨௧𝐿𝐶   (33)

𝐿𝐶 = |𝜇௧ − 𝜇|𝜇௧ + 𝜇  (34)

where 𝐿𝐶௨௧ and 𝐿𝐶  represent the local contrast (LC) of the output image and the input 
image, the 𝜇௧ and 𝜇 the are consistent with those in the Formula (32). 
(3) Receiver operating characteristic curve (ROC) 

In order to further compare the methods, the ROC curve is used to evaluate the meth-
ods which can be used to select the best category judgment model and abandon the sub-
optimal model. When judging the category, the ROC curve can give a correct evaluation 
without being limited by cost or benefit. 

All the samples, which is actually the target but is wrongly judged. It is defined as 
follows: 

𝑃ௗ = 𝑁௧௨𝑁௧  (35)

𝑃 = 𝑁௦𝑁     (36)

where Ntrue, Nact, Nfalse and Nimg represent the number of really detected targets, the actual 
targets, the falsely detected targets and the frames, respectively. 

4.2. Parameter Setting 
We quote the values of μ, γ, and C in reference [16], which are the penalty factor 𝜇 =𝑐ඥ𝑚𝑖𝑛(𝑚, 𝑛), where c = 3, γ = 0.002, and C = 2.5, where m and n are the length and width 

of patch images, respectively. References [39–41] all made a detailed analysis of the frame 
number L, and we also take its value and the frame number L = 3. For details, please refer 
to these references. 

In order to better verify the advancement of the MNSTLA method, we will compare 
it with seven advanced methods, including the Top-Hat method. Table 2 lists the param-
eter settings for these methods. 

  

Figure 4. Local Background around the point targets in the Infrared Image.

For the reason the δb is close to zero in the Formula (32), it is difficult to evaluate the
performance as the SCR approaches infinity. Therefore, we evaluate the performance of the
target augmentation using LCG:

LCG =
LCout

LCin
(33)

LC =
|µt − µb|
µt + µb

(34)

where LCout and LCin represent the local contrast (LC) of the output image and the input
image, the µt and µb the are consistent with those in the Formula (32).

(3) Receiver operating characteristic curve (ROC)

In order to further compare the methods, the ROC curve is used to evaluate the
methods which can be used to select the best category judgment model and abandon
the sub-optimal model. When judging the category, the ROC curve can give a correct
evaluation without being limited by cost or benefit.

All the samples, which is actually the target but is wrongly judged. It is defined
as follows:

Pd =
Ntrue

Nact
(35)

Pf =
N f alse

Nimg
(36)

where Ntrue, Nact, Nfalse and Nimg represent the number of really detected targets, the actual
targets, the falsely detected targets and the frames, respectively.

4.2. Parameter Setting

We quote the values of µ, γ, and C in reference [16], which are the penalty factor
µ = c

√
min(m, n), where c = 3, γ = 0.002, and C = 2.5, where m and n are the length and

width of patch images, respectively. References [39–41] all made a detailed analysis of the
frame number L, and we also take its value and the frame number L = 3. For details, please
refer to these references.

In order to better verify the advancement of the MNSTLA method, we will compare it
with seven advanced methods, including the Top-Hat method. Table 2 lists the parameter
settings for these methods.
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Table 2. The parameters for the 7 tested methods.

Methods Parameter Setting

Top-Hat Structure size: 3 × 3, structure shape: square
PSTNN Sliding step : 40, λ = 0.6/

√
max(n1, n2) ∗ n3, patch size: 40 × 40, ε = 1 × 10−7

IPI Patch size : 50 × 50, sliding step : 10, λ = 1/
√

min(m, n), ε = 10−7

RIPT Patch size : 30 × 30, λ = L/
√

min(m, n), sliding step: 10, L = 0.7, h = 1, ε = 10−7

WSNMSTIPT Patch size : 30 × 30, sliding step : 30 L = 6, p = 0.8, λ = 1/
√

max(n1, n2) ∗ n3

NRAM
Patch size : 50 × 50, sliding step : 10, λ = 1/

√
min(m, n), µ0 = 3

√
min(m, n),

γ = 0.002, C =
√

min(m, n)/2.5, ε = 10−7

MNSTLA Patch size : 50 × 50, sliding step : 10, γ = 0.002, µ = c
√

min(m, n) where c = 3,
L = 3. C = 2.5, ε = 1 × 10−7

4.3. Subjective Evaluation in Different Scenes

In this sub-section, we give the detection results of six infrared image sequences.
The method proposed herein is compared with six related advanced methods, namely
Top-Hat [41], IPI [9], PSTNN [22], IPT [23], WSNMSTIPT [24], and NRAM [16]. For the
convenience of observing the results, the experimental results obtained and the three-
dimensional grid diagrams generated by all the test methods in different scenarios are
given intuitively in Figures 5–10.
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It can be seen from Figures 5–10 that the RIPT model has the worst detection efficiency;
the Top-Hat and PSTNN methods do enhance the targets, but edges and noise are intro-
duced, which is mainly due to the assumption of fixed structural elements and a smooth
background. Undoubtedly, among all the results from the test methods, the Top-Hat and
PSTNN methods have the worst performance. This is because this contrast mechanism is
not suitable for complex backgrounds. The IPI method is slightly better than the Top-Hat
and PSTNN methods. The WSNMSTIPT models are on account of the IPI model and
refer to the spatial-temporal information. Compared with the IPI model, although their
false alarm rates are effectively reduced, not only do the images with dim targets selected
from data sets 13 and 17 (corresponding to Figures 7 and 9) lose their targets, but also the
images selected from the data sets with complex backgrounds lose their targets. Compared
with the WSNMSTIPT models, the NRAM model does not consider the spatial-temporal
information; it constructs the target-patches and background-patches according to the
sparse feature of infrared target images. It can be seen from Figures 5–10 that, compared
with the IPI model, the NRAM method not only effectively reduces the false alarm rate
but also effectively enhances the strong edges. Therefore, the potential target points are
also enhanced, and a better detection rate is achieved compared with the IPI model. The
MNSTLA model proposed herein constructs, on account of the NRAM model and the
spatial-temporal information, a spatial-temporal tensor model of infrared dim moving
targets that fully considers the correlation between the frames of infrared dim moving



Appl. Sci. 2023, 13, 1196 16 of 19

targets and can further reduce the false alarm rate and improve the detection efficiency of
infrared dim moving targets.

4.4. Objective Evaluation for Different Scenes

We evaluate the performance of the MNSTLA model using the LCG and the BSF. The
experimental results of the six actual sequences (Figures 5 and 6) are shown in Table 3. It
can be seen that the method presented here can achieve the best values.

Table 3. Average Values of BSF and LCG of the Six Infrared Sequence Images Obtained by the
Methods.

Methods
a b c d e f

BSF LCG BSF LCG BSF LCG BSF LCG BSF LCG BSF LCG

Top-Hat 7.73 5.94 3.28 6.76 7.86 1.67 9.66 7.53 10.25 3.64 7.34 3.45
PSTNN 3.85 1.23 3.86 8.20 4.16 1.18 3.67 2.43 4.14 3.16 3.14 2.99

IPI 3.35 1.70 2.30 5.65 3.45 1.06 3.19 3.18 5.61 2.37 2.02 1.94
RIPT 0.92 3.11 0.72 3.16 1.76 1.29 1.62 2.01 1.26 1.29 0.56 1.93

WSNMSTIPT 5.16 6.22 2.08 22.35 4.26 2.36 5.08 2.86 3.46 4.16 3.29 3.38
NRAM 26.45 1.235 23.74 6.39 7.08 1.68 18.16 16.18 9.31 2.17 10.67 4.86

MNSTLA 61.25 8.353 36.29 26.58 63.42 6.98 39.61 7.69 54.36 5.93 53.17 5.29

Table 3 shows the average BSF and LCG of different methods on the six infrared
image sequences. The Top-Hat and PSTNN methods have the lowest BSF and LCG values,
and the corresponding background suppression capability is the worst. The IPI, RIPT,
and WSNMSTIPT models have achieved good results in the six infrared image sequences,
among which the RIPT and WSNMSTIPT models are slightly better than the IPI models in
terms of performance; the NRAM model obtained a higher BSF value in the first sequence,
but compared with the RIPT and WSNMSTIPT model, its background suppression ability
is still not ideal; the MNSTLA model proposed herein achieved the highest BSF value on
all six infrared image sequences, which means the robustness and efficiency of background
suppression are better. In terms of LCG, this method has the highest LCG value and the
best target enhancement of the six image sequences. From the evaluation results, it can be
seen that the LCG and BSF values of the MNSTLA model proposed herein are much higher
than those of other methods, indicating that it has great advantages in object enhancement
and that the signal-to-noise ratio of images is improved effectively.

In order to compare the above optimization methods more objectively, the comparison
of the ROC curves of the sequences 1–6 is shown in Figure 11. It is found in the study
that the RIPT was the worst performer and that the Top-Hat method and the PSTNN
method are not satisfactory. The IPI model achieved good results on the six infrared
image sequences, and the WSNMSTIPT methods are slightly better than the IPI model
in terms of performance. The detection rate of the NRAM model is not as high as that
of the WSNMSTIPT models, and this is because the NRAM model does not consider the
temporal-spatial information. Finally, under the same false alarm ratio, the MNSTLA model
proposed herein achieved the highest detection probability, which means that the proposed
MNSTLA model has better performance than that of any of the other models.



Appl. Sci. 2023, 13, 1196 17 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 22 
 

are much higher than those of other methods, indicating that it has great advantages in 
object enhancement and that the signal-to-noise ratio of images is improved effectively. 

Table 3. Average Values of BSF and LCG of the Six Infrared Sequence Images Obtained by the 
Methods. 

Methods 
a b c d e f 

BSF  LCG BSF  LCG BSF  LCG BSF  LCG BSF  LCG BSF  LCG 
Top-Hat 7.73 5.94 3.28 6.76 7.86 1.67 9.66 7.53 10.25 3.64 7.34 3.45 
PSTNN 3.85 1.23 3.86 8.20 4.16 1.18 3.67 2.43 4.14 3.16 3.14 2.99 

IPI 3.35 1.70 2.30 5.65 3.45 1.06 3.19 3.18 5.61 2.37 2.02 1.94 
RIPT 0.92 3.11 0.72 3.16 1.76 1.29 1.62 2.01 1.26 1.29 0.56 1.93 

WSNMSTIPT 5.16 6.22 2.08 22.35 4.26 2.36 5.08 2.86 3.46 4.16 3.29 3.38 
NRAM 26.45 1.235 23.74 6.39 7.08 1.68 18.16 16.18 9.31 2.17 10.67 4.86 

MNSTLA 61.25 8.353 36.29 26.58 63.42 6.98 39.61 7.69 54.36 5.93 53.17 5.29 

In order to compare the above optimization methods more objectively, the compari-
son of the ROC curves of the sequences 1–6 is shown in Figure 11. It is found in the study 
that the RIPT was the worst performer and that the Top-Hat method and the PSTNN 
method are not satisfactory. The IPI model achieved good results on the six infrared image 
sequences, and the WSNMSTIPT methods are slightly better than the IPI model in terms 
of performance. The detection rate of the NRAM model is not as high as that of the 
WSNMSTIPT models, and this is because the NRAM model does not consider the tem-
poral-spatial information. Finally, under the same false alarm ratio, the MNSTLA model 
proposed herein achieved the highest detection probability, which means that the pro-
posed MNSTLA model has better performance than that of any of the other models. 

 
Figure 11. This is a figure. Schemes follow the same formatting. ROC curves of Six Image Sequences 
(a–f) Detected by Different Methods. 

5. Discussion 
The non-local auto-correlation on account of the infrared background and the target’s 

sparsity has been extensively employed in the field of infrared tiny target detection. When 

Figure 11. This is a figure. Schemes follow the same formatting. ROC curves of Six Image Sequences
(a–f) Detected by Different Methods.

5. Discussion

The non-local auto-correlation on account of the infrared background and the tar-
get’s sparsity has been extensively employed in the field of infrared tiny target detection.
When the infrared image is homogeneous, a classical IPI effectively represents low-rank
patch-background matrices using the nuclear norm. Larger solitary values really hold
more information and visual detail. In other words, the complex infrared image is too
complicated for the nuclear standard to handle, resulting in residual error and a blurry
backdrop after reconstruction because of the rich details.

Currently, the majority of approaches concentrate on the priori backdrop and target,
but this does not effectively separate the target from the background. In order to address
the residual performance issue, RIPT proposes the structure tensor. The case of a poor
signal-to-noise ratio, which leads to a lack of structure information and then target loss, is
ignored by RIPT in complicated scenes. The NRAM model, on account of the IPI model,
introduces a tighter rank proxy.

Based on the NRAM model, this article initially constrains the low-rank background
using the tensor kernel norm rather than the rank function. The proposed MNSTLA model
and other cutting-edge techniques can effectively suppress the interference caused by
dynamic background and object moving on the foreground extraction and also show good
performance in background suppression and object enhancement, according to qualitative
and quantitative comparisons.

6. Conclusions

The robustness and effectiveness of a detection method for infrared point and moving
targets are of great importance to the requirements of the early warning system. However,
it is difficult to detect infrared dim and point targets, especially the point and moving
targets. Therefore, we proposed a detection method using the minimization of a non-
convex spatial-temporal tensor low-rank approximation for infrared points and moving
targets. Our method introduces the concept of a spatial-temporal tensor on the basis of the
non-convex rank approximation method. The experimental results on the real sequence
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data sets in different scenes illustrate that this method is robust and effective in detecting
infrared points and moving targets, and is less affected by background changes and poor
image quality.

By the above discussion, while the MNSTLA model has a lower false alarm rate, the
comparison is based on single target detection. However, in the IRST system, for multi-
target detection of infrared sequence images or infrared videos, the spatial and temporal
information is extremely crucial to improve the detection rate of dim and point targets and
reduce the false alarm rate. Therefore, constructing a model that can simultaneously use the
spatial-temporal information of infrared image sequences for multi-target detection is the
focus of our further research. Therefore, we will consider combining the spatial-temporal
information with the existing method in the follow-up research in the hopes of realizing
the multi-target detection, improving the efficiency of target detection, and reducing the
false alarm rate.
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