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Abstract: Driver fatigue can be further categorized into passive fatigue and active fatigue based on
the task-induced fatigue perspective, with its categorization necessary from a theoretical basis and
practical needs. Passive fatigue is caused by mental underload and inactive task engagement, which
is considered more hazardous. To facilitate the construction of the driver monitoring system (DMS),
the current study aims to investigate the physiological and behavioral changes of passive fatigue.
A total of thirty-six participants completed a 90 min driving task on a monotonous highway, during
which subjective fatigue level, eye tracking indicators, and driving dynamics were recorded using the
Stanford Sleepiness Scale, Smart Eye Pro, and CAN Bus system. Results showed that drivers reported
higher levels of fatigue as driving duration increased. An increase in pupil diameters and gaze
dispersions were observed during the task. Drivers gradually reduced the control of the vehicle, in
which faster speed and lower speed compliance were witnessed. In addition, a compensatory process
was found as passive fatigue increased. Drivers tended to lower their standards to maintain the
lateral position but recovered their lateral control when they lost control of the car speed. The current
study emphasizes the importance of investigating active and passive fatigue of drivers independently,
and the unique physiological and behavioral changes accompanied by passive fatigue should be
considered in designing driver monitoring systems.
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1. Introduction

A recent report released in 2021 by the World Health Organization (WHO) showed
that about 1.3 million deaths were caused by traffic accidents every year. Traffic injuries
have become the major reason for the death of people early in their childhood or adulthood
with ages ranging from 5 to 29 years. The cost of traffic accidents takes up 3% of the gross
domestic product in most countries [1]. Driver fatigue was estimated to contribute to as
much as 22% of all injury-related accidents [2], making fatigue one of the primary causes of
traffic accidents.

1.1. Types of Task-Induced Fatigue

The definition of fatigue varies in different disciplines and is usually applied based on a
specific task or activity. In transportation research, fatigue-related concepts are consistently
embedded with ambiguities, which are deemed to be a barrier to understanding the
complex mechanisms of fatigue, hindering the accuracy and specificity of detection systems
and mitigation strategies. It is therefore suggested that driver fatigue research should be
conducted under a more articulated conceptual framework [3].

The present study adopted a task-induced fatigue perspective [4], from which driver
fatigue is suggested to divide into two types: active fatigue versus passive fatigue, based
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on the characteristics of the tasks that operators engage in. Active fatigue is often caused by
continuous tasks which impose a high cognitive workload and require frequent responses
to respective circumstances, whereas passive fatigue is induced by prolonged tasks in
which operators act as a supervisor of the system with little effort exerted [4]. The former
was accompanied by mental overload and distress due to the engagement in intensive
tasks, while the latter corresponded to mental underload and inactive task engagement [5].

In the driving scenarios, factors such as dense traffic, poor visibility, and multi-tasking
might lead to active fatigue, while passive fatigue might be related to monotonous high-
ways, automated systems, and extended driving duration [6]. Yet, it is more valuable to
explore passive fatigue of drivers in modern driving-related research. Firstly, compared
with active fatigue, passive fatigue usually causes sleepiness due to its monotonous nature,
which is believed to be more hazardous than the depletion of attentional resource without
sleepy symptoms [3]. Secondly, with the continuous development of vehicle automation,
passive fatigue may occur more frequently in future driving experiences. For instance,
the impending conditional automation driving (SAE Level 3) vehicles will be equipped
with systems that undertake the primary role during the driving task, where drivers will
only be required to provide assistance when take-over requests are raised [7]. In general,
with the development of autonomous vehicles, the advanced systems will greatly reduce
drivers’ workload and potentially relieve the experience of active fatigue; however, it will
also create a more monotonous situation, leading to an increase in passive fatigue [8]. As
the above, the present study focused on assessing passive fatigue of drivers.

1.2. The Assessment of Driver Fatigue

The assessment of driver fatigue can be categorized into four classes of measurements:
subjective, cognitive, physiological, and behavioral. The subjective class usually involves
self-rating questionnaires, for example, the Stanford Sleepiness Scale (SSS) [9]. The cog-
nitive measurements include attention tests such as the psychomotor vigilance tasks for
identifying whether drivers are undergoing a fatigue status [10].

Regarding the physiological measurements, the eye tracking method is recommended
over the others (brain activity signals, heart rate, etc.). The connections between eye
movement behaviors and driver fatigue have been well established, including metrics
such as the classic PERCLOS index (percentage of eyelid closure over the pupil over time),
pupil (e.g., pupil diameter), blinks (e.g., blink duration and blink count), and saccade (e.g.,
mean velocity of saccade and saccade amplitude) [11]. It is believed that although other
neurophysiological methods are reliable, they are still far from daily application; in contrast,
the eye tracking equipment has provided a relatively easy and convenient setup with no
skin contact for measuring physiological signals [3].

Behaviorally, one of the most widely adopted indicators is vehicle-based behavior.
Prior studies have revealed that the manipulation activity of the steering wheel, driving
speed compliance, together with the standard deviation of the lateral lane position (SDLP)
are highly related to driver fatigue [12]. However, as summarized in Table 1, the associations
between fatigue and its physiological and behavioral indicators may demonstrate different
tendencies when comparing passive fatigue and active fatigue, which further implies that
the assessment of these two types of fatigue should be studied separately.

1.3. Passive Fatigue and Attention Allocation

Physiological and behavioral changes accompanied by passive fatigue are highly re-
lated to the allocation of attention [13]. As the capacity model of attention implies, attention
allocation is determined by individual’s current arousal level, evaluation of demands on
capacity, enduring dispositions, as well as momentary intentions when engaging in a
specific task [13]. When experiencing passive fatigue, reduced arousal level and low task re-
quirements would decrease individuals’ intention to exert effort on the current task, which
further leads to a reduction in attention allocation and task performance standards [12] (see
Figure 1).
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Figure 1. Attention allocation under passive fatigue.

This phenomenon also happens in driving scenarios. When undergoing less-demanding
tasks, drivers are likely to experience passive fatigue, where low arousal levels are ob-
served. Additionally, they are likely to be distracted by internal thoughts [14]. According
to the capacity model of attention, as a result of the evaluation of demands on capacity,
drivers tend to lower their standards and become less motivated, thus leading to impaired
driving performance.

Table 1. Comparisons of physiological and behavioral indicators for active fatigue versus passive fatigue.

Indicators Comparisons between Active Fatigue versus
Passive Fatigue

Pupil diameter [15]

Decreased significantly in both conditions of active fatigue
and 1 h passive fatigue driving, while no statistically
significant change was reported after 90-min passive
fatigue driving.

Blink duration [15] Only increased in active fatigue driving.

Mean velocity of saccade [15] Only increased in active fatigue driving.

Saccade duration [15] Increased in active fatigue driving and 1.5-h passive
fatigue driving.

Standard deviation of lane position
(SDLP) [16] Lower SDLP in passive fatigue driving.

Response time (RT) [16] Slower braking and steering RTs in the passive driving.
Collision [16] More collisions in the passive fatigue driving.

1.4. Research Questions

In summary, considering the different manifestations of driving under states of active
fatigue versus passive fatigue, the more hazardous nature of the passive fatigue, and
the expected more frequent passive fatigue in the coming autonomous vehicle age, the
necessity and urgency to investigate passive fatigue is confirmed after the above literature
review of practical needs and theoretical categorization of active versus passive fatigue.
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More specifically, the current study aims to address three important research questions:
First, what are the changes of eye movement and driving performance during passive
fatigue of drivers, especially in a real-world scenario? Second, does there exist any com-
pensatory behavioral strategies to mitigate the risks of passive fatigue? Third, what are
the representative indicators for the early versus late stage of fatigue? Answers to this
question can inform the parameter selections for the development of a Driver Monitor
System (DMS).

To address the above-mentioned research questions, techniques of eye tracking and
CAN-bus (measuring driving performance) are implemented. Eye tracking and driving
performance have been proven to be highly correlated with fatigue [12] and are more
feasible to apply in the real world with no direct body contact with drivers. Real-world
driving is emphasized in the current study as previous passive fatigue studies were mostly
conducted in driving simulators with highway or autonomous driving settings [16]. Exten-
sive literature search in major databases, including ProQuest, Web of Sciences, etc., only
generated a couple of papers on passive fatigue in a real-world scenario. There is only one
recent initial attempt to study passive fatigue of drivers in a real-world scenario, signifying
the necessity of real-world examination of driving performance. However, it emphasizes
use of a motion seat [17], not a full scope examination of the core driving behaviors, that is,
eye movement and vehicle manipulations. Personal communications with major recent
authors (including Fellow and Dr. Hancock [4] and Dr. Jinfei Ma [18]) on this topic in the
United States and China confirmed the lack of studies on passive fatigue in a real-world
scenario. However, they confirmed and agreed the necessity to execute such research,
although they reminded us the potential technical difficulty and financial costs. Therefore,
to maximize the external validity, the current study was carried out in a real highway
environment [6].

2. Methods
2.1. Participants

The expected sample size for participants was estimated using the power analysis
with the field-standard software of G-power (Version 3.1.9.6) [19]. Thirty-six participants
were finally recruited to achieve sufficient power (≥90%). All participants had highway
driving experiences, normal or corrected-to-normal vision, and a valid driving license for
a minimum of five years. Four participants were not included in the final data analysis
due to technical issues and voluntary early termination of participation, resulting in a
valid sample size of 32 participants (ensures an 85% power; 26 males, 6 females, mean
age = 38.09 ± 7.90 years old). The mean year of driving experience of the sample is
12.44 years, and none of them has experienced a traffic accident within one year. Participants
were also strongly required to sleep for a minimum of seven hours in the night prior to
participation in the experiment, abstained from coffee or tea within 24 h, and prohibited
from nicotine intake 2 h prior to the experiment.

2.2. Materials and Apparatus

To estimate drivers’ subjective level of fatigue, the widely used one-item Stanford
Sleepiness Scale (SSS) was applied [20]. SSS is a Likert scale with seven points that measures
individuals’ arousal and drowsiness level, and has been proven valid among Chinese
participants [21]. Each point of the scale has a specific description that is used as the
reference and definition of the subjective level of fatigue. For example, point 1 means
feeling awake and energetic; point 7 means unable to remain awake and can fall asleep
soon. This indicates that the higher the SSS score, the higher the level of driver sleepiness.
See Appendix A for a complete detailed description of the Stanford Sleepiness Scale
(SSS). Rating a score greater than 3 (including 3) represents that the driver is under fatigue
status [22]. The mean and standard deviation of the Subjective fatigue level measured using
SSS scores at the three stages were 2.34 ± 0.87, 3.06 ± 0.95, and 3.53 ± 0.84, respectively.



Appl. Sci. 2023, 13, 1200 5 of 15

This proves that the operation chosen to measure fatigue status for 90 min in this study
is valid.

A Baojun RC-6 equipped with the CAN Bus system, a Smart Eye Pro, and a laptop
were used in the experiment. The CAN Bus system retrieved vehicle dynamics, and the
Smart Eye Pro was fixed above the dashboard to collect eye tracking data. The Dell Precision
3630 laptop was placed at the back seat of the car to monitor the data collection in real-time
(see Figure 2). The Smart Eye Pro is a fixed-based remote eye-tracking device, with one
infrared sensor on the right side of the camera that enables researchers to accurately track
participants’ eye and head movements.
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2.3. Experiment Design

This experiment adopted a one-way repeated measures design, with time serving
as the independent variable. Previous studies indicated that drivers became fatigued or
reduced task engagement levels after about 30 min of driving [23], and a 90-min driving
experiment could induce driver fatigue [24]. Therefore, the current study adopted a 90-min
driving task, which was further divided into three segments of 30 min. As the experiment
protocol suggested that every fatigue score represented drivers’ fatigue status for the past
10 min, all data in the last 10 min of each segment were comprised of the final dataset [25]
(see Figure 3). Furthermore, according to Antonson, Mårdh, Wiklund, and Blomqvist (2009),
participants driving in the open landscape experienced less stress and did not consume
many cognitive resources [26], which was a low workload driving condition and was
easy to induce passive fatigue driving experience. Therefore, the present study set the
experimental scenario as an open, monotonous highway in order to induce passive fatigue
for the participants.
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Upon arrival, the experimenter tested the participants’ vision using the Standard
Logarithmic Visual Acuity Chart and then asked them to sign the informed consent form.
The results of Yoon and Oh (2011) showed that the traffic flow on the highway varied
with speed between 9 a.m. and 7 p.m., and the low traffic flow could be maintained when
the speed was kept below 90 km/h (55.92 mph) [27]. Therefore, during the experiment,
participants were informed to retain their normal driving styles and maintain a driving
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speed of 80 km/h (49.68 mph). A pair of research assistants counted the number of vehicles
per hour by watching the experiment video recordings. According to their statistics, the
same-side traffic flow was less than 20 vehicles per hour during the experiment, ensuring
that the experiment was conducted under low traffic flow traffic conditions, which was a
condition that induced the passive fatigue driving experience. The experimenter recorded
the drivers’ fatigue score every 30 min by verbal inquiry based on the SSS.

The driving route was a 145 km highway section of the Wuzhou–Liuzhou Highway
in Guangxi Province, starting and ending at Liuzhou East Toll Station and Pingnan East
Toll Station, respectively (see Figure 4). The experimental section of our study was Wuliu
Expressway in Liuzhou City, Guangxi Province, starting and ending at Liuzhou East Toll
Station and Pingnan East Toll Station. The technical standards of the Wuliu Expressway
were executed in accordance with the provisions of “Technical Standards for Highway
Engineering” (JTGB01-2014) issued by the Ministry of Transportation, China, and the
specific information was shown in the Table 2. Wuliu Expressway was completed and
used since December 2017, and all standards at the time of acceptance were in accordance
with the relevant requirements of the “Rules for the Implementation of the Measures
for the Completion (Delivery) and Acceptance of Highway Projects” of the Ministry of
Transportation, China (Transportation Highway Development [2010] No. 65). According
to China’s Technical Standards for Highway Engineering (JTG B01-2014), the maximum
vertical slope was 3% when the designed speed was 120 km/h; the maximum vertical
slope was 4% when the designed speed was 100 km/h; and when the designed speed of
120 km/h and 100 km/h expressway was restricted by terrain conditions or other special
circumstances, the maximum vertical slope value could be increased by 1% after technical
and economic proof. The turning angle was not required, but the turn radius was specified,
with the designed speed of 120 km/h, the minimum radius was in the range of 570–810 m;
and with the designed speed of 100 km/h, the minimum radius was in the range of
360–500 m. Therefore, the road condition selected by this experiment will not force the
drivers to change their driving speed or steer because of the degree of road tortuosity, or
steepness of the road surface.
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Table 2. Technical Standards of Wuzhou–Liuzhou Highway.

Technical Information

Highway grade Expressway
Line mileage 212.55 km

Width of roadbed Wuzhou–Xiangzhou section: 26 m,
Xiangzhou–Liuzhou section: 28 m

Design speed Wuzhou–Xiangzhou section: 100 km/h,
Xiangzhou–Liuzhou section: 120 km/h

Lane scale Two-way four lanes
Design load Highway-I

Flood frequency Special bridge: 1 time/300 years, large, medium, and small
bridges, culverts: 1 time/100 years

Seismic grade IV degree

Number of bridges and tunnels Special bridge: 4488 m/4, large, medium, and small bridges:
41,371.91 m/213, tunnels: 15,265.5 m/16

All participants completed the experiments under suitable temperature and good
meteorological conditions. During the experiment, the maximum temperature was 27 ◦C
and the minimum temperature was 7 ◦C, and the detailed temperature changes were shown
in Figure 5. Previous studies have shown that temperature had little effect on highway
traffic accidents when the temperature was 7 ◦C to 28 ◦C, and the accident density tended
to be homogeneous [28], which indicates that the temperature in our study did not affect
the experimental results.
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In addition, none of the experiments in our study were conducted under unfavorable
weather conditions such as snowfall, icing, rainfall, fog, and wind, and were able to ensure
that the experiments were not influenced by additional variables such as weather. In our 26-
day experiment, there were 9 days of sunny weather, 16 days of cloudy weather, and 1 day
of rain (See Figure 6). Previous studies have shown that, the number of traffic accidents in
rainy and snowy weather was significantly higher than in sunny weather conditions, and
the number of highway accidents was two to three times higher per unit time than in normal
weather conditions [29,30]. For safety reasons and to avoid the potential contaminating
effect of adverse weather conditions on driving performance, our study did not conduct
the experiment on 16 November 2020.
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2.4. Indicator Definition and Data Analysis

After data extraction, eye tracking indicators and vehicle dynamics were calculated
as Table 3 presents. The Mauchly’s test of sphericity, analyses of variance (ANOVA) with
repeated measure design, and post hoc analysi0s were executed to examine the changes
in subjective fatigue levels, eye movement, and driving behaviors over time. Corrections
using either Huynh–Feldt (when ε > 0.75) or Greenhouse–Geisser (when ε ≤ 0.75) were
adopted when sphericity was violated. Effect sizes were assessed by Cohen’s d. The
criterion for a large effect size is a Cohen’s d of 0.8, medium size for 0.5, and small size for
0.2 [31]. Data preprocessing and analysis were conducted in Python and SPSS.

Table 3. Description of indicators analyzed in this study.

Indicator (Unit) Algorithm Influences on Driving

Horizontal (vertical) gaze dispersion
(m) [32]

The mean variance of the x (y) value of the
intersection of gaze direction and plain
z = 0.9

A larger gaze dispersion indicates drivers look
at wider spaces, but might not be alert, which
is similar to inattentional blindness.

Pupil diameter (mm) The mean value of pupil diameter

Mean speed (km/h) The mean value of speed A larger speed might lead to severe accidents.

Standard deviation of speed (km/h) The standard deviation value of speed A larger variance of speed indicates worse
control to speed.

Speed compliance (%) [33] The total time of the speed in the range from
75–85 km/h divided by the total time

A smaller speed compliance indicates worse
control and less attention allocation to speed.

Standard deviation of steering angle
(degree)

The standard deviation value of the steering
angle

A larger standard deviation of the steering
angle indicates worse control of lane keeping.

Steering hold frequency (Hz) [34] The frequency in one second that the steering
wheel did not turn for more than 400 ms.

A smaller steering hold frequency indicates
worse control to the steering wheel.
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3. Results
3.1. Subjective Fatigue Level

As shown in Figure 7, the level of subjective fatigue increased over time as the driving
task proceeded. The repeated measures using ANOVA and the subsequent post hoc test
indicated that there was a significant change among the three driving stages, F(2, 62) = 33.63,
p < 0.001, η2

p = 0.52. The subjective fatigue level was higher in stage III than in stage I
(t(31) = 8.14, p < 0.001, Cohen’s d = 1.44) and stage II (t(31) = 3.21, p < 0.01, Cohen’s d = 0.57),
and higher in stage II than in stage I (t(31) = 4.93, p < 0.001, Cohen’s d = 0.87). The mean
and standard deviation of fatigue levels at each stage are presented in Table 4.
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Table 4. Overview changes of eye movement and driving performance caused by passive fatigue in
different driving stages [M (SD)].

Indicator (Unit) Stage
I

Stage
II Stage III Stage

I vs. II
Stage

II vs. III
Stage

I vs. III

Eye
movement

Subjective fatigue level measured
using SSS 2.34 (0.87) 3.06 (0.95) 3.53 (0.84) *** ** ***

Horizontal gaze dispersion (m) 0.13 (0.04) 0.14 (0.04) 0.15 (0.05) n.s. n.s. *
Vertical gaze dispersion (m) 0.14 (0.04) 0.13 (0.03) 0.14 (0.04) n.s. * n.s.

Pupil diameter (mm) 3.58 (0.91) 3.68 (0.97) 3.73 (1.07) n.s. n.s. *

Driving
Performance

Mean speed (km/h) 81.52 (4.42) 79.99 (4.28) 85.68 (5.83) n.s. *** ***
Standard deviation of speed

(km/h) 4.13 (2.24) 4.75 (2.12) 4.83 (2.62) n.s. n.s. n.s.

Speed compliance (%) 0.28 (0.19) 0.27 (0.13) 0.16 (0.15) n.s. ** **
Standard deviation of steering

angle (degree) 1.01 (0.16) 1.19 (0.16) 1.06 (0.16) *** ** n.s.

Steering hold frequency (Hz) 2.68 (0.75) 2.46 (0.73) 2.73 (0.79) *** *** n.s.

Note: * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001; n.s. indicates not significant.

3.2. Eye Movement Indicators

Analysis of drivers’ horizontal gaze dispersion reported a significant main effect of
driving stages, F(2, 62) = 3.97, p < 0.05, η2

p = 0.11 (see Figure 8a). The post hoc test showed
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that drivers’ gazes were considerably more dispersed in the horizontal dimensions in stage
III than in stage I, t(31) = 2.80, p < 0.05, Cohen’s d = 0.50.
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Figure 8. Eye tracking indicators under three driving stages. (Note: (a) represented analysis of
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Significant differences have also been reported in drivers’ vertical gaze dispersion,
F(2, 62) = 4.24, p < 0.05, η2

p = 0.12 (see Figure 8b). The post hoc test indicated that a
broader vertical gaze dispersion appeared in stage III than in stage II, t(31) = 2.60, p < 0.05,
Cohen’s d = 0.46. The density contour plots based on the intersection coordinates of three-
dimensional gaze direction and vertical plain z = 0.9 in Figure 9 further visualize these
tendencies.
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Figure 9. Visualization of horizontal and vertical gaze dispersions under three driving stages.

Pupil diameters of drivers as shown in Table 3 became greater as time went by, F(2,
62) = 3.44, p < 0.05, η2

p = 0.10 (see Figure 8c). The difference between stage III and stage I
has been proven to reach significance, t(31) = 2.54, p < 0.05, Cohen’s d = 0.45.

3.3. Driving Performance

Drivers drove faster as the experiment went on (see Figure 10a), F(1.30, 40.31) = 16.30,
p < 0.001, η2

p = 0.35. Stage III had a significantly faster mean speed than in stage I (t(31) = 4.04,
p < 0.001, Cohen’s d = 0.71), and stage II (t(31) = 5.52, p < 0.001, Cohen’s d = 0.98).

For the standard deviation of speed, no significant differences have been found.
Speed compliance was found to be influenced by the length of driving time (see

Figure 10b), F(1.67, 51.77) = 8.17, p < 0.001, η2
p = 0.21. Stage III had substantially lower speed

compliance than stage I (t(31) = 3.62, p < 0.01, Cohen’s d = 0.64), and stage II (t(31) = 3.37,
p < 0.01, Cohen’s d = 0.60).
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The standard deviation of steering angle varied among the three stages (see Figure 10c),
F(1.68, 52.11) = 10.54, p < 0.001, η2

p = 0.25. The standard deviation was significantly larger
in stage II than in either stage I (t(31) = 4.49, p < 0.001, Cohen’s d = 0.79), or stage III
(t(31) = 3.09, p < 0.01, Cohen’s d = 0.55).

Steering hold frequency significantly changed during the drive (see Figure 10d), F(1.12,
34.82) = 18.14, p < 0.001, η2

p = 0.37. The frequency was lower in stage II than in either stage
I (t(31) = 4.61, p < 0.001, Cohen’s d = 0.82), or stage III (t(31) = 5.66, p < 0.001, Cohen’s
d = 1.00).
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4. Discussion

As emphasized in the introduction, it is important for researchers to differentiate the
two types of fatigue, that is, passive fatigue and active fatigue. Road situations and traffic
load change diversely in real-world driving scenarios, which are both common exogenous
factors that induce either passive fatigue or active fatigue. Since the two categories of driver
fatigue are driven by different mechanisms, drivers’ performance would be influenced
diversely, indicating the significance of developing a more accurate way to assess driver
fatigue regarding various kinds of driving scenarios. Furthermore, with the growing
number of autonomous vehicles being implemented in the upcoming future, drivers
would possibly experience passive fatigue more frequently when driving on a monotonous
highway or riding in an autonomous vehicle with a minimum workload.

The following sections address the three research questions as introduced in the
Introduction section.

4.1. Research Question 1: Eye Movement Patterns and Driving Performance under Passive Fatigue

The results of eye movement patterns in the current study centered on the eye tracking
method. The results found that gaze dispersion grew larger both horizontally and vertically
after about 90 min of driving, which echoed with findings from the previous studies
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focusing on autonomous and sleep-deprived driving situations [35]. When tasks are
monotonous and boring, drivers would possibly experience passive fatigue and decrease
attention allocation as illustrated in the capacity model of attention [13], leading to driver
inattention or a status similar to mind wandering [14].

Moreover, the current study found that pupil diameter increased as the driving task
went on. However, the robustness of pupil diameter indicating fatigue level is relatively
low [36], with multiple factors influencing the change of pupil diameters, such as workload,
alertness, and sleepiness level [3]. A driving scenario that elicits passive fatigue might have
a combined influence on pupil diameter.

For driving performance, the current study showed a significantly faster driving speed
and declined speed compliance at driving stage III. According to the capacity model of
attention, the above observation might be a result of drivers’ passive fatigue, leading them
to gradually lowering their standard to obey with the research protocol and posted speed
requirements (i.e., maintaining a constant driving speed). Regarding steering wheel control,
the current study demonstrated that the steering wheel control was impaired more at stage
II than stage I (i.e., larger SD of steering angles and longer steering hold frequency), but the
same trend was not found at stage III.

4.2. Research Question 2: Compensatory Strategies

Do compensatory strategies exist to counteract the increasing risks caused by pas-
sive fatigue after a long-time driving? Close examination of eye movement and driving
dynamics showed existence of a compensatory process during passive fatigue in two as-
pects. Reduced attention allocation led to a more limited numbers of tasks that drivers
can manage. Thus, in the aspect of eye movement, drivers would need more time to
process a piece of visual information if they were not paying full attention [37], thus they
compensatively increase visual search span to acquire more visual information, resulting
in a more dispersed gaze allocation [38]. In the aspect of driving performance, drivers
unconsciously lowered their standard to control lateral position in order to keep a stable
driving speed. At driving stage II, most participants remained at a relatively constant
speed, while they failed to stabilize their lateral position by controlling the steering wheel.
Yet, at stage III, it become harder for participants to control the speed as passive fatigue
increased, but they compensatively managed better lateral control.

4.3. Research Question 3: Measurements for Passive Fatigue in Different Stages

The third research question asked about indicator changes for the early versus late
stage of passive fatigue. This question is not only important to uncover the theoretical
progressive process of passive fatigue, but also comes from urgent industry needs for
the development of a Driver Monitor System and the development of machine learning
algorithms.

Fatigue detection indicators can be categorized into four types, according to machine
learning needs and the pairwise comparisons in the last three columns of Table 4, that is,
early indicators and late indicators, or short-period indicators and long- period indicators.

Early indicators are changes observed at early stage of fatigue, often minor levels of
fatigue, for example, after relatively short driving time, or when SSS = 3 with a label of
“Awake, but relaxed; responsive but not fully alert” [21]. Early indicators are operationally
defined as changes occurring before the first 60 min, when Stage I vs. II are significant
in Table 4. In contrast, late indicators are changes observed at late stage of fatigue with
severe levels of fatigue, for example, when SSS = 6 (“Sleepy, woozy, struggling to sleep;
prefer to lie down”) or 7 (“No longer struggling to sleep”). Late indicators are operationally
defined as changes occurring after 60 min, when Stage II vs. III are significant in Table 4.
Early indicators should be used if the DMS users are conservative or the losses from
fatigue are extremely high, for example, a vehicle carrying explosives. Late indicators
are recommended for users who are liberal, or the risks of fatigue are low, or when false
alarms of the DMS are bothersome. As summarized in Table 4, steering controls (measured
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in standard deviation of steering angle and steering hold frequency) are early indicators;
vertical gaze dispersion and speed measurements (both mean speed and speed compliance)
are late indicators.

The categorization of short-period indicators and long- period indicators is based
on the time windows in which data are averaged over. Short-period indicators refer to
indicators which are significant when comparing short time windows, but not significant
anymore if larger time windows are compared. Short-period indicators are often behaviors
occurring less frequently, such as steering control on highway. Long-period indicators
are data which are significant when averaged and compared after a large time window.
In this study, short-period indicators are operationally defined as indicators which are
significantly when comparing either Stage I vs. II or stage II vs. III, but insignificant when
comparing Stage I vs. III. According to Table 4, steering controls (measured in standard
deviation of steering angle and steering hold frequency) and vertical gaze dispersions are
short-period indicators; speed measurements (both mean speed and speed compliance) are
long-period indicators.

4.4. Limitations

Nevertheless, as a large on-road driving study, the current study is limited in several
aspects. Firstly, the experiment was conducted in the real world in which, naturalistic
behaviors were recorded when drivers were driving on the highway. It is, therefore, unable
to control elements such as the weather and lighting conditions, leading to fluctuations in
the change of pupil diameter in this study. However, the weather conditions throughout
the experiment session were similar, suggesting that the pupil-based results of the current
study have provided valuable significance and external validity. Secondly, due to safety
concerns, the total driving duration was set to be ninety minutes. To further understand
the impact induced by severe passive fatigue, future research is suggested to conduct
the experiment with a longer duration via driving simulations. Thirdly, the scale used
for measuring subjective fatigue level was SSS. Although the concrete definition of each
SSS score allows drivers to accurately measure their fatigue level, it is not the scale that
specifically differentiates or measures different types and levels of fatigue. In fact, there is
currently no scale that measures different types of fatigue, so future research could attempt
to develop scales for more accurate measurements of active and passive fatigue. Future
studies are also advised to further investigate the compensatory processes of drivers when
experiencing both active and passive fatigue.

Regardless of the above limitations, combining the findings on eye tracking indicators
and driving dynamics, the current study not only investigated the effect of passive fatigue
but also shed light on the complex mechanism of passive fatigue and attention allocation.
Moreover, the results of this study provided new options for the design of the driver
monitoring system (DMS). To increase the accuracy of driver status detection, researchers,
as well as manufacturers should consider adding gaze dispersion into the algorithm of the
DMS. More data regarding driving behavior is also needed to improve the efficiency of
a DMS.

5. Conclusions

To summarize, first, passive fatigue driving causes a series of eye movement and
driving performance changes, including wider horizontal gaze dispersions, larger pupil
diameters, quicker speed, lower speed compliance, larger standard deviation of steering
angle, and an increased steering hold frequency. Second, drivers do exhibit compensatory
behaviors to reduce increasing risks of passive fatigue including wider horizontal gaze
dispersions and prioritizing speed manipulation over lateral steering control. Third, strict
conservative early detection of fatigue can put more weight on steering control, and late
severe fatigue detection can put more weight on mean speed and speed compliance. In
addition, adding gaze dispersion into the algorithm of the DMS might be an effective way
to further increase the accuracy of driver status detection.
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Appendix A

Stanford Sleepiness Scale [39].
Please circle the item which best describes your current sleepiness level.

1 (feeling awake and energetic)
2 (good physical condition, thinking ability, but not optimal; able to concentrate)
3 (awake, relaxed, not optimal responsiveness)
4 (more or less not awake, not in high spirits)
5 (not clear-headed; a little sleepy; slowed thinking)
6 (sleepy, trying to hold on to sleep; wants to lie down)
7 (unable to remain awake, can fall asleep soon; dream-like thinking occurs)
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