Motor Outcome Measures in Pediatric Patients with Congenital Muscular Dystrophies: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Inclusion Criteria
2.3. Population
2.4. Concept
2.5. Context
2.6. Information Sources
2.7. Search Methods
2.8. Level of Evidence and Qualitative Analysis of Eligible Articles
3. Results
3.1. Selection of Sources of Evidence
3.2. Synthesis of Results
3.2.1. Studies in Patients with COL6-RD Diseases
3.2.2. Studies in Patients with LMNA-RD
3.2.3. Studies in Patients with LAMA2—CMD
3.2.4. Studies in Patients with FCMD
3.2.5. Studies in Patients with SEPN1-RM
3.2.6. Studies in Patients with FKRP Mutations
3.2.7. Studies in Patients with Various Forms of CMD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pasrija, D.; Tadi, P. Congenital Muscular Dystrophy. In Treasure Island; StatPearls Publishing: Tampa, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK558956/ (accessed on 20 October 2022).
- Bertini, E.; D’Amico, A.; Gualandi, F.; Petrini, S. Congenital Muscular Dystrophies: A Brief Review. Semin. Pediatr. Neurol. 2011, 18, 277–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterfield, R.J. Congenital Muscular Dystrophy and Congenital Myopathy. Contin. Lifelong Learn. Neurol. 2019, 25, 1640–1661. [Google Scholar] [CrossRef]
- Graziano, A.; Bianco, F.; D’Amico, A.; Moroni, I.; Messina, S.; Bruno, C.; Pegoraro, E.; Mora, M.; Astrea, G.; Magri, F.; et al. Prevalence of congenital muscular dystrophy in Italy: A population study. Neurology 2015, 84, 904–911. [Google Scholar] [CrossRef] [Green Version]
- Zambon, A.A.; Muntoni, F. Congenital muscular dystrophies: What is new? Neuromuscul. Disord. 2021, 31, 931–942. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Joanna Briggs Institute. Joanna Briggs Institute Reviewers’ Manual: 2015 Edition/Supplement Adelaide; The Joanna Briggs Institute: Adelaide, Australia, 2015. [Google Scholar]
- Yonekawa, T.; Komaki, H.; Okada, M.; Hayashi, Y.K.; Nonaka, I.; Sugai, K.; Sasaki, M.; Nishino, I. Rapidly progressive scoliosis and respiratory deterioration in Ullrich congenital muscular dystrophy. J. Neurol. Neurosurg. Psychiatry 2013, 84, 982–988. [Google Scholar] [CrossRef]
- Benito, D.N.-D.; Foley, A.R.; Domínguez-González, C.; Ortez, C.; Jain, M.; Mebrahtu, A.; Donkervoort, S.; Hu, Y.; Fink, M.; Yun, P.; et al. Association of Initial Maximal Motor Ability With Long-term Functional Outcome in Patients With COL6-Related Dystrophies. Neurology 2021, 96, e1413–e1424. [Google Scholar] [CrossRef]
- Fan, Y.; Tan, D.; Song, D.; Zhang, X.; Chang, X.; Wang, Z.; Zhang, C.; Chan, S.H.-S.; Wu, Q.; Wu, L.; et al. Clinical spectrum and genetic variations of LMNA-related muscular dystrophies in a large cohort of Chinese patients. J. Med. Genet. 2020, 58, 326–333. [Google Scholar] [CrossRef]
- Zambon, A.A.; Ridout, D.; Main, M.; Mein, R.; Phadke, R.; Muntoni, F.; Sarkozy, A. LAMA2-related muscular dystrophy: Natural history of a large pediatric cohort. Ann. Clin. Transl. Neurol. 2020, 7, 1870–1882. [Google Scholar] [CrossRef]
- Tan, D.; Ge, L.; Fan, Y.; Chang, X.; Wang, S.; Wei, C.; Ding, J.; Liu, A.; Wang, S.; Li, X.; et al. Natural history and genetic study of LAMA2-related muscular dystrophy in a large Chinese cohort. Orphanet J. Rare Dis. 2021, 16, 319. [Google Scholar] [CrossRef]
- Harada, R.; Taniguchi-Ikeda, M.; Nagasaka, M.; Nishii, T.; Inui, A.; Yamamoto, T.; Morioka, I.; Kuroda, R.; Iijima, K.; Nozu, K.; et al. Assessment of the upper limb muscles in patients with Fukuyama muscular dystrophy: Noninvasive assessment using visual ultrasound muscle analysis and shear wave elastography. Neuromuscul. Disord. 2022, 32, 754–762. [Google Scholar] [CrossRef]
- Ishigaki, K.; Ihara, C.; Nakamura, H.; Mori-Yoshimura, M.; Maruo, K.; Taniguchi-Ikeda, M.; Kimura, E.; Murakami, T.; Sato, T.; Toda, T.; et al. National registry of patients with Fukuyama congenital muscular dystrophy in Japan. Neuromuscul. Disord. 2018, 28, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Silwal, A.; Sarkozy, A.; Scoto, M.; Ridout, D.; Schmidt, A.; Laverty, A.; Henriques, M.; D’Argenzio, L.; Main, M.; Mein, R.; et al. Selenoprotein N-related myopathy: A retrospective natural history study to guide clinical trials. Ann. Clin. Transl. Neurol. 2020, 7, 2288–2296. [Google Scholar] [CrossRef] [PubMed]
- Villar-Quiles, R.N.; von der Hagen, M.; Métay, C.; Gonzalez, V.; Donkervoort, S.; Bertini, E.; Castiglioni, C.; Chaigne, D.; Colomer, J.; Cuadrado, M.L.; et al. The clinical, histologic, and genotypic spectrum of SEPN1-related myopathy. Neurology 2020, 95, e1512–e1527. [Google Scholar] [CrossRef]
- Gedlinske, A.M.; Stephan, C.M.; Mockler, S.R.; Laubscher, K.M.; Laubenthal, K.S.; Crockett, C.D.; Zimmerman, M.B.; Mathews, K.D. Motor outcome measures in patients with FKRP mutations. Neurology 2020, 95, e2131–e2139. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.S.; Meilleur, K.; Kim, E.; Norato, G.; Waite, M.; Nelson, L.; McGuire, M.; Duong, T.; Keller, K.; Lott, D.J.; et al. Longitudinal changes in clinical outcome measures in COL6-related dystrophies and LAMA2-related dystrophies. Neurology 2019, 93, e1932–e1943. [Google Scholar] [CrossRef] [PubMed]
- Vuillerot, C.; Meilleur, K.G.; Jain, M.; Waite, M.; Wu, T.; Linton, M.; Datsgir, J.; Donkervoort, S.; Leach, M.E.; Rutkowski, A.; et al. English Cross-Cultural Translation and Validation of the Neuromuscular Score: A System for Motor Function Classification in Patients With Neuromuscular Diseases. Arch. Phys. Med. Rehabilitation 2014, 95, 2064–2070.e1. [Google Scholar] [CrossRef] [Green Version]
- Bendixen, R.M.; Butrum, J.; Jain, M.S.; Parks, R.; Hodsdon, B.; Nichols, C.; Hsia, M.; Nelson, L.; Keller, K.C.; McGuire, M.; et al. Upper extremity outcome measures for collagen VI-related myopathy and LAMA2-related muscular dystrophy. Neuromuscul. Disord. 2016, 27, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Vuillerot, C.; Rippert, P.; Kinet, V.; Renders, A.; Jain, M.; Waite, M.; Glanzman, A.M.; Girardot, F.; Hamroun, D.; Iwaz, J.; et al. Rasch Analysis of the Motor Function Measure in Patients With Congenital Muscle Dystrophy and Congenital Myopathy. Arch. Phys. Med. Rehabilitation 2014, 95, 2086–2095. [Google Scholar] [CrossRef] [Green Version]
- Le Goff, L.; Meilleur, K.G.; Norato, G.; Rippert, P.; Jain, M.; Fink, M.; Foley, A.R.; Waite, M.; Donkervoort, S.; Bönnemann, C.G.; et al. Responsiveness and Minimal Clinically Important Difference of the Motor Function Measure in Collagen VI-Related Dystrophies and Laminin Alpha2-Related Muscular Dystrophy. Arch. Phys. Med. Rehabilitation 2020, 102, 604–610. [Google Scholar] [CrossRef]
- Meilleur, K.G.; Jain, M.S.; Hynan, L.S.; Shieh, C.-Y.; Kim, E.; Waite, M.; McGuire, M.; Fiorini, C.; Glanzman, A.M.; Main, M.; et al. Results of a two-year pilot study of clinical outcome measures in collagen VI- and laminin alpha2-related congenital muscular dystrophies. Neuromuscul. Disord. 2014, 25, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bérard, C.; Payan, C.; Hodgkinson, I.; Fermanian, J.; The MFM Collaborative Study Group A Motor Function Measure Scale for Neuromuscular Diseases. Construction and validation study. Neuromuscul. Disord. 2005, 15, 463–470. [Google Scholar] [CrossRef]
- Scott, E.; Eagle, M.; Mayhew, A.; Freeman, J.; Main, M.; Sheehan, J.; Manzur, A.; Muntoni, F.; Disease, T.N.S.C.N.F.P.N. Development of a Functional Assessment Scale for Ambulatory Boys with Duchenne Muscular Dystrophy. Physiother. Res. Int. 2011, 17, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Tiziano, F.D.; Lomastro, R.; Di Pietro, L.; Pasanisi, M.B.; Fiori, S.; Angelozzi, C.; Abiusi, E.; Angelini, C.; Sorarù, G.; Gaiani, A.; et al. Clinical and molecular cross-sectional study of a cohort of adult type III spinal muscular atrophy patients: Clues from a biomarker study. Eur. J. Hum. Genet. 2012, 21, 630–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bönnemann, C.; Rutkowski, A.; Mercuri, E.; Muntoni, F. 173rd ENMC international workshop: Congenital muscular dystrophy outcome measures 5–7 March 2010, Naarden, The Netherlands. Neuromuscul. Disord. 2011, 21, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Pane, M.; Donati, M.A.; Cutrona, C.; De Sanctis, R.; Pirinu, M.; Coratti, G.; Ricci, M.; Palermo, C.; Berti, B.; Leone, D.; et al. Neurological assessment of newborns with spinal muscular atrophy identified through neonatal screening. Eur. J. Pediatr. 2022, 181, 2821–2829. [Google Scholar] [CrossRef]
Authors, Year | Study Design | Type of CMD | Sample (Size, Sex, Age) | Assessment | Results |
---|---|---|---|---|---|
Yonekawa et al., 2013 [8] | Case series Cross-sectional | UCMD | n = 33; 18 F/15 M; 11 ± 6.6 years | Clinical assessment | Head control, sitting, and independent ambulation were completed at median ages of 4 months, 9 months, and 18 months, respectively. Independent sitting and walking: 81% (25/31). LoA: 8.8 ± 2.9 years (n = 11). |
Natera-de et al., 2021 [9] | Case series Cross-sectional | COL6-RD | n = 119; 57 F/62 M; 5–73 years | MFM32, 6MWT, NSAA, timed function tests. | |
UCMD | n = 38; 5–34 years | MFM32: 44.17 (±17.4). NSAA: 1.8 (±4.4). 6MWT: 27.5 (±72.6). LoA 22/30—range of ages 4–15 years; 8/38 never achieved independent ambulation. | |||
Intermediate COL6-RD | n = 35; 6–48 years | MFM32: 62.47 (±15.17). NSAA: 10.7 (±8.9). 6MWT: 257.2 (±169.8). LoA 8/35—range of ages 6–12 years. | |||
BM | n = 46; 5–73 years | MFM32: 79.72 (±12.23). NSAA: 21.9 (±8.4). 6MWT: 442.3 (±106.5). Range of ages at LoA (y): all ambulant. |
Authors, Year | Study Design | Type of CMD | Sample (Size, Sex, Age) | Assessment | Results |
---|---|---|---|---|---|
Fan et al., 2021 [10] | Case series Cross-sectional | LMNA-RD mutations | n = 84 | Clinical assessment | |
LMNA-related congenital muscular dystrophy | n = 41; 6.5 (1.5–16.0) years | Independent walking: 14 subjects. LoA: 7 patients (4.5 years; 3–6 years). Spinal deformities: 23 (56.1%). Contractures: 21 (51.2%). | |||
EDMD | n = 32; 10.6 (1.5–43) years | Independent walking: all subjects. Spinal deformities: 17 (53.1%). Contractures: 24 (75.0%). |
Authors, Year | Study Design | Type of CMD | Sample (Size, Sex, Age) | Assessment | Results |
---|---|---|---|---|---|
Zambon et al., 2020 [11] | Case Series Longitudinal | LAMA2-RD | n = 46; 25 F/21 M; The median age at first and last assessment was 2 years and 12.1 years, respectively (range 0.1–14.8 and 12.1–22.7 years) | Clinical assessment | Analysis of longitudinal data demonstrated a linear yearly rate of increase of 6.6° for right elbow flexion and 3.1° for knee flexion contractures. |
LAMA2-RD with complete laminin alpha 2 deficiency (CD) | n = 42 | Motor delay: 42/42 subjects. Independent sitting (in months): mean 13.6, median 12 (range 6–40). Independent walking: 1 subject. Walking with support ± KAFO: 5 subjects. Standing with support: 3 subjects. Scoliosis (median age of onset, years; range): 36 subjects (6.3; 1.9–14.8). Scoliosis surgery (median age at surgery, years; range): 9 subjects (11.6; 7.7–13.5). Contractures—Right elbow flexion contractures >30° were observed in 26/34 (76%) subjects at a median age of 6.7 years and >60° in 18/34 (5%) subjects at a median age of 8.7 years. Long finger flexor contractures were reported in 30/42 (71%) CD subjects. | |||
LAMA2-RD with partial laminin alpha 2 deficiency (PD) | n = 4 | Motor delay: 4/4 Independent sitting (in months): mean 10.3, median 10.1 (8.1–13.1). Independent walking: 2 subjects. Walking with support ± KAFO: 2 subjects. Standing with support: 0 Scoliosis: 1 subject. Scoliosis surgery: 0. Contractures—No subjects had right elbow contractures >30°. Long finger flexor contractures were reported in 2/4 (50%) subjects. | |||
Tan et al., 2021 [12] | Case Series Cross-sectional | LAMA2-CMD | n = 116; 44 F/72 M; Age of last follow-up: 6.4 (0.3–27.3) years | Clinical assessment | Head control: 76.3% (87/114)—(65 achieving after 4 months old) at a median age of 6.0 months (2.0–36.0 months). Independent sitting: 92.6% (100/107)—(51 achieving after 10 months old) at a median age of 11.0 months (6.0–36.0 months). Independent ambulation over 1.5 years old: 18.4% (18/98)—(14 achieving after 18 months old) at a median age of 27.0 months (18.0–84.0 months). Regression of motor function: 31.2% (34/109)—Head control (n = 7), rolling (n = 9), independent sitting (n = 17), and ambulation (n = 9) at median (range) ages of 9.8 (6.8–11.0), 6.0 (3.8–12.0), 8.0 (4.1–19.0), and 8.0 (1.7–11.0) years, respectively. Spinal deformity: 48% (54/111). Scoliosis occurred in 40.5% (45/111) at a median age of 6.0 years (0.5–12.0 years) and lordosis occurred in 8.1% (9/111) at a median age of 3.0 years (2.0–7.0 years). Contractures in 109 patients involved the knees at first, then the ankles, elbows, and hips in sequence. They progressed rapidly during ages 6–9 with rates of 82.6%, 73.9%, 69.6%, and 43.5%, respectively. |
Authors, Year | Study Design | Type of CMD | Sample (Size, Sex, Age) | Assessment | Results |
---|---|---|---|---|---|
Harada et al., 2022 [13] | Case series Cross-sectional | Fukuyama—FCMD | n = 13; 5 F/8 M; 1–17 years (mean 9.6) | The Upper Limb Function Measure of Muscular Dystrophy, GMFM, HFMS | The group of patients scoring ≤5 on the Upper Limb Function Measure of Muscular Dystrophy showed significantly lower HMFS (p = 0.018) and GMFM (p = 0.020) scores than patients scoring ≥6. |
Ishigaki et al., 2018 [14] | Case series Cross-sectional | Fukuyama—FCMD | n = 207; 103 F/104 M; 0–42 years (mean 6) | Clinical assessment | Phenotype—severe 79 (38%), typical 102 (49%), mild 22 (11%), unknown 4 (2%). Maximum motor development Severe—without head control: 37 subjects (18%); with head control: 42 subjects (20%). Typical—sitting without support: 49 subjects (24%); sliding on the buttocks: 53 subjects (26%). Mild—crawling: 6 subjects (3%); walking with support: 5 subjects (2%); walking independently: 5 subjects (2%); climbing stairs: 6 subjects (3%). Maximum motor development over age 5 years (N = 114) Severe—without head control: 8 (7.0%); with head control: 12 (11%). Typical—sitting without support: 23 (20%); sliding on the buttocks: 46 (40%). Mild—crawling: 14 (12%); walking with support: 3 (2.6%); walking independently: 4 (3.5%); climbing stairs: 4 (3.5%). |
Authors, Year | Study Design | Type of CMD | Sample (Size, Sex, Age) | Assessment | Results |
---|---|---|---|---|---|
Silwal et al., 2020 [15] | Case series Cross-sectional | SPN1-RM | n = 60; 31 F/29 M. Age range at last assessment: 2–58 years (median 15 years, mean 16.5 years) | Clinical assessment | Independent walking: 50/60 patients (83%) (median age at last evaluation: 14 years; range 2.5 to 36 years). Four patients were only able to take steps indoors by holding furniture or walking with assistance. LoA: 8/50. Scoliosis: 45/60 (75%). Median age at onset of scoliosis: 12.1 years. |
Case series Longitudinal | n = 25; 13 F/12 M. Age range at last assessment: 2.5–24 years (median 14 years) | HFMS | HFMS: estimated annual change was −0.55; of timed 10 m walk, 0.16 s; of timed rise from floor sitting, 0.86 s; and of timed rise from floor lying, 0.87 s.
Spinal stiffness: 21/25 (84%) at a median age of 10 years (range 2.0–15.6 years). | ||
Villar-Quiles et al., 2020 [16] | Case series Cross-sectional | SPN1-RM | n = 132; 50,8% F/49.2% M; 2–58 years (mean 18.2 ± 11.8) | Clinical assessment | Delayed motor milestones: 79/97 (81.4%). Poor head control: 56/97 (57.7%). Delayed gait acquisition: 31/97 (32%). Spinal stiffness: 86/98 (87,8%). Scoliosis: 87/101 (86,1%). Contractures: 64.4% of cases; Achilles tendon (57.4%), hip flexors (50%), elbows (35.2%), or knees (31.5%). |
Authors, Year | Study Design | Type of CMD | Sample (Size, Sex, Age) | Assessment | Results |
---|---|---|---|---|---|
Gedlinske et al., 2020 [17] | Case series Longitudinal | FKRP mutations | n = 30; 10 F/20 M. Age at last visit: 14.1 years (11.8–18.1) | Myometry, 6MWT, MHFMS, PEDI, PUL, TFTs. | Mean annual change in tests of motor function: Strength test: elbow flexion 0.80 (0.08 to 1.52); elbow extension 0.86 (0.31 to 1.42); shoulder abduction 0.47 (0.04 to 0.91); knee extension 0.78 (−0.84 to 2.40); knee flexion 1.23 (−0.19 to 2.66); hand grip 3.29 (1.23 to 5.35). 6MWT: −23.41 m (−40.50 to -6.31). MHFMS: −0.65 (−0.90 to −0.39). PEDI: −1.33 (−3.47 to 0.08). PUL: -0.55 (−1.36 to 0.25). Timed function tests: 10 m walking speed −0.16 m/s (−0.22 to −0.10); climbing stairs −0.13 steps/s (−0.18 to 0.07); arising from supine position −0.03 rise/s (−0.04 to −0.02). |
Homozygous C.826 > A | n = 6; 2 F/4 M. Age at last visit: 17.3 years (14.5–18.1) | Mean annual change in tests of motor function: Strength test: elbow flexion 2.77 (1.66 to 3.88); elbow extension 2.16 (1.32 to 3.00); shoulder abduction 1.24 (0.58 to 1.90); knee extension 5.27 (3.16 to 7.37); knee flexion 3.60 (1.52 to 5.69). 6MWT: 19.03 m (0.21 to 37.86). MHFMS: −0.11 (−0.57 to 0.35). PEDI: 2.79 (0.12 to 5.45). PUL: −0.21 (−4.34 to 3.92). Timed function tests: 10 m walking speed −0.03 m/s (−0.11 to 0.05); climbing stairs −0.01 steps/s (−0.09 to 0.07); arising from supine position −0.01 rise/s (−0.03 to 0.00). | |||
Other FKRP genotypes | n = 24; 8 F/16 M. Age at last visit: 13.7 years (11.2–17.9) | Mean annual change in tests of motor function: Strength test: elbow flexion 0.16 (−0.48 to 0.80); elbow extension 0.39 (−0.12 to 0.91); shoulder abduction 0.12 (−0.32 to 0.55); knee extension −0.69 (−1.92 to 0.53); knee flexion 0.28 (−1.12 to 1.67). 6MWT: −35.53 m (−47.50 to −23.66). MHFMS: −0.90 (−1.18 to −0.62). PEDI: −2.94 (−4.26 to −1.62). PUL: −0.84 (−2.48 to 0.79). Timed function tests: 10 m walking speed −0.20 m/s (−0.25 to −0.15); climbing stairs −0.17 steps/s (−0.22 to −0.12); arising from supine position −0.04 rise/s (−0.05 to −0.03). |
Authors, Year | Study Design | Type of CMD | Sample (Size, Sex, Age) | Assessment | Results |
---|---|---|---|---|---|
Jain et al., 2019 [18] | Case series Longitudinal | n = 47; 4–22 years | MFM32, quantitative strength testing, goniometry measurements. | Total MFM32 scores for COL6-RDs and LAMA2-RDs decreased at a rate of 4.01 and 2.60 points, respectively, each year (p < 0.01). All muscle groups, except for elbow flexors for individuals with COL6-RDs, decreased in strength between 1.70% (p < 0.05) and 2.55% (p < 0.01). Range-of-motion measurements decreased by 3.21° (p < 0.05) in the left elbow each year in individuals with LAMA2-RDs and 2.35° (p < 0.01) in right knee extension each year in individuals with COL6-RDs. | |
COL6-RD | n = 23 | ||||
LAMA2-RD | n = 24 | ||||
Vuillerot et al., 2014 [19] | Case series Cross-sectional | n = 42; 19 F/23 M; 5–19 years | NM-Score classification, MFM32, ACTIVLIM, Brooke scale, Jebsen, myometry. | MFM32: Standing position and transfers (D1): 24.0 (±26.6). Axial and proximal motor function (D2): 65.8 (±30.0). Distal (D3): 81.0 (±22.1). ACTIVLIM (D1): −1.13 (±2.9). Brooke Upper Extremity Scale: 1 (1–5) Jebsen: writing 45.6 (±49.3); cards 19.3 (±29.4); small objects 24.2 (±30.6); feeding 27.4 (±30.9); checkers 9.9 (±12.7); light objects 27.9 (±47.7); heavy objects 48.8±61.0. Myometry: hip abduction 18.6 (±19.4); knee extension 19.5 (±12.3); elbow extension 16.1 (±11). | |
LAMA2-RD | n = 18; 10 F/8 M; 9.3 ± 2.4 years | Ambulant: 10% The NM-Score classification: Standing position and transfers (D1): 3 (2–4); axial and proximal motor function (D2): 2 (1–4); distal (D3): 2 (0–3). | |||
COL6-RD | n = 20; 8 F/12 M; 12.7 ± 3.8 years | Ambulant: 55% The NM-Score classification: Standing position and transfers (D1): 2 (1–4); axial and proximal motor function (D2): 1.5 (0–4); distal (D3): 1.5 (0–2). | |||
Undiagnosed CMD | n = 4; 1 F/3 M; 8.5 ± 0.5 years | Ambulant: 100% The NM-Score classification: Standing position and transfers (D1); 1 (0–2); axial and proximal motor function (D2): 1 (0–1); distal (D3): 1.5 (0–3). | |||
Bendixen et al., 2017 [20] | Case series Cross-sectional | COL6-RD | n = 22; 9 F/13 M; 7–19 years | MFM32, Jebsen, QUEST, HHD, goniometry, MyoGrip, MyoPinch, and MoviPlate. | MFM32: mean 55.27 MFM32 distal (D3): mean 17.5 Jebsen: non-dominant: mean 161.83; dominant: mean 128.34. QUEST: dissociated movements: mean 92.00; grasp: mean 91.25; weight bearing: mean 65.04; protective extension: mean 57.51 Myometry: elbow flexion ND mean 29.33; elbow flexion D: 30.59; elbow extension ND: 18.85; elbow extension D: 18.73. Goniometry: elbow extension ND: −38.68; elbow extension D: −40.27. Myoset tools: MyoGrip: 5.95; MyoPinch: 2.55; MoviPlate: 56.95. |
LAMA2-RD | n = 20; 9 F/11 M; 5–15 years | MFM32: mean 37.15 MFM32 distal (D3): mean 13.1 Jebsen: non-dominant: mean 301.25; dominant: mean 261.10. QUEST: dissociated movements: mean 80.78; grasp: mean 86.10; weight bearing: mean 63.54; protective extension: mean 53.50 Myometry: elbow flexion ND mean 16,40; elbow flexion D: 15.52; elbow extension ND: 9.68; elbow extension D: 10.00. Goniometry: elbow extension ND: −54.00; elbow extension D: −55.60. Myoset tools: MyoGrip: 2.48; MyoPinch: 0.97; MoviPlate: 38.56. | |||
Vuillerot et al., 2014 [21] | Case series Cross-sectional | Total CMD | n = 191; 83 F/86 M; 14.8 ± 11.0 years | MFM32 | Ambulant 56.8% MFM32: total 60.5 ± 24,8. Standing position and transfers (D1): 37.2 ± 32.3; axial and proximal motor function (D2): 73.1 ± 27.1; distal (D3): 81.6 ± 20.4. |
LAMA2-RD | n = 43; 20 F/16 M; 12.2 ± 7.7 years. | Ambulant 48% MFM32: total 49.7 ± 28.3. Standing position and transfers (D1): 21.3 ± 29.9; axial and proximal motor function (D2): 62.1 ± 32.9; distal (D3): 71.1 ± 26.2. | |||
COL6-RD | n = 100; 48 F/46 M; 16.1 ± 12.0 years. | Ambulant 58.3% MFM32: total 64.6 ± 21.7. Standing position and transfers (D1): 41.4 ± 31.5; axial and proximal motor function (D2): 78.6 ± 23.1; distal (D3): 87.1 ± 15.2. | |||
Abnormal glycosylation of dystroglycan | n = 8; 4 F/4 M; 12.8 ± 6.6 years. | Ambulant 62.5% MFM32: total 65.6 ± 32.6. Standing position and transfers (D1): 54.2 ± 35.1; axial and proximal motor function (D2): 74 ± 34,6; distal (D3): 72.6 ± 30.4. | |||
Other CMD | n = 40; 16 F/22 M; 17.4 ± 11.3 years. | Ambulant 57.9% MFM32: total 61.8 ± 23.8. Standing position and transfers (D1): 39.6 ± 31.7; axial and proximal motor function (D2): 72.8 ± 26.2; distal (D3): 84.1 ± 17.6. | |||
Le Goff et al., 2021 [22] | Case series Longitudinal | COL6-RD | n = 23; 11 F/12 M; 9 (7.0–13.5) years. | MFM32 | Ambulant 70% MFM32: total 69 (59.5–77.0). Standing position and transfers (D1): 16 (7.0–24.0); axial and proximal motor function (D2): 32 (29.5–34.0); distal (D3): 20 (18.5–20.0). Longitudinal estimates of average change per year: −4.05 (in ambulant patients −3.38; in non-ambulant −5.28). Standing position and transfers (D1): −1.99; axial and proximal motor function (D2): −1.40; distal (D3): −0.74. |
LAMA2-RD | n = 21; 11 F/10 M; 7 (5.0–9.0) years. | Ambulant 19% MFM32: total 44 (27.0–52.0). Standing position and transfers (D1): 1 (1.0–4.0); axial and proximal motor function (D2): 29 (15.0–31.0); distal (D3): 14 (13.0–16.0). Longitudinal estimates of average change per year: −2.62 (in ambulant patients −2.02; in non-ambulant −2.69). Standing position and transfers (D1): −0.72; axial and proximal motor function (D2): -1.59; distal (D3): −0.27. | |||
Meilleur et al., 2015 [23] | Case series Cross-sectional | n = 22 (year 1); 11 F/11 M; 10.1 (5.8-21.2) years. n = 32 (year 2); 19 F/13 M; 9.7 (4.8-22.2) years. n = 33 (years 1 and 2) | MFM32, QUEST, Goniometry, Myometry, 6MWT, HFMS, NSAA, TFTs | Ambulant 36% (12/33) Year 1 MFM32 (21/22): total 58.9 (25.1–93.9). Standing position and transfers (D1): 31.8 (0–87.6).; axial and proximal motor function (D2): 71.5 (21.9–98.2); distal (D3): 84.8 (49.2–100.0). Myometry (21/22): elbow flexion R: 6.8 (1.6–11.9); elbow flexion L: 6.9 (1.6–10.9); elbow extension R: 4.1 (1.2–8.0); elbow extension L: 4.6 (1.0–10.1); knee flexion R: 11.7 (2.7–20.5); knee flexion L: 12.2 (1.4–22.9); knee extension R: 12.9 (2.0–25.4); knee extension L: 12.1 (1.6–30.6). Goniometry (21/22): elbow flexion R: 149.2 (130–161); elbow Flexion L: 148.4 (135–165); elbow extension R: −39.8 (−120 to 0); elbow extension L: −34.7 (−114 to 0); knee extension: −15.3 (−95 to 12); knee extension L: −15.6 (−92 to 10). 10 m walk/run (11/22): 8.6 (4.0–15.8) Year 2 MFM32 (29/32): total 58.21 (19.8–100). Standing position and transfers (D1): 31.17 (0–100).; axial and proximal motor function (D2): 72.69 (11.1–100); distal (D3): 83.40 (47.6–100). Myometry (27/32): elbow flexion R: 5.23 (0–23.8); elbow flexion L: 5.46 (0–19.9); elbow extension R: 3.13 (0–20.1); elbow extension L: 3.42 (0–18.6); knee flexion R: 9.42 (2.3–36.3); knee flexion L: 9.60 (2.3–30.4); knee extension R: 10.80 (2.0–43.6); knee extension L: 10.14 (0–46.9). Goniometry (21/22): elbow flexion R: 149.52 (140–160); elbow flexion L: 148.04 (138–160); elbow extension R: −38.09 (−115 to 10); elbow extension L: −37.00 (−120 to 8); knee extension R: −19.77 (−86 to 16); knee extension L: −19.73 (−105 to 10). Stand time: (11/32) 10 m walk/run (11/32): 7.70 (3.0–14.7); 6MWT (11/32): 338.27 (144–600); QUEST (29/32): 77.68 (28.24-100); NSAA (29/32): 7.52 (0–34); HFMS (29/32): 22.24 (0–40) The MFM32 total score showed a significant difference between non-ambulatory individuals with a median score of 44.8 (range: 19.8–80.2) and ambulatory individuals with a median score of 82.3 (range: 59.4–100.0). Likewise, the HFMS showed a significant difference with a non-ambulatory median score of 9.5 (range: 0.0–38.0) and an ambulatory median score of 36.0 (range: 22–40). | |
COL6-RD | n = 17 (year 2); 9 F/8 M; 12.6 (4.8–22.2) years | ||||
LAMA2-RD | n = 15 (year 2); 10 F/5 M; 7.9 (5.0–19.3) years |
MFM32 | GMFM | HFMS | PEDI | NSAA | TFTs | The NM-Score Classification | 6MWT | JEBSEN | PUL | Brooke | QUEST | The Upper Limb Function Measure of Muscular Dystrophy | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Natera-de et al., 2021 [9] | x | x | x | x | |||||||||
Harada et al., 2022 [13] | x | x | x | ||||||||||
Silwal et al., 2020 [15] | x | ||||||||||||
Gedlinske et al., 2020 [17] | x (modified) | x | x | x | x | ||||||||
Jain et al., 2019 [18] | x | ||||||||||||
Vuillerot et al., 2014 [19] | x | x | x | x | |||||||||
Bendixen et al., 2017 [20] | x | x | x | ||||||||||
Vuillerot et al., 2014 [21] | x | ||||||||||||
Le Goff et al., 2021 [22] | x | ||||||||||||
Meilleur et al., 2015 [23] | x | x | x | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallina, I.; D’Alessandro, R.; Brusa, C.; Panero, E.; Rolle, E.; Rossi, F.; Mongini, T.; Ricci, F.S. Motor Outcome Measures in Pediatric Patients with Congenital Muscular Dystrophies: A Scoping Review. Appl. Sci. 2023, 13, 1204. https://doi.org/10.3390/app13021204
Cavallina I, D’Alessandro R, Brusa C, Panero E, Rolle E, Rossi F, Mongini T, Ricci FS. Motor Outcome Measures in Pediatric Patients with Congenital Muscular Dystrophies: A Scoping Review. Applied Sciences. 2023; 13(2):1204. https://doi.org/10.3390/app13021204
Chicago/Turabian StyleCavallina, Ilaria, Rossella D’Alessandro, Chiara Brusa, Elisa Panero, Enrica Rolle, Francesca Rossi, Tiziana Mongini, and Federica Silvia Ricci. 2023. "Motor Outcome Measures in Pediatric Patients with Congenital Muscular Dystrophies: A Scoping Review" Applied Sciences 13, no. 2: 1204. https://doi.org/10.3390/app13021204
APA StyleCavallina, I., D’Alessandro, R., Brusa, C., Panero, E., Rolle, E., Rossi, F., Mongini, T., & Ricci, F. S. (2023). Motor Outcome Measures in Pediatric Patients with Congenital Muscular Dystrophies: A Scoping Review. Applied Sciences, 13(2), 1204. https://doi.org/10.3390/app13021204