Sunlight Bleaching of Subporphyrazine Dye Films
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Temperature Measurements
3.2. Film Morphology
3.3. Absorption Spectra
3.4. Photobleaching
3.4.1. On Bare Glass Substrate
3.4.2. On Transparent Conductive Oxides (Glass/ITO, PET/ITO, Glass/FTO)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lavarda, G.; Labella, J.; Victoria Martinez-Diaz, M.; Salome Rodriguez-Morgade, M.; Osuka, A.; Torres, T. Recent advances in subphthalocyanines and related subporphyrinoids. Chem. Soc. Rev. 2022, 51, 9482–9619. [Google Scholar] [CrossRef]
- Dowds, M.; Nielsen, M.B. Controlling the optical properties of boron subphthalocyanines and their analogues. Mol. Syst. Des. Eng. 2021, 6, 6–24. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Y.; Yang, K.; Chen, P.; Guo, X. Additive-free non-fullerene organic solar cells. ChemElectroChem. 2019, 6, 5547–5562. [Google Scholar] [CrossRef]
- Hildebrand, M.; Holst, D.; Bender, T.; Kronik, L. Electronic structure, bonding, and stability of boron subphthalocyanine halides and pseudohalides. Adv. Theory Simul. 2022, 5, 2100400. [Google Scholar] [CrossRef]
- Bregnhøj, M.; Prete, M.; Turkovic, V.; Petersen, A.U.; Nielsen, M.B.; Madsen, M.; Ogilby, P.R. Oxygen-dependent photophysics and photochemistry of prototypical compounds for organic photovoltaics: Inhibiting degradation initiated by singlet oxygen at a molecular level. Methods Appl. Fluoresc. 2011, 8, 014001. [Google Scholar] [CrossRef] [PubMed]
- Martynov, I.V.; Inasaridze, L.N.; Troshin, P.A. Resist or oxidize: Identifying molecular structure–photostability relationships for conjugated polymers used in organic solar cells. ChemSusChem. 2022, 15, e202101336. [Google Scholar] [CrossRef]
- Pakhomov, G.L.; Travkin, V.V.; Drozdov, M.N.; Sachkov, Y.I.; Yunin, P.A. Small-molecule heterojunctions: Stability to ageing under sunlight. Appl. Surf. Sci. 2022, 578, 152084. [Google Scholar] [CrossRef]
- Burlingame, Q.; Tong, X.; Hankett, J.; Slootsky, M.; Chen, Z.; Forrest, S.R. Photochemical origins of burn-in degradation in small molecular weight organic photovoltaic cells. Energy Environ. Sci. 2015, 8, 1005–1010. [Google Scholar] [CrossRef]
- Grant, T.M.; Josey, D.S.; Sampson, K.L.; Mudigonda, T.; Bender, T.P.; Lessard, B.H. Boron subphthalocyanines and silicon phthalocyanines for use as active materials in organic photovoltaics. Chem. Rec. 2019, 19, 1093–1112. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Ding, K.; Sheriff, H.K.M.; Ye, L.; Liu, H.; Li, C.-Z.; Ade, H.; Forrest, S.R. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nat. Commun. 2021, 12, 5419. [Google Scholar] [CrossRef]
- Travkin, V.V.; Koptyaev, A.I.; Pakhomov, G.L.; Volkov, P.V.; Semikov, D.A.; Luk’yanov, A.Y. Experimental study of heat transfer in thin-film perovskite-based structures using a low-coherent tandem interferometry. Tech. Phys. Lett. 2021, 23, 31. [Google Scholar] [CrossRef]
- Burlafinger, K.; Strohm, S.; Joisten, C.; Woiton, M.; Classen, A.; Hepp, J.; Heumüller, T.; Brabec, C.J.; Vetter, A. Accelerated lifetime testing of thin-film solar cells at high irradiances and controlled temperatures. Prog. Photovolt. Res. Appl 2022, 30, 518–527. [Google Scholar] [CrossRef]
- Travkin, V.; Koptyaev, A.; Hamdoush, M.; Pakhomov, G. Molecular optical filtering in perovskite solar cells. J Mater. Sci. Mater. Electron. 2022, 33, 7728–7737. [Google Scholar] [CrossRef]
- Pakhomov, G.L.; Travkin, V.V.; Khamdoush, M.; Zhabanov, Y.A.; Stuzhin, P.A. Thiadiazole fused subporphyrazines as acceptors in organic photovoltaic cells. Macroheterocycles 2017, 10, 548–551. [Google Scholar] [CrossRef] [Green Version]
- Skvortsov, I.A.; Kovkova, U.P.; Zhabanov, Y.A.; Khodov, I.A.; Somov, N.V.; Pakhomov, G.L.; Stuzhin, P.A. Subphthalocyanine-type dye with enhanced electron affinity: Effect of combined azasubstitution and peripheral chlorination. Dyes Pigm. 2021, 185, 108944. [Google Scholar] [CrossRef]
- Hamdoush, M.; Ivanova, S.S.; Pakhomov, G.L.; Stuzhin, P.A. Heterocyclic subphthalocyanine analogue—Boron(III) subporphyrazine with fused 1,2,5-thiadiazole rings. Macroheterocycles 2016, 9, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Afre, R.A.; Sharma, N.; Sharon, M.; Sharon, M. Transparent conducting oxide films for various applications: A review. Rev. Adv. Mater. Sci. 2018, 53, 79–89. [Google Scholar] [CrossRef]
- Hamdoush, M.; Nikitin, K.; Skvortsov, I.; Somov, N.; Zhabanov, Y.; Stuzhin, P.A. Influence of heteroatom substitution in benzene rings on structural features and spectral properties of subphthalocyanine dyes. Dyes Pigm. 2019, 170, 107584. [Google Scholar] [CrossRef]
- Volkov, P.; Semikov, D.; Goryunov, A.; Luk’yanov, A.; Tertyshnik, A.; Vopilkin, E.; Krayev, S. Miniature fiber-optic sensor based on Si microresonator for absolute temperature measurements. Sens. Actuator A Phys. 2020, 316, 112385. [Google Scholar] [CrossRef]
- Wang, J.; Yang, P.; Zhao, X.; Yang, L. Boron subphthalocyanine chloride crystalline thin film with a long range exciton diffusion length grown assisted by negative surface charges. Thin Solid Films 2017, 636, 527–531. [Google Scholar] [CrossRef]
- Wang, N.; Tong, X.; Burlingame, Q.; Yu, J.; Forrest, S.R. Photodegradation of small-molecule organic photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 125, 170–175. [Google Scholar] [CrossRef]
- Son, Y.H.; Kim, G.W.; Jeon, W.S.; Pode, R.; Kwon, J.H. Thermal annealing effect of subphthalocyanine (SubPc) donor material in organic solar cells. Mol. Cryst. Liq. Cryst. 2012, 565, 8–13. [Google Scholar] [CrossRef]
- Karan, S.; Mallik, B. Templating effects and optical characterization of copper (II) phthalocyanine nanocrystallites thin film: nanoparticles, nanoflowers, nanocabbages, and nanoribbons. J. Phys. Chem. C 2007, 111, 7352–7365. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, S. Inferring the molecular arrangements of boron subphthalocyanine chloride in thin film from a DFT/TDDFT study of molecular clusters and experimental electronic absorption spectra. Org. Electron. 2018, 62, 667–675. [Google Scholar] [CrossRef]
- Feng, S.; Wang, Y.-C.; Liang, W.Z.; Zhao, Y. Vibrationally resolved absorption spectra and exciton dynamics in zinc phthalocyanine aggregates: Effects of aggregation lengths and remote exciton transfer. J. Phys. Chem. A 2021, 125, 2932–2943. [Google Scholar] [CrossRef]
- Virdo, J.D.; Crandall, L.; Dang, J.D.; Fulford, M.V.; Lough, A.J.; Durfee, W.S.; Bender, T.P. The influence of strong and weak hydrogen bonds on the solid state arrangement of hydroxy-containing boron subphthalocyanines. CrystEngComm 2013, 15, 8578–8586. [Google Scholar] [CrossRef]
- Mack, J.; Stillman, M.J. Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and ZINDO calculations. Coord. Chem. Rev. 2001, 219–221, 993–1032. [Google Scholar] [CrossRef]
- Muckley, E.S.; Miller, N.; Jacobs, C.B.; Gredig, T.; Ivanov, I.N. Morphology-defined interaction of copper phthalocyanine with O2/H2O. J. Photon. Energy 2016, 6, 045501. [Google Scholar] [CrossRef]
- Jørgensen, M.; Norrman, K.; Krebs, F.C. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 2008, 92, 686–714. [Google Scholar] [CrossRef]
- Pakhomov, G.L.; Drozdov, M.N.; Travkin, V.V.; Lopatin, M.A.; Shashkin, V.I. Reversal of rectification in fullerene-based devices. Synth. Met. 2014, 195, 91–96. [Google Scholar] [CrossRef]
- Lincke, G. Molecular stacks as a common characteristic in the crystal lattice of organic pigment dyes A contribution to the ‘‘soluble–insoluble’’ dichotomy of dyes and pigments from the technological point of view. Dyes Pigm. 2003, 59, 1–24. [Google Scholar] [CrossRef]
- Szkutnik, P.D.; Roussel, H.; Lahootun, V.; Mescot, X.; Weiss, F.; Jiménez, C. Study of the functional properties of ITO grown by metalorganic chemical vapor deposition from different indium and tin precursors. J. Alloys Compd. 2014, 603, 268–273. [Google Scholar] [CrossRef]
- Donzello, M.P.; Agostinetto, R.; Ivanova, S.S.; Fujimori, M.; Suzuki, Y.; Yoshikawa, H.; Shen, J.; Awaga, K.; Ercolani, C.; Kadish, K.M.; et al. Tetrakis(thiadiazole)porphyrazines. 4. Direct template synthesis, structure, general physicochemical behavior, and redox properties of AlIII, GaIII, and InIII complexes. Inorg. Chem. 2005, 44, 8539–8551. [Google Scholar] [CrossRef] [PubMed]
- Guilleme, J.; González-Rodríguez, D.; Torres, T. Triflate-subphthalocyanines: Versatile, reactive intermediates for axial functionalization at the boron atom. Angew. Chem. Int. Ed. 2011, 50, 3506–3509. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Andersson, G.; Lewis, D.A. Role of humidity on indium and tin migration in organic photovoltaic devices. Phys. Chem. Chem. Phys. 2011, 13, 4381–4387. [Google Scholar] [CrossRef]
Sample | Pristine | Direct Sunlight, Ar | Filtered Sunlight, Ar | Direct Sunlight, Air | |
---|---|---|---|---|---|
Scanning area | 0.9 × 0.9 cm2 (WLI) | 5.8 | 2.0 | 4.4 | 4.9 |
0.3 × 0.3 cm2 (WLI) | 5.4 | 1.5 | 3.9 | 4.6 | |
0.1 × 0.1 cm2 (WLI) | 5.4 | 0.8 | 3.8 | 4.3 | |
2.25 × 2.25 µm2 (AFM) | 17.7 | 11.8 | 19.4 | 17.5 |
Pristine | Direct Sunlight in Air | Filtered Sunlight in Air | Direct Sunlight in Ar | Filtered Sunlight in Ar | Direct Sunlight in Synth. Air | |
---|---|---|---|---|---|---|
λQmax, nm | 553 | 553 | 553 | 553 | 554 | 555 |
DQpristine/DQirradiated | - | 1.6 | 1.2 | 2.2 | 1.2 | 1.4 |
λQmax, nm | DQpristine/DQirradiated | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pristine | Irradiated in Air | in Argon | in Synth.Air | ||||||
Dye | glass | ITO | Glass | ITO | glass | ITO | Glass | ITO | ITO |
SubPzS3H0 | 553 | 548 | 553 | 546 | 1.6 | 10.2 | 2.2 | 1.4 | 10.1 |
SubPzS2H4 | 581 | 570 | 569 | 565 | 2.1 | 1.2 | 2.0 | 1.4 | 1.2 |
SubPcS0H12 | 590 | 594 | 596 | 596 | 3 | 2.1 | 1.7 | 1.4 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travkin, V.V.; Semikov, D.A.; Stuzhin, P.A.; Skvortsov, I.A.; Pakhomov, G.L. Sunlight Bleaching of Subporphyrazine Dye Films. Appl. Sci. 2023, 13, 1211. https://doi.org/10.3390/app13021211
Travkin VV, Semikov DA, Stuzhin PA, Skvortsov IA, Pakhomov GL. Sunlight Bleaching of Subporphyrazine Dye Films. Applied Sciences. 2023; 13(2):1211. https://doi.org/10.3390/app13021211
Chicago/Turabian StyleTravkin, Vlad V., Danila A. Semikov, Pavel A. Stuzhin, Ivan A. Skvortsov, and Georgy L. Pakhomov. 2023. "Sunlight Bleaching of Subporphyrazine Dye Films" Applied Sciences 13, no. 2: 1211. https://doi.org/10.3390/app13021211
APA StyleTravkin, V. V., Semikov, D. A., Stuzhin, P. A., Skvortsov, I. A., & Pakhomov, G. L. (2023). Sunlight Bleaching of Subporphyrazine Dye Films. Applied Sciences, 13(2), 1211. https://doi.org/10.3390/app13021211