The Effect of Oxygen Tension on the Differentiation of Outgrowth Cells from Embryoid Bodies Produced by Mouse Induced Pluripotent Stem Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Experimental Design
2.3. Observation of EB Formation
2.4. Quantitative Real-Time PCR Analysis
2.5. Immunocytofluorescence (ICF) Staining
2.6. Evaluation of the Intensity of Fluorescence in ICF Images
2.7. Statistical Analysis
3. Results
3.1. Evaluation of EBs
3.2. qRT-PCR Analysis of Gene Expression Patterns
3.3. ICF Staining for Collagen Type 1 and Runx2 Proteins
3.4. Intensity of Fluorescence in ICF Staining Images
3.5. Evaluation of OGCs
3.5.1. qRT-PCR Analysis of mRNA Expression Levels
3.5.2. ICF Staining of Collagen Type 1 and Runx 2 Proteins
3.5.3. Intensity of Fluorescence in ICF Staining Images of OGCs
4. Discussion
4.1. Decrease of Nanog Expression and Increase of EB Size Depend on Oxygen Tension
4.2. Effects of Oxygen Tension on the Expression of Collagen Type 1 and Runx2 by iPS Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Al Wahabi, A.; Ser Od, T.; Inoue, K.; Nakajima, K.; Matsuzaka, K.; Inoue, T. Topography Enhances Runx2 Expression in Outgrowing Cells from IPS Cell-Derived Embryoid Bodies. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2288–2296. [Google Scholar] [CrossRef]
- James, A.W. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. Scientifica 2013, 2013, 684736. [Google Scholar] [CrossRef]
- Liu, Y.; Goldberg, A.J.; Dennis, J.E.; Gronowicz, G.A.; Kuhn, L.T. One-Step Derivation of Mesenchymal Stem Cell (MSC)-like Cells from Human Pluripotent Stem Cells on a Fibrillar Collagen Coating. PLoS ONE 2012, 7, e33225. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.P.; Stein, J.L.; Stein, G.S.; Lian, J.B. The Influence of Type I Collagen on the Development and Maintenance of the Osteoblast Phenotype in Primary and Passaged Rat Calvarial Osteoblasts: Modification of Expression of Genes Supporting Cell Growth, Adhesion, and Extracellular Matrix Mineralization. Exp. Cell Res. 1995, 216, 35–45. [Google Scholar] [CrossRef]
- Egusa, H.; Kayashima, H.; Miura, J.; Uraguchi, S.; Wang, F.F.; Okawa, H.; Sasaki, J.I.; Saeki, M.; Matsumoto, T.; Yatani, H. Comparative Analysis of Mouse-Induced Pluripotent Stem Cells and Mesenchymal Stem Cells During Osteogenic Differentiation In Vitro. Stem Cells Dev. 2014, 23, 2156–2169. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Niwa, H.; Iwase, K.; Takiguchi, M.; Mori, M.; Abé, S.I.; Abe, K.; Yamamura, K.I. Endoderm-Specific Gene Expression in Embryonic Stem Cells Differentiated to Embryoid Bodies. Exp. Cell Res. 1996, 229, 27–34. [Google Scholar] [CrossRef]
- Magyar, J.P.; Nemir, M.; Ehler, E.; Suter, N.; Perriard, J.C.; Eppenberger, H.M. Mass Production of Embryoid Bodies in Microbeads. Ann. N. Y. Acad. Sci. 2001, 944, 135–143. [Google Scholar] [CrossRef]
- Conley, B.J.; Young, J.C.; Trounson, A.O.; Mollard, R. Derivation, Propagation and Differentiation of Human Embryonic Stem Cells. Int. J. Biochem. Cell Biol. 2004, 36, 555–567. [Google Scholar] [CrossRef]
- Kurosawa, H. Methods for Inducing Embryoid Body Formation: In Vitro Differentiation System of Embryonic Stem Cells. J. Biosci. Bioeng. 2007, 103, 389–398. [Google Scholar] [CrossRef]
- Nakatsuji, N.; Suemori, H. ES IPS Cell Experiments Standard Protocols; Yodosha: Tokyo, Japan, 2014; pp. 246–257. ISBN 978-4-7581-0189-9. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Park, B.H.; Kim, H.K.; Park, T.S.; Baek, H.S. Hypoxia Decreases Runx2/Cbfa1 Expression in Human Osteoblast-like Cells. Mol. Cell. Endocrinol. 2002, 192, 197–203. [Google Scholar] [CrossRef]
- Tuncay, O.C.; Ho, D.; Barker, M.K. Oxygen Tension Regulates Osteoblast Function. Am. J. Orthod. Dentofac. Orthop. 1994, 105, 457–463. [Google Scholar] [CrossRef]
- Bertout, J.A.; Patel, S.A.; Simon, M.C. Hypoxia and Metabolism Series—Timeline the Impact of O-2 Availability on Human Cancer. Nat. Rev. Cancer 2008, 8, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Bassett, C.A.L. Current Concepts of Bone Formation. J. Bone Jt. Surg. 1962, 44, 1217–1244. [Google Scholar] [CrossRef]
- Shaw, J.L.; Bassett, C.A.L. The Effects of Varying Oxygen Concentrations on Osteogenesis and Embryonic Cartilage in Vitro. J. Bone Jt. Surg. 1967, 49, 73–80. [Google Scholar] [CrossRef]
- Wright, J.; Hyperbaric Oxygen Therapy for Wound Healing. World Wide Wounds 2001. Available online: http://www.worldwidewounds.com/2001/april/Wright/HyperbaricOxygen.html. (accessed on 6 November 2022).
- Corcoran, T.; Ting, S.; Mas, E.; Phillips, M.; O’Loughlin, E.; Barden, A.; Mori, T.A. Hyperbaric Oxygen Therapy Is Not Associated with Oxidative Stress Assessed Using Plasma F-2-Isoprostanes and Isofurans. Prostaglandins Leukot. Essent. Fat. Acids 2017, 127, 16–19. [Google Scholar] [CrossRef]
- Kemmler, J.; Bindl, R.; McCook, O.; Wagner, F.; Groger, M.; Wagner, K.; Scheuerle, A.; Radermacher, P.; Ignatius, A. Exposure to 100% Oxygen Abolishes the Impairment of Fracture Healing after Thoracic Trauma. PLoS ONE 2015, 10, e0131194. [Google Scholar] [CrossRef] [Green Version]
- Gassmann, M.; Fandrey, J.; Bichet, S.; Wartenberg, M.; Marti, H.H.; Bauer, C.; Wenger, R.H.; Acker, H. Oxygen Supply and Oxygen-Dependent Gene Expression in Differentiating Embryonic Stem Cells. Proc. Natl. Acad. Sci. USA 1996, 93, 2867–2872. [Google Scholar] [CrossRef] [Green Version]
- Iida, K.; Takeda-Kawaguchi, T.; Hada, M.; Yuriguchi, M.; Aoki, H.; Tamaoki, N.; Hatakeyama, D.; Kunisada, T.; Shibata, T.; Tezuka, K. Hypoxia-Enhanced Derivation of IPSCs from Human Dental Pulp Cells. J. Dent. Res. 2013, 92, 905–910. [Google Scholar] [CrossRef]
- Kurosawa, H.; Kimura, M.; Noda, T.; Amano, Y. Effect of Oxygen on in Vitro Differentiation of Mouse Embryonic Stem Cells. J. Biosci. Bioeng. 2006, 101, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Nagata, S.; Okitsu, T.; Takeuchi, S. Cell Fiber-Based Three-Dimensional Culture System for Highly Efficient Expansion of Human Induced Pluripotent Stem Cells. Sci. Rep. 2017, 7, 2850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werle, S.B.; Chagastelles, P.; Pranke, P.; Casagrande, L. The Effects of Hypoxia on in Vitro Culture of Dental-Derived Stem Cells. Arch. Oral Biol. 2016, 68, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.H.; Fan, W.; Xiao, Y. The Effect of Hypoxia on the Stemness and Differentiation Capacity of PDLC and DPC. Biomed. Res. Int. 2014, 2014, 890675. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, Y.; Takahashi, K.; Okita, K.; Ichisaka, T.; Yamanaka, S. Hypoxia Enhances the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell 2009, 5, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Hakim, F.; Kaitsuka, T.; Raeed, J.M.; Wei, F.Y.; Shiraki, N.; Akagi, T.; Yokota, T.; Kume, S.; Tomizawa, K. High Oxygen Condition Facilitates the Differentiation of Mouse and Human Pluripotent Stem Cells into Pancreatic Progenitors and Insulin-Producing Cells. J. Biol. Chem. 2014, 289, 9623–9638. [Google Scholar] [CrossRef] [Green Version]
- An, S.Y.; Heo, J.S. Low Oxygen Tension Modulates the Osteogenic Differentiation of Mouse Embryonic Stem Cells. Tissue Cell 2018, 52, 9–16. [Google Scholar] [CrossRef]
- Sugimoto, K.; Matsuura, T.; Nakazono, A.; Igawa, K.; Yamada, S.; Hayashi, Y. Effects of Hypoxia Inducible Factors on Pluripotency in Human IPS Cells. Microsc. Res. Tech. 2018, 81, 749–754. [Google Scholar] [CrossRef]
- Medley, T.L.; Furtado, M.; Lam, N.T.; Idrizi, R.; Williams, D.; Verma, P.J.; Costa, M.; Kaye, D.M. Effect of Oxygen on Cardiac Differentiation in Mouse IPS Cells: Role of Hypoxia Inducible Factor-1 and Wnt/Beta-Catenin Signaling. PLoS ONE 2013, 8, e80280. [Google Scholar] [CrossRef] [Green Version]
- Ezashi, T.; Das, P.; Roberts, R.M. Low O-2 Tensions and the Prevention of Differentiation of HES Cells. Proc. Natl. Acad. Sci. USA 2005, 102, 4783–4788. [Google Scholar] [CrossRef]
- Aranha, A.M.F.; Zhang, Z.C.; Neiva, K.G.; Costa, C.A.S.; Hebling, J.; Nor, J.E. Hypoxia Enhances the Angiogenic Potential of Human Dental Pulp Cells. J. Endod. 2010, 36, 1633–1637. [Google Scholar] [CrossRef] [PubMed]
- Robins, J.C.; Akeno, N.; Mukherjee, A.; Dalal, R.R.; Aronow, B.J.; Koopman, P.; Clemens, T.L. Hypoxia Induces Chondrocyte-Specific Gene Expression in Mesenchymal Cells in Association with Transcriptional Activation of Sox9. Bone 2005, 37, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Compernolle, V.; Brusselmans, K.; Franco, D.; Moorman, A.; Dewerchin, M.; Collen, D.; Carmeliet, P. Cardia Bifida, Defective Heart Development and Abnormal Neural Crest Migration in Embryos Lacking Hypoxia-Inducible Factor-1 Alpha. Cardiovasc. Res. 2003, 60, 569–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelman, D.M.; Gertsenstein, M.; Nagy, A.; Simon, M.C.; Maltepe, E. Placental Cell Fates Are Regulated in Vivo by HIF-Mediated Hypoxia Responses. Genes Dev. 2000, 14, 3191–3203. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, J.; Zhou, W.Y.; Xing, Y.L.; Sperber, H.; Ferreccio, A.; Agoston, Z.; Kuppusamy, K.T.; Moon, R.T.; Ruohola-Baker, H. Hypoxia-Inducible Factors Have Distinct and Stage-Specific Roles during Reprogramming of Human Cells to Pluripotency. Cell Stem Cell 2014, 14, 592–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperber, H.; Mathieu, J.; Wang, Y.L.; Ferreccio, A.; Hesson, J.; Xu, Z.J.; Fischer, K.A.; Devi, A.; Detraux, D.; Gu, H.W.; et al. The Metabolome Regulates the Epigenetic Landscape during Naive-to-Primed Human Embryonic Stem Cell Transition. Nat. Cell Biol. 2015, 17, 1523–1535. [Google Scholar] [CrossRef]
- Gu, W.; Gaeta, X.; Sahakyan, A.; Chan, A.B.; Hong, C.S.; Kim, R.; Braas, D.; Plath, K.; Lowry, W.E.; Christofk, H.R. Glycolytic Metabolism Plays a Functional Role in Regulating Human Pluripotent Stem Cell State. Cell Stem Cell 2016, 19, 476–490. [Google Scholar] [CrossRef] [Green Version]
- Rossant, J. Mouse and Human Blastocyst-Derived Stem Cells: Vive Les Differences. Development 2015, 142, 9–12. [Google Scholar] [CrossRef]
Primer | Gene Name | Assay ID |
---|---|---|
Collagen Type I | Collagen type I alpha 1 | Mm00801666_g1 |
Runx2 | Runt-related transcription factor 2 | Mm00501580_m1 |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase | Mm99999915_g1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, H.; Inoue, T.; Murakami, S.; Kaneko, H. The Effect of Oxygen Tension on the Differentiation of Outgrowth Cells from Embryoid Bodies Produced by Mouse Induced Pluripotent Stem Cells. Appl. Sci. 2023, 13, 1215. https://doi.org/10.3390/app13021215
Yano H, Inoue T, Murakami S, Kaneko H. The Effect of Oxygen Tension on the Differentiation of Outgrowth Cells from Embryoid Bodies Produced by Mouse Induced Pluripotent Stem Cells. Applied Sciences. 2023; 13(2):1215. https://doi.org/10.3390/app13021215
Chicago/Turabian StyleYano, Hisashi, Takashi Inoue, Satoshi Murakami, and Hiroyuki Kaneko. 2023. "The Effect of Oxygen Tension on the Differentiation of Outgrowth Cells from Embryoid Bodies Produced by Mouse Induced Pluripotent Stem Cells" Applied Sciences 13, no. 2: 1215. https://doi.org/10.3390/app13021215
APA StyleYano, H., Inoue, T., Murakami, S., & Kaneko, H. (2023). The Effect of Oxygen Tension on the Differentiation of Outgrowth Cells from Embryoid Bodies Produced by Mouse Induced Pluripotent Stem Cells. Applied Sciences, 13(2), 1215. https://doi.org/10.3390/app13021215