Air Quality Integrated Assessment: Environmental Impacts, Risks and Human Health Hazards
Abstract
:1. State of the Art
2. Materials and Methods
2.1. Site Boundaries and Brief Description
2.2. Experimental Data
3. Air Quality Assessment Methodology
3.1. Air Pollution Index
- –
- Ci: the determined concentration of a pollutant in the air, in this case, the annual average concentration (mg/Nm3);
- –
- MACi: the maximum allowed concentration of a pollutant (mg/Nm3).
- –
- PI1, PI2, PI3: air pollution indices for each pollutant, with the calculations conducted according to the formula presented above;
- –
- N: number of pollutants analyzed.
3.2. Human Health Risk Index
- –
- ADDinh : average daily inhaled dose;
- –
- Ci: air concentration of a pollutant—in our case, we used the value of the aggregate index for each individual pollutant, after converting all units of measure into mg/m3, in order to have the same measurement unit, according to the formula;
- –
- InhR : volume of inhaled air;
- –
- ET : exposure time;
- –
- EF : frequency of exposure;
- –
- ED (years): duration of exposure;
- –
- BW (kg): body weight;
- –
- AT (days): ED × 365 (days)—average exposure time.
- –
- HQ: hazard coefficient;
- –
- ADDinh: daily dose that can be inhaled;
- –
- –
- If HI < 1, there are no health risks;
- –
- If HI > 1, there are possible health risks, depending on the value of the index—the higher it is, the higher the risk [39].
4. Results and Discussion
4.1. Air Pollution Index
4.2. Human Health Risk Index
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mariel, P.; Khan, M.A.; Meyerhoff, J. Valuing individuals’ preferences for air quality improvement: Evidence from a discrete choice experiment in South Delhi. Econ. Anal. 2022, 74, 432–447. [Google Scholar] [CrossRef]
- European Environmental Agency. Available online: https://www.eea.europa.eu/ro/themes/air (accessed on 20 May 2022).
- European Commission. Available online: https://ec.europa.eu/environment/air/quality/existing_leg.htm (accessed on 20 May 2022).
- European Environmental Agency. Available online: https://www.eea.europa.eu/policy-documents/a-clean-air-programme-for-europe (accessed on 20 May 2022).
- European Commission. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_ro (accessed on 20 May 2022).
- Ministry of Environment, Water and Forests. Available online: http://www.mmediu.ro/categorie/calitatea-aerului/56 (accessed on 20 May 2022).
- United States Environmental Protection Agency. Available online: https://www.epa.gov/laws-regulations/summary-clean-air-act (accessed on 20 May 2022).
- Institute for Advanced Sustainability Studies. Available online: https://www.iass-potsdam.de/en/blog/2021/01/world-difference-comparing-us-and-eu-air-quality-legislation (accessed on 20 April 2022).
- Nguyen, V.D.; Nguyen, P.L.; Do, P.T. Constant approximation for opportunistic sensing in mobile air quality monitoring system. Comput. Netw. 2022, 202, 108646. [Google Scholar] [CrossRef]
- Kim, J.; Go, T.; Lee, S.J. Accurate real-time monitoring of high particulate matter concentration based on holographic speckles and deep learning. J. Hazard. Mater. 2021, 409, 124637. [Google Scholar] [CrossRef]
- Giuliano, G.; Lu, Y.; Habre, R. Estimating hourly PM2.5 concentrations at the neighborhood scale using a low-cost air sensor network: A Los Angeles case study. Environ. Res. 2021, 195, 110653. [Google Scholar]
- Kortoci, P.; Motlagh, N.H.; Zaidan, M.A.; Fung, P.L.; Varjonen, S.; Hargrave, A.R.; Niemi, J.V.; Nurmi, P.; Hussein, T.; Petaja, T.; et al. Air pollution exposure monitoring using portable low-cost air quality sensors. Smart Health 2022, 23, 100241. [Google Scholar] [CrossRef]
- Baos, J.A.M.; Benitez, L.R.; Rodenas, R.G.; Liu, J. IoT based monitoring of air quality and traffic using regression analysis. Appl. Soft Comput. 2022, 115, 108282. [Google Scholar] [CrossRef]
- Herrero, J.R.; Marrero, C.O.; Fan, W.T. Modeling atmospheric data and identifying dynamics. Temporal data-driven modeling of air pollutants. J. Clean. Prod. 2022, 333, 129863. [Google Scholar] [CrossRef]
- Platikanov, S.; Terrado, M.; Pay, M.T.; Soret, A.; Tauler, R. Understanding temporal and spatial changes of O3 or NO2 concentrations combining multivariate data analysis methods and air quality transport models. Sci. Total Environ. 2022, 806, 150923. [Google Scholar] [CrossRef]
- Baklanov, A.; Zhang, Y. Advances in air quality modeling and forecasting. Glob. Transit. 2020, 2, 261–270. [Google Scholar] [CrossRef]
- Li, X.; Hussain, S.A.; Sobri, S.; Md Said, M.S. Overviewing the air quality models on air pollution in Sichuan Basin, China. Chemosphere 2021, 271, 129502. [Google Scholar] [CrossRef]
- Pascu, C. Procedure for Obtaining Filtering Materials and Filtering Elements for Air Saline Purification. BOPI no. 2/2017. WO2013172727A2, 6 April 2012. [Google Scholar]
- Ighigeanu, D.P.; Martin, D.; Calinescu, I.; Matei, C.; Manaila, E.; Craciun, G. Procedure and Installation for Increasing the Conversion Performance of Gas Pollutants in Industrial Waste Gases. BOPI no. 10/2017. RO126841/2017, 18 May 2016. [Google Scholar]
- Ighigeanu, D.P.; Martin, D.; Calinescu, I.; Matei, C. Procedure for Removal of SO2 and NOx from Industrial Combustion Gases by Accelerated Electron Treatment. BOPI no. 6/2018. RO 129069 B1, 29 June 2018. [Google Scholar]
- Dulama, C.N.; Toma, A.; Paunoiu, C. Method and Device for Determining Tritium Concentration from the Air. BOPI no. 10/2017. RO 128555 B1, 28 August 2014. [Google Scholar]
- Pop, A.; Puscas, I.; Negrea, P.; Stoian, A.V.; Filipescu, L. Process for Wet Desulfuring of Acid Waste Gases with the Valuation of the Resulting Suspension. BOPI no. 6/2017. RO 130748 B1, 30 June 2017. [Google Scholar]
- Wang, J.; Wang, L. Particulate Matter Monitoring. U.S. Patent 10914716 B2, 9 February 2021. [Google Scholar]
- Tanielian, M.H. Airborne System and Method for Removing Pollutants from a Volume of Air. U.S. Patent 9555882B2, 31 January 2017. [Google Scholar]
- Deutsch, E.R.; Huehnerhoff, J.W.; Booth, J. Sensor Fusion for Fire Detection and Air Quality Monitoring. U.S. Patent 11340097, 24 May 2022. [Google Scholar]
- Scott, A.A.; Azdoud, Y.; Kelley, K.D. Air Quality Monitoring System and Enhanced Spectrophotometric Chemical Sensor. Justia Patent 20200149965, 29 December 2020. [Google Scholar]
- Gallagher-Gruber, J.; Szijarto, G. System and Method for Performing Automated Analysis of Air Samples. U.S. Patent 11079585, 11 September 2018. [Google Scholar]
- Grecu, S.P.; Mihailescu, B.C.; Sluser, B.M. Statistical approach of environmental quality management and political decision-making at local level: Case study Iasi city, Romania. Environ. Eng. Manag. J. 2020, 19, 517–530. [Google Scholar] [CrossRef]
- Sluser, B.; Plavan, O.; Teodosiu, C. Environmental Impact and Risk Assessment. In Assessing Progress Towards Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 189–217. [Google Scholar]
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent insights into particulate matter (PM2.5)-Mediated toxicity in humans: An overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef] [PubMed]
- Tashakor, M.; Behrooz, R.D.; Asvad, S.R.; Kaskaoutis, D.G. Tracing of Heavy Metals Embedded in Indoor Dust Particles from the Industrial City of Asaluyeh, South of Iran. Int. J. Environ. Res. Public Health 2022, 19, 7905. [Google Scholar] [CrossRef] [PubMed]
- Sgobba, F.; Sampaolo, A.; Patimisco, P.; Giglio, M.; Menduni, G.; Ranieri, A.C.; Hoelzl, C.; Rossmadl, H.; Brehm, C.; Mackowiak, V.; et al. Compact and portable quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide environmental monitoring in urban areas. Photoacoustics 2022, 25, 100318. [Google Scholar] [CrossRef] [PubMed]
- Statista. Available online: https://www.statista.com/ (accessed on 20 April 2022).
- National Air Quality Monitoring Network. Available online: https://www.calitateaer.ro/public/home-page/?__locale=ro (accessed on 20 March 2022).
- Neamtu, R.; Sluser, B.; Plavan, O.; Teodosiu, C. Environmental Monitoring and Impact Assessment of Prut River Cross-Border Pollution. Environ. Monit. Assess. 2021, 193, 340. [Google Scholar] [CrossRef]
- Wu, W.; Wu, P.; Yang, F.; Sun, D.I.; Zhang, D.X.; Zhou, Y.K. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci. Total Environ. 2018, 630, 53–61. [Google Scholar] [CrossRef]
- Office of Emergency and Remedial Response, U.S. Risk Assessment Guidance for Superfund. In Volume I: Human Health Evaluation Manual (Part A); Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- United States Environmental Protection Agency. Available online: https://www.epa.gov/expobox/exposure-assessment-tools-routes-inhalation (accessed on 20 March 2022).
- Manmohit, S.; Thind, S.P.; John, S. Health risk assessment of the workers exposed to the heavy metals in e-waste recycling sites of Chandigarh and Ludhiana, Punjab, India. Chemosphere 2018, 203, 426–433. [Google Scholar]
- United States Environmental Protection Agency. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm (accessed on 20 March 2022).
- The Risk Assessment Information System. Available online: https://rais.ornl.gov/tools/tox_profiles.html (accessed on 20 March 2022).
- Rauf, A.U.; Mallongi, A.; Daud, A.; Hatta, M.; Amiruddin, R.; Stang, S.; Wahyu, A.; Astuti, R.D.P. Spatial distribution and ecological risk of potentially toxic elements in Maros Regency, Indonesia. Carpathian J. Earth Environ. Sci. 2022, 17, 93–100. [Google Scholar] [CrossRef]
- Office of Superfund Remediation and Technology Innovation, Environmental Protection Agency, Washington, D.C. Risk Assessment Guidance for Superfund; Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). US EPA; 2011. Available online: https://www.epa.gov/fera/risk-assessment-and-modeling-air-toxics-risk-assessment-reference-library (accessed on 20 March 2022).
- Huang, C.; Zhang, L.; Meng, J.; Yu, Y.; Qi, J.; Shen, P.; Li, X.; Ding, P.; Chen, M.; Hu, G. Characteristics, source apportionment and health risk assessment of heavy metals in urban road dust of the Pearl River Delta, South China. Ecotoxicol. Environ. Saf. 2022, 236, 113490. [Google Scholar] [CrossRef]
- Liang, Q.; Tian, K.; Li, L.; He, Y.; Zhao, T.; Liu, B.; Wu, Q.; Huang, B.; Zhao, L.; Teng, Y. Ecological and human health risk assessment of heavy metals based on their source apportionment in cropland soils around an e-waste dismantling site, Southeast China. Ecotoxicol. Environ. Saf. 2022, 242, 113929. [Google Scholar] [CrossRef]
- Nargis, A.; Habib, A.; Islam, M.N.; Chen, K.; Sarker, M.S.I.; Al-Razee, A.; Liu, W.; Liu, G.; Cai, M. Source identification, contamination status and health risk assessment of heavy metals from road dusts in Dhaka, Bangladesh. J. Environ. Sci. 2022, 121, 159–174. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Committee; More, S.J.; Bampidis, V.; Benford, D.; Bennekou, H.S.; Bragard, C.; Halldorsson, T.I.; Hernandez-Jerez, A.F.; Koutsoumanis, K.; Naegeli, H.; et al. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 2019, 17, e05634. [Google Scholar] [PubMed]
- Pabroa, P.C.B.; Racho, J.M.D.; Jagonoy, A.M.; Valdez, J.D.G.; Bautista VII, A.T.; Yee, J.R.; Pineda, R.; Manlapaz, J.; Atanacio, A.J.; Coronel, I.C.V.; et al. Characterization, source apportionment and associated health risk assessment of respirable air particulates in Metro Manila, Philippines. Atmos. Pollut. Res. 2022, 13, 101379. [Google Scholar] [CrossRef]
- Aguilera, A.; Bautista, F.; Gutiérrez-Ruiz, M.; Ceniceros-Goméz, A.E.; Cejudo, R.; Goguitchaichvili, A. Heavy metal pollution of street dust in the largest city of Mexico, sources and health risk assessment. Environ. Monit. Assess. 2021, 193, 193. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.C.; Wang, J.H.; Chang, W.H.; Chen, C.Y. Metal concentration, source, and health risk assessment of PM2.5 in children’s bedrooms: Rural versus urban areas. Atmos. Environ. 2021, 264, 118701. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Wang, D.; Tao, Y.; Qiao, F.; Lei, L.; Huang, J.; Ting, Z. Characteristics, source apportionment and health risk assessment of heavy metals exposure via household dust from six cities in China. Sci. Total Environ. 2021, 762, 143126. [Google Scholar] [CrossRef]
- Müller, L.; Ramires, P.F.; Santos, M.; Coronas, M.V.; Lima, J.V.; Dias, D.; Muccillo-Baisch, A.L.; Baisch, P.R.M.; Silva Júnior, F.M.R. Human health risk assessment of arsenic in a region influenced by a large coal-fired power plant. Int. J. Environ. Sci. Technol. 2022, 19, 281–288. [Google Scholar] [CrossRef]
- Li, L.; Meng, R.; Lei, Y.; Wu, S.; Jiang, Y. Human health risk assessment of heavy metals from PM2.5 in China’s 29 provincial capital cities. Environ. Sci. Pollut. Res. 2022, 29, 63028–63040. [Google Scholar] [CrossRef]
- Yadav, A.K. Human health risk assessment in opencast coal mines and coal-fired thermal power plants surrounding area due to inhalation. Environ. Chall. 2021, 3, 100074. [Google Scholar] [CrossRef]
- Cazacu, M.M.; Roșu, I.-A.; Bibire, L.; Vasincu, D.; Rotundu, A.M.; Agop, M. Theoretical and Experimental Designs of the Planetary Boundary Layer Dynamics through a Multifractal Theory of Motion. Fractal Fract. 2022, 6, 747. [Google Scholar] [CrossRef]
- Țîmpu, S.; Sfîcă, L.; Dobri, R.V.; Cazacu, M.M.; Nita, A.I.; Birsan, M.V. Tropospheric Dust and Associated Atmospheric Circulations over the Mediterranean Region with Focus on Romania’s Territory. Atmosphere 2020, 11, 349. [Google Scholar] [CrossRef] [Green Version]
- Stebel, K.; Stachlewska, I.S.; Nemuc, A.; Horalek, J.; Schneider, P.; Ajtai, N.; Diamandi, A.; Benesova, N.; Boldeanu, M.; Botezan, C.; et al. SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality. Remote Sens. 2021, 13, 2219. [Google Scholar] [CrossRef]
- Zait, R.; Fighir, D.; Sluser, B.; Plavan, O.; Teodosiu, C. Priority Pollutants Effects on Aquatic Ecosystems Evaluated through Ecotoxicity, Impact, and Risk Assessments. Water 2022, 14, 3237. [Google Scholar] [CrossRef]
City | Population | Number of Water Treatment Plants | Number of Wastewater Treatment Plants | Number of Air Quality Monitoring Stations |
---|---|---|---|---|
Brasov | 275,514 | 2 | 5 | 7 |
Cluj-Napoca | 303,047 | 1 | 8 | 5 |
Iasi | 318,871 | 8 | 4 | 6 |
Timisoara | 306,462 | 3 | 1 | 7 |
PLI Scale | Classification |
---|---|
PLI < 1 | Unpolluted air |
1 ≤ PLI < 2 | Unpolluted to moderately polluted |
2 ≤ PLI < 3 | Moderately polluted |
3 ≤ PLI < 4 | Moderately to highly polluted |
4 ≤ PLI < 5 | Highly polluted |
PLI ≥ 5 | Very highly polluted (excessive) |
City | Indicator | ATAdults (Days) | ATChildren (Days) | ADDInh Adults (mg/kg/Day) | ADDInh Children (mg/kg/Day) | RfD | HQAdults | HQChildren |
---|---|---|---|---|---|---|---|---|
Brasov | PM2.5 | 8760 | 2190 | 0.00112 | 0.00415 | 0.035 (RAIS) | 0.03200 | 0.11857 |
CO | 0.01720 | 0.06351 | 9 (RAIS) | 0.00191 | 0.00705 | |||
As | 0.22942 × 10−7 | 0.84690 × 10−7 | 0.0003 (IRIS) | 0.00007 | 0.00028 | |||
Cluj-Napoca | PM2.5 | 8760 | 2190 | 0.00114 | 0.00421 | 0.035 (RAIS) | 0.03257 | 0.12028 |
CO | 0.01656 | 0.06116 | 9 (RAIS) | 0.00184 | 0.00679 | |||
As | 0.34414 × 10−7 | 1.27035 × 10−7 | 0.0003 (IRIS) | 0.00011 | 0.00042 | |||
Iasi | PM2.5 | 8760 | 2190 | 0.00145 | 0.00536 | 0.035 (RAIS) | 0.04142 | 0.15314 |
CO | 0.01784 | 0.06587 | 9 (RAIS) | 0.00198 | 0.00731 | |||
As | 0.50984 × 10−7 | 1.88200 × 10−7 | 0.0003 (IRIS) | 0.00016 | 0.00062 | |||
Timisoara | PM2.5 | 8760 | 2190 | 0.00093 | 0.00346 | 0.035 (RAIS) | 0.02657 | 0.09885 |
CO | 0.01784 | 0.06587 | 9 (RAIS) | 0.00198 | 0.00731 | |||
As | 0.59269 × 10−7 | 2.18783 × 10−7 | 0.0003 (IRIS) | 0.00019 | 0.00072 |
City | Indicator | MAC | Ci | PI | PLI |
---|---|---|---|---|---|
Brasov | PM2.5 | 20 | 17.65 | 0.88 | 0.117 (<1) |
CO | 10 | 0.27 | 0.03 | ||
As | 6 | 0.36 | 0.06 | ||
Cluj-Napoca | PM2.5 | 20 | 17.90 | 0.90 | 0.134 (<1) |
CO | 10 | 0.26 | 0.03 | ||
As | 6 | 0.54 | 0.09 | ||
Iasi | PM2.5 | 20 | 22.81 | 1.14 | 0.164 (<1) |
CO | 10 | 0.28 | 0.03 | ||
As | 6 | 0.80 | 0.13 | ||
Timisoara | PM2.5 | 20 | 14.74 | 0.74 | 0.153 (<1) |
CO | 10 | 0.28 | 0.03 | ||
As | 6 | 0.93 | 0.16 |
City | Indicator | Ci (mg/m3) | InhRAdults (m3/h) | InhRChildren (m3/h) | EF (Days/Year) | EDAdults (Years) | EDChildren (Years) | ET (h/Day) |
---|---|---|---|---|---|---|---|---|
Brasov | PM2.5 | 0.01765 | 0.54 | 0.46 | 350 | 24 | 6 | 8 |
CO | 0.27 | |||||||
As | 3.6 × 10−7 | |||||||
Cluj-Napoca | PM2.5 | 0.01790 | 0.54 | 0.46 | 350 | 24 | 6 | 8 |
CO | 0.26 | |||||||
As | 5.4 × 10−7 | |||||||
Iasi | PM2.5 | 0.02281 | 0.54 | 0.46 | 350 | 24 | 6 | 8 |
CO | 0.28 | |||||||
As | 8 × 10−7 | |||||||
Timisoara | PM2.5 | 0.01474 | 0.54 | 0.46 | 350 | 24 | 6 | 8 |
CO | 0.28 | |||||||
As | 9.3 × 10−7 |
City | HIAdults | HIChildren |
---|---|---|
Brasov | 0.03398 | 0.12590 |
Cluj-Napoca | 0.03452 | 0.12749 |
Iasi | 0.04356 | 0.16107 |
Timisoara | 0.02874 | 0.10688 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanasa, I.; Cazacu, M.; Sluser, B. Air Quality Integrated Assessment: Environmental Impacts, Risks and Human Health Hazards. Appl. Sci. 2023, 13, 1222. https://doi.org/10.3390/app13021222
Tanasa I, Cazacu M, Sluser B. Air Quality Integrated Assessment: Environmental Impacts, Risks and Human Health Hazards. Applied Sciences. 2023; 13(2):1222. https://doi.org/10.3390/app13021222
Chicago/Turabian StyleTanasa, Ioana, Marius Cazacu, and Brindusa Sluser. 2023. "Air Quality Integrated Assessment: Environmental Impacts, Risks and Human Health Hazards" Applied Sciences 13, no. 2: 1222. https://doi.org/10.3390/app13021222
APA StyleTanasa, I., Cazacu, M., & Sluser, B. (2023). Air Quality Integrated Assessment: Environmental Impacts, Risks and Human Health Hazards. Applied Sciences, 13(2), 1222. https://doi.org/10.3390/app13021222